aboutsummaryrefslogtreecommitdiff
path: root/theories/ssr
diff options
context:
space:
mode:
authorReynald Affeldt2020-06-07 19:56:13 +0900
committerReynald Affeldt2020-08-25 18:40:27 +0900
commit3405ab8405e141dd0a28c72c8ca221ed6f50dfed (patch)
tree581884bcf66f9dfc4b07b815379389e955391327 /theories/ssr
parentbd4791ff350bef9dc45b42b2ae77769625644c4f (diff)
tentative backport of ssrbool from MathComp 1.11
Diffstat (limited to 'theories/ssr')
-rw-r--r--theories/ssr/ssrbool.v117
1 files changed, 108 insertions, 9 deletions
diff --git a/theories/ssr/ssrbool.v b/theories/ssr/ssrbool.v
index be84e217a5..701b604637 100644
--- a/theories/ssr/ssrbool.v
+++ b/theories/ssr/ssrbool.v
@@ -1980,8 +1980,8 @@ End MonoHomoMorphismTheory.
Section MonoHomoMorphismTheory_in.
-Variables (aT rT sT : predArgType) (f : aT -> rT) (g : rT -> aT).
-Variable (aD : {pred aT}).
+Variables (aT rT : predArgType) (f : aT -> rT) (g : rT -> aT).
+Variables (aD : {pred aT}) (rD : {pred rT}).
Variable (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT).
Notation rD := [pred x | g x \in aD].
@@ -1996,17 +1996,18 @@ Lemma mono2W_in :
{in aD, {homo f : x / aP x >-> rP x}}.
Proof. by move=> hf x hx ax; rewrite hf. Qed.
-Hypothesis fgK_on : {on aD, cancel g & f}.
+Hypothesis fgK : {in rD, {on aD, cancel g & f}}.
+Hypothesis mem_g : {homo g : x / x \in rD >-> x \in aD}.
Lemma homoRL_in :
{in aD &, {homo f : x y / aR x y >-> rR x y}} ->
{in rD & aD, forall x y, aR (g x) y -> rR x (f y)}.
-Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
+Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed.
Lemma homoLR_in :
{in aD &, {homo f : x y / aR x y >-> rR x y}} ->
{in aD & rD, forall x y, aR x (g y) -> rR (f x) y}.
-Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
+Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed.
Lemma homo_mono_in :
{in aD &, {homo f : x y / aR x y >-> rR x y}} ->
@@ -2014,22 +2015,120 @@ Lemma homo_mono_in :
{in rD &, {mono g : x y / rR x y >-> aR x y}}.
Proof.
move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact.
-by apply: contraNF=> /mf; rewrite !fgK_on //; apply.
+by apply: contraNF=> /mf; rewrite !fgK ?mem_g//; apply.
Qed.
Lemma monoLR_in :
{in aD &, {mono f : x y / aR x y >-> rR x y}} ->
{in aD & rD, forall x y, rR (f x) y = aR x (g y)}.
-Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK_on // mf. Qed.
+Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK ?mem_g// mf ?mem_g. Qed.
Lemma monoRL_in :
{in aD &, {mono f : x y / aR x y >-> rR x y}} ->
{in rD & aD, forall x y, rR x (f y) = aR (g x) y}.
-Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK_on // mf. Qed.
+Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK ?mem_g// mf ?mem_g. Qed.
Lemma can_mono_in :
{in aD &, {mono f : x y / aR x y >-> rR x y}} ->
{in rD &, {mono g : x y / rR x y >-> aR x y}}.
-Proof. by move=> mf x y hx hy /=; rewrite -mf // !fgK_on. Qed.
+Proof. by move=> mf x y hx hy; rewrite -mf ?mem_g// !fgK ?mem_g. Qed.
End MonoHomoMorphismTheory_in.
+Arguments homoRL_in {aT rT f g aD rD aR rR}.
+Arguments homoLR_in {aT rT f g aD rD aR rR}.
+Arguments homo_mono_in {aT rT f g aD rD aR rR}.
+Arguments monoLR_in {aT rT f g aD rD aR rR}.
+Arguments monoRL_in {aT rT f g aD rD aR rR}.
+Arguments can_mono_in {aT rT f g aD rD aR rR}.
+
+
+Section HomoMonoMorphismFlip.
+Variables (aT rT : Type) (aR : rel aT) (rR : rel rT) (f : aT -> rT).
+Variable (aD aD' : {pred aT}).
+
+Lemma homo_sym : {homo f : x y / aR x y >-> rR x y} ->
+ {homo f : y x / aR x y >-> rR x y}.
+Proof. by move=> fR y x; apply: fR. Qed.
+
+Lemma mono_sym : {mono f : x y / aR x y >-> rR x y} ->
+ {mono f : y x / aR x y >-> rR x y}.
+Proof. by move=> fR y x; apply: fR. Qed.
+
+Lemma homo_sym_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
+ {in aD &, {homo f : y x / aR x y >-> rR x y}}.
+Proof. by move=> fR y x yD xD; apply: fR. Qed.
+
+Lemma mono_sym_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+ {in aD &, {mono f : y x / aR x y >-> rR x y}}.
+Proof. by move=> fR y x yD xD; apply: fR. Qed.
+
+Lemma homo_sym_in11 : {in aD & aD', {homo f : x y / aR x y >-> rR x y}} ->
+ {in aD' & aD, {homo f : y x / aR x y >-> rR x y}}.
+Proof. by move=> fR y x yD xD; apply: fR. Qed.
+
+Lemma mono_sym_in11 : {in aD & aD', {mono f : x y / aR x y >-> rR x y}} ->
+ {in aD' & aD, {mono f : y x / aR x y >-> rR x y}}.
+Proof. by move=> fR y x yD xD; apply: fR. Qed.
+
+End HomoMonoMorphismFlip.
+Arguments homo_sym {aT rT} [aR rR f].
+Arguments mono_sym {aT rT} [aR rR f].
+Arguments homo_sym_in {aT rT} [aR rR f aD].
+Arguments mono_sym_in {aT rT} [aR rR f aD].
+Arguments homo_sym_in11 {aT rT} [aR rR f aD aD'].
+Arguments mono_sym_in11 {aT rT} [aR rR f aD aD'].
+
+Section CancelOn.
+
+Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}).
+Variables (f : aT -> rT) (g : rT -> aT).
+
+Lemma onW_can : cancel g f -> {on aD, cancel g & f}.
+Proof. by move=> fgK x xaD; apply: fgK. Qed.
+
+Lemma onW_can_in : {in rD, cancel g f} -> {in rD, {on aD, cancel g & f}}.
+Proof. by move=> fgK x xrD xaD; apply: fgK. Qed.
+
+Lemma in_onW_can : cancel g f -> {in rD, {on aD, cancel g & f}}.
+Proof. by move=> fgK x xrD xaD; apply: fgK. Qed.
+
+Lemma onS_can : (forall x, g x \in aD) -> {on aD, cancel g & f} -> cancel g f.
+Proof. by move=> mem_g fgK x; apply: fgK. Qed.
+
+Lemma onS_can_in : {homo g : x / x \in rD >-> x \in aD} ->
+ {in rD, {on aD, cancel g & f}} -> {in rD, cancel g f}.
+Proof. by move=> mem_g fgK x x_rD; apply/fgK/mem_g. Qed.
+
+Lemma in_onS_can : (forall x, g x \in aD) ->
+ {in rT, {on aD, cancel g & f}} -> cancel g f.
+Proof. by move=> mem_g fgK x; apply/fgK. Qed.
+
+End CancelOn.
+Arguments onW_can {aT rT} aD {f g}.
+Arguments onW_can_in {aT rT} aD {rD f g}.
+Arguments in_onW_can {aT rT} aD rD {f g}.
+Arguments onS_can {aT rT} aD {f g}.
+Arguments onS_can_in {aT rT} aD {rD f g}.
+Arguments in_onS_can {aT rT} aD {f g}.
+
+Section inj_can_sym_in_on.
+Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}).
+Variables (f : aT -> rT) (g : rT -> aT).
+
+Lemma inj_can_sym_in_on :
+ {homo f : x / x \in aD >-> x \in rD} -> {in aD, {on rD, cancel f & g}} ->
+ {in rD &, {on aD &, injective g}} -> {in rD, {on aD, cancel g & f}}.
+Proof. by move=> fD fK gI x x_rD gx_aD; apply: gI; rewrite ?inE ?fK ?fD. Qed.
+
+Lemma inj_can_sym_on : {in aD, cancel f g} ->
+ {on aD &, injective g} -> {on aD, cancel g & f}.
+Proof. by move=> fK gI x gx_aD; apply: gI; rewrite ?inE ?fK. Qed.
+
+Lemma inj_can_sym_in : {homo f \o g : x / x \in rD} -> {on rD, cancel f & g} ->
+ {in rD &, injective g} -> {in rD, cancel g f}.
+Proof. by move=> fgD fK gI x x_rD; apply: gI; rewrite ?fK ?fgD. Qed.
+
+End inj_can_sym_in_on.
+Arguments inj_can_sym_in_on {aT rT aD rD f g}.
+Arguments inj_can_sym_on {aT rT aD f g}.
+Arguments inj_can_sym_in {aT rT rD f g}.