diff options
| author | Reynald Affeldt | 2020-06-07 19:56:13 +0900 |
|---|---|---|
| committer | Reynald Affeldt | 2020-08-25 18:40:27 +0900 |
| commit | 3405ab8405e141dd0a28c72c8ca221ed6f50dfed (patch) | |
| tree | 581884bcf66f9dfc4b07b815379389e955391327 /theories/ssr | |
| parent | bd4791ff350bef9dc45b42b2ae77769625644c4f (diff) | |
tentative backport of ssrbool from MathComp 1.11
Diffstat (limited to 'theories/ssr')
| -rw-r--r-- | theories/ssr/ssrbool.v | 117 |
1 files changed, 108 insertions, 9 deletions
diff --git a/theories/ssr/ssrbool.v b/theories/ssr/ssrbool.v index be84e217a5..701b604637 100644 --- a/theories/ssr/ssrbool.v +++ b/theories/ssr/ssrbool.v @@ -1980,8 +1980,8 @@ End MonoHomoMorphismTheory. Section MonoHomoMorphismTheory_in. -Variables (aT rT sT : predArgType) (f : aT -> rT) (g : rT -> aT). -Variable (aD : {pred aT}). +Variables (aT rT : predArgType) (f : aT -> rT) (g : rT -> aT). +Variables (aD : {pred aT}) (rD : {pred rT}). Variable (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT). Notation rD := [pred x | g x \in aD]. @@ -1996,17 +1996,18 @@ Lemma mono2W_in : {in aD, {homo f : x / aP x >-> rP x}}. Proof. by move=> hf x hx ax; rewrite hf. Qed. -Hypothesis fgK_on : {on aD, cancel g & f}. +Hypothesis fgK : {in rD, {on aD, cancel g & f}}. +Hypothesis mem_g : {homo g : x / x \in rD >-> x \in aD}. Lemma homoRL_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> {in rD & aD, forall x y, aR (g x) y -> rR x (f y)}. -Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed. +Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed. Lemma homoLR_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> {in aD & rD, forall x y, aR x (g y) -> rR (f x) y}. -Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed. +Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed. Lemma homo_mono_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> @@ -2014,22 +2015,120 @@ Lemma homo_mono_in : {in rD &, {mono g : x y / rR x y >-> aR x y}}. Proof. move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact. -by apply: contraNF=> /mf; rewrite !fgK_on //; apply. +by apply: contraNF=> /mf; rewrite !fgK ?mem_g//; apply. Qed. Lemma monoLR_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> {in aD & rD, forall x y, rR (f x) y = aR x (g y)}. -Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK_on // mf. Qed. +Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK ?mem_g// mf ?mem_g. Qed. Lemma monoRL_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> {in rD & aD, forall x y, rR x (f y) = aR (g x) y}. -Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK_on // mf. Qed. +Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK ?mem_g// mf ?mem_g. Qed. Lemma can_mono_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> {in rD &, {mono g : x y / rR x y >-> aR x y}}. -Proof. by move=> mf x y hx hy /=; rewrite -mf // !fgK_on. Qed. +Proof. by move=> mf x y hx hy; rewrite -mf ?mem_g// !fgK ?mem_g. Qed. End MonoHomoMorphismTheory_in. +Arguments homoRL_in {aT rT f g aD rD aR rR}. +Arguments homoLR_in {aT rT f g aD rD aR rR}. +Arguments homo_mono_in {aT rT f g aD rD aR rR}. +Arguments monoLR_in {aT rT f g aD rD aR rR}. +Arguments monoRL_in {aT rT f g aD rD aR rR}. +Arguments can_mono_in {aT rT f g aD rD aR rR}. + + +Section HomoMonoMorphismFlip. +Variables (aT rT : Type) (aR : rel aT) (rR : rel rT) (f : aT -> rT). +Variable (aD aD' : {pred aT}). + +Lemma homo_sym : {homo f : x y / aR x y >-> rR x y} -> + {homo f : y x / aR x y >-> rR x y}. +Proof. by move=> fR y x; apply: fR. Qed. + +Lemma mono_sym : {mono f : x y / aR x y >-> rR x y} -> + {mono f : y x / aR x y >-> rR x y}. +Proof. by move=> fR y x; apply: fR. Qed. + +Lemma homo_sym_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> + {in aD &, {homo f : y x / aR x y >-> rR x y}}. +Proof. by move=> fR y x yD xD; apply: fR. Qed. + +Lemma mono_sym_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> + {in aD &, {mono f : y x / aR x y >-> rR x y}}. +Proof. by move=> fR y x yD xD; apply: fR. Qed. + +Lemma homo_sym_in11 : {in aD & aD', {homo f : x y / aR x y >-> rR x y}} -> + {in aD' & aD, {homo f : y x / aR x y >-> rR x y}}. +Proof. by move=> fR y x yD xD; apply: fR. Qed. + +Lemma mono_sym_in11 : {in aD & aD', {mono f : x y / aR x y >-> rR x y}} -> + {in aD' & aD, {mono f : y x / aR x y >-> rR x y}}. +Proof. by move=> fR y x yD xD; apply: fR. Qed. + +End HomoMonoMorphismFlip. +Arguments homo_sym {aT rT} [aR rR f]. +Arguments mono_sym {aT rT} [aR rR f]. +Arguments homo_sym_in {aT rT} [aR rR f aD]. +Arguments mono_sym_in {aT rT} [aR rR f aD]. +Arguments homo_sym_in11 {aT rT} [aR rR f aD aD']. +Arguments mono_sym_in11 {aT rT} [aR rR f aD aD']. + +Section CancelOn. + +Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}). +Variables (f : aT -> rT) (g : rT -> aT). + +Lemma onW_can : cancel g f -> {on aD, cancel g & f}. +Proof. by move=> fgK x xaD; apply: fgK. Qed. + +Lemma onW_can_in : {in rD, cancel g f} -> {in rD, {on aD, cancel g & f}}. +Proof. by move=> fgK x xrD xaD; apply: fgK. Qed. + +Lemma in_onW_can : cancel g f -> {in rD, {on aD, cancel g & f}}. +Proof. by move=> fgK x xrD xaD; apply: fgK. Qed. + +Lemma onS_can : (forall x, g x \in aD) -> {on aD, cancel g & f} -> cancel g f. +Proof. by move=> mem_g fgK x; apply: fgK. Qed. + +Lemma onS_can_in : {homo g : x / x \in rD >-> x \in aD} -> + {in rD, {on aD, cancel g & f}} -> {in rD, cancel g f}. +Proof. by move=> mem_g fgK x x_rD; apply/fgK/mem_g. Qed. + +Lemma in_onS_can : (forall x, g x \in aD) -> + {in rT, {on aD, cancel g & f}} -> cancel g f. +Proof. by move=> mem_g fgK x; apply/fgK. Qed. + +End CancelOn. +Arguments onW_can {aT rT} aD {f g}. +Arguments onW_can_in {aT rT} aD {rD f g}. +Arguments in_onW_can {aT rT} aD rD {f g}. +Arguments onS_can {aT rT} aD {f g}. +Arguments onS_can_in {aT rT} aD {rD f g}. +Arguments in_onS_can {aT rT} aD {f g}. + +Section inj_can_sym_in_on. +Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}). +Variables (f : aT -> rT) (g : rT -> aT). + +Lemma inj_can_sym_in_on : + {homo f : x / x \in aD >-> x \in rD} -> {in aD, {on rD, cancel f & g}} -> + {in rD &, {on aD &, injective g}} -> {in rD, {on aD, cancel g & f}}. +Proof. by move=> fD fK gI x x_rD gx_aD; apply: gI; rewrite ?inE ?fK ?fD. Qed. + +Lemma inj_can_sym_on : {in aD, cancel f g} -> + {on aD &, injective g} -> {on aD, cancel g & f}. +Proof. by move=> fK gI x gx_aD; apply: gI; rewrite ?inE ?fK. Qed. + +Lemma inj_can_sym_in : {homo f \o g : x / x \in rD} -> {on rD, cancel f & g} -> + {in rD &, injective g} -> {in rD, cancel g f}. +Proof. by move=> fgD fK gI x x_rD; apply: gI; rewrite ?fK ?fgD. Qed. + +End inj_can_sym_in_on. +Arguments inj_can_sym_in_on {aT rT aD rD f g}. +Arguments inj_can_sym_on {aT rT aD f g}. +Arguments inj_can_sym_in {aT rT rD f g}. |
