diff options
| author | Kazuhiko Sakaguchi | 2020-11-27 02:34:35 +0900 |
|---|---|---|
| committer | Kazuhiko Sakaguchi | 2020-11-29 22:41:21 +0900 |
| commit | 86a3d1a4c742a273414c98f6a8b1a99f0d081a98 (patch) | |
| tree | 725128fa645c49f426609a77fee71bf2064cf48b /theories/ssr | |
| parent | 270b2be49e9cdc70936cec8495c53602bcf40f57 (diff) | |
Backport ssrbool lemmas from MathComp 1.12.0
Diffstat (limited to 'theories/ssr')
| -rw-r--r-- | theories/ssr/ssrbool.v | 114 |
1 files changed, 114 insertions, 0 deletions
diff --git a/theories/ssr/ssrbool.v b/theories/ssr/ssrbool.v index a563dcbf95..d8eb005ab2 100644 --- a/theories/ssr/ssrbool.v +++ b/theories/ssr/ssrbool.v @@ -1944,7 +1944,121 @@ Proof. by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K]. Qed. +Lemma in_on1P : {in D1, {on D2, allQ1 f}} <-> + {in [pred x in D1 | f x \in D2], allQ1 f}. +Proof. +split => allf x; have := allf x; rewrite inE => Q1f; first by case/andP. +by move=> ? ?; apply: Q1f; apply/andP. +Qed. + +Lemma in_on1lP : {in D1, {on D2, allQ1l f & h}} <-> + {in [pred x in D1 | f x \in D2], allQ1l f h}. +Proof. +split => allf x; have := allf x; rewrite inE => Q1f; first by case/andP. +by move=> ? ?; apply: Q1f; apply/andP. +Qed. + +Lemma in_on2P : {in D1 &, {on D2 &, allQ2 f}} <-> + {in [pred x in D1 | f x \in D2] &, allQ2 f}. +Proof. +split => allf x y; have := allf x y; rewrite !inE => Q2f. + by move=> /andP[? ?] /andP[? ?]; apply: Q2f. +by move=> ? ? ? ?; apply: Q2f; apply/andP. +Qed. + +Lemma on1W_in : {in D1, allQ1 f} -> {in D1, {on D2, allQ1 f}}. +Proof. by move=> D1f ? /D1f. Qed. + +Lemma on1lW_in : {in D1, allQ1l f h} -> {in D1, {on D2, allQ1l f & h}}. +Proof. by move=> D1f ? /D1f. Qed. + +Lemma on2W_in : {in D1 &, allQ2 f} -> {in D1 &, {on D2 &, allQ2 f}}. +Proof. by move=> D1f ? ? ? ? ? ?; apply: D1f. Qed. + +Lemma in_on1W : allQ1 f -> {in D1, {on D2, allQ1 f}}. +Proof. by move=> allf ? ? ?; apply: allf. Qed. + +Lemma in_on1lW : allQ1l f h -> {in D1, {on D2, allQ1l f & h}}. +Proof. by move=> allf ? ? ?; apply: allf. Qed. + +Lemma in_on2W : allQ2 f -> {in D1 &, {on D2 &, allQ2 f}}. +Proof. by move=> allf ? ? ? ? ? ?; apply: allf. Qed. + +Lemma on1S : (forall x, f x \in D2) -> {on D2, allQ1 f} -> allQ1 f. +Proof. by move=> ? fD1 ?; apply: fD1. Qed. + +Lemma on1lS : (forall x, f x \in D2) -> {on D2, allQ1l f & h} -> allQ1l f h. +Proof. by move=> ? fD1 ?; apply: fD1. Qed. + +Lemma on2S : (forall x, f x \in D2) -> {on D2 &, allQ2 f} -> allQ2 f. +Proof. by move=> ? fD1 ? ?; apply: fD1. Qed. + +Lemma on1S_in : {homo f : x / x \in D1 >-> x \in D2} -> + {in D1, {on D2, allQ1 f}} -> {in D1, allQ1 f}. +Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed. + +Lemma on1lS_in : {homo f : x / x \in D1 >-> x \in D2} -> + {in D1, {on D2, allQ1l f & h}} -> {in D1, allQ1l f h}. +Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed. + +Lemma on2S_in : {homo f : x / x \in D1 >-> x \in D2} -> + {in D1 &, {on D2 &, allQ2 f}} -> {in D1 &, allQ2 f}. +Proof. by move=> fD fD1 ? ? ? ?; apply: fD1 => //; apply: fD. Qed. + +Lemma in_on1S : (forall x, f x \in D2) -> {in T1, {on D2, allQ1 f}} -> allQ1 f. +Proof. by move=> fD2 fD1 ?; apply: fD1. Qed. + +Lemma in_on1lS : (forall x, f x \in D2) -> + {in T1, {on D2, allQ1l f & h}} -> allQ1l f h. +Proof. by move=> fD2 fD1 ?; apply: fD1. Qed. + +Lemma in_on2S : (forall x, f x \in D2) -> + {in T1 &, {on D2 &, allQ2 f}} -> allQ2 f. +Proof. by move=> fD2 fD1 ? ?; apply: fD1. Qed. + End LocalGlobal. +Arguments in_on1P {T1 T2 D1 D2 f Q1}. +Arguments in_on1lP {T1 T2 T3 D1 D2 f h Q1l}. +Arguments in_on2P {T1 T2 D1 D2 f Q2}. +Arguments on1W_in {T1 T2 D1} D2 {f Q1}. +Arguments on1lW_in {T1 T2 T3 D1} D2 {f h Q1l}. +Arguments on2W_in {T1 T2 D1} D2 {f Q2}. +Arguments in_on1W {T1 T2} D1 D2 {f Q1}. +Arguments in_on1lW {T1 T2 T3} D1 D2 {f h Q1l}. +Arguments in_on2W {T1 T2} D1 D2 {f Q2}. +Arguments on1S {T1 T2} D2 {f Q1}. +Arguments on1lS {T1 T2 T3} D2 {f h Q1l}. +Arguments on2S {T1 T2} D2 {f Q2}. +Arguments on1S_in {T1 T2 D1} D2 {f Q1}. +Arguments on1lS_in {T1 T2 T3 D1} D2 {f h Q1l}. +Arguments on2S_in {T1 T2 D1} D2 {f Q2}. +Arguments in_on1S {T1 T2} D2 {f Q1}. +Arguments in_on1lS {T1 T2 T3} D2 {f h Q1l}. +Arguments in_on2S {T1 T2} D2 {f Q2}. + +Section in_sig. + +Variables T1 T2 T3 : Type. +Variables (D1 : {pred T1}) (D2 : {pred T2}) (D3 : {pred T3}). +Variable P1 : T1 -> Prop. +Variable P2 : T1 -> T2 -> Prop. +Variable P3 : T1 -> T2 -> T3 -> Prop. + +Lemma in1_sig : {in D1, {all1 P1}} -> forall x : sig D1, P1 (sval x). +Proof. by move=> DP [x Dx]; have := DP _ Dx. Qed. + +Lemma in2_sig : {in D1 & D2, {all2 P2}} -> + forall (x : sig D1) (y : sig D2), P2 (sval x) (sval y). +Proof. by move=> DP [x Dx] [y Dy]; have := DP _ _ Dx Dy. Qed. + +Lemma in3_sig : {in D1 & D2 & D3, {all3 P3}} -> + forall (x : sig D1) (y : sig D2) (z : sig D3), P3 (sval x) (sval y) (sval z). +Proof. by move=> DP [x Dx] [y Dy] [z Dz]; have := DP _ _ _ Dx Dy Dz. Qed. + +End in_sig. +Arguments in1_sig {T1 D1 P1}. +Arguments in2_sig {T1 T2 D1 D2 P2}. +Arguments in3_sig {T1 T2 T3 D1 D2 D3 P3}. Lemma sub_in2 T d d' (P : T -> T -> Prop) : sub_mem d d' -> forall Ph : ph {all2 P}, prop_in2 d' Ph -> prop_in2 d Ph. |
