aboutsummaryrefslogtreecommitdiff
path: root/theories/setoid_ring
diff options
context:
space:
mode:
authorJasper Hugunin2020-09-12 21:03:31 -0700
committerJasper Hugunin2020-09-16 13:23:13 -0700
commitcc4494897f0897f5795c2bd25fc06d4b07c73667 (patch)
tree596ed5ed585ee2cf9acf6ba2a8af26faa7a0d5ba /theories/setoid_ring
parent862a5b352e784fff9f1a9bde5ac3b887403ece57 (diff)
Modify setoid_ring/BinList.v to compile with -mangle-names
Diffstat (limited to 'theories/setoid_ring')
-rw-r--r--theories/setoid_ring/BinList.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/theories/setoid_ring/BinList.v b/theories/setoid_ring/BinList.v
index b6b8b45e1a..892909fd40 100644
--- a/theories/setoid_ring/BinList.v
+++ b/theories/setoid_ring/BinList.v
@@ -33,13 +33,13 @@ Section MakeBinList.
Lemma jump_tl : forall j l, tl (jump j l) = jump j (tl l).
Proof.
- induction j;simpl;intros; now rewrite ?IHj.
+ intro j;induction j as [j IHj|j IHj|];simpl;intros; now rewrite ?IHj.
Qed.
Lemma jump_succ : forall j l,
jump (Pos.succ j) l = jump 1 (jump j l).
Proof.
- induction j;simpl;intros.
+ intro j;induction j as [j IHj|j IHj|];simpl;intros.
- rewrite !IHj; simpl; now rewrite !jump_tl.
- now rewrite !jump_tl.
- trivial.
@@ -48,7 +48,7 @@ Section MakeBinList.
Lemma jump_add : forall i j l,
jump (i + j) l = jump i (jump j l).
Proof.
- induction i using Pos.peano_ind; intros.
+ intro i; induction i as [|i IHi] using Pos.peano_ind; intros.
- now rewrite Pos.add_1_l, jump_succ.
- now rewrite Pos.add_succ_l, !jump_succ, IHi.
Qed.
@@ -56,7 +56,7 @@ Section MakeBinList.
Lemma jump_pred_double : forall i l,
jump (Pos.pred_double i) (tl l) = jump i (jump i l).
Proof.
- induction i;intros;simpl.
+ intro i;induction i as [i IHi|i IHi|];intros;simpl.
- now rewrite !jump_tl.
- now rewrite IHi, <- 2 jump_tl, IHi.
- trivial.
@@ -64,7 +64,7 @@ Section MakeBinList.
Lemma nth_jump : forall p l, nth p (tl l) = hd default (jump p l).
Proof.
- induction p;simpl;intros.
+ intro p;induction p as [p IHp|p IHp|];simpl;intros.
- now rewrite <-jump_tl, IHp.
- now rewrite <-jump_tl, IHp.
- trivial.
@@ -73,7 +73,7 @@ Section MakeBinList.
Lemma nth_pred_double :
forall p l, nth (Pos.pred_double p) (tl l) = nth p (jump p l).
Proof.
- induction p;simpl;intros.
+ intro p;induction p as [p IHp|p IHp|];simpl;intros.
- now rewrite !jump_tl.
- now rewrite jump_pred_double, <- !jump_tl, IHp.
- trivial.