aboutsummaryrefslogtreecommitdiff
path: root/theories/ZArith
diff options
context:
space:
mode:
authorVincent Laporte2018-09-06 17:49:28 +0200
committerVincent Laporte2018-09-10 09:40:15 +0200
commitddc25ec6150005e949442d422549fbc213d8f4af (patch)
tree64de6ee7ff1a095151ad321a4015151f694df6ad /theories/ZArith
parent69fb545f0fad2b356f5be1ce3e1a24b5afe26ce2 (diff)
Deprecate romega in favor of lia.
Diffstat (limited to 'theories/ZArith')
-rw-r--r--theories/ZArith/Zquot.v26
1 files changed, 13 insertions, 13 deletions
diff --git a/theories/ZArith/Zquot.v b/theories/ZArith/Zquot.v
index e93ebb1ad5..0c9aca2657 100644
--- a/theories/ZArith/Zquot.v
+++ b/theories/ZArith/Zquot.v
@@ -8,7 +8,7 @@
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
-Require Import Nnat ZArith_base ROmega ZArithRing Zdiv Morphisms.
+Require Import Nnat ZArith_base Lia ZArithRing Zdiv Morphisms.
Local Open Scope Z_scope.
@@ -129,33 +129,33 @@ Qed.
Theorem Zrem_lt_pos a b : 0<=a -> b<>0 -> 0 <= Z.rem a b < Z.abs b.
Proof.
intros; generalize (Z.rem_nonneg a b) (Z.rem_bound_abs a b);
- romega with *.
+ lia.
Qed.
Theorem Zrem_lt_neg a b : a<=0 -> b<>0 -> -Z.abs b < Z.rem a b <= 0.
Proof.
intros; generalize (Z.rem_nonpos a b) (Z.rem_bound_abs a b);
- romega with *.
+ lia.
Qed.
Theorem Zrem_lt_pos_pos a b : 0<=a -> 0<b -> 0 <= Z.rem a b < b.
Proof.
- intros; generalize (Zrem_lt_pos a b); romega with *.
+ intros; generalize (Zrem_lt_pos a b); lia.
Qed.
Theorem Zrem_lt_pos_neg a b : 0<=a -> b<0 -> 0 <= Z.rem a b < -b.
Proof.
- intros; generalize (Zrem_lt_pos a b); romega with *.
+ intros; generalize (Zrem_lt_pos a b); lia.
Qed.
Theorem Zrem_lt_neg_pos a b : a<=0 -> 0<b -> -b < Z.rem a b <= 0.
Proof.
- intros; generalize (Zrem_lt_neg a b); romega with *.
+ intros; generalize (Zrem_lt_neg a b); lia.
Qed.
Theorem Zrem_lt_neg_neg a b : a<=0 -> b<0 -> b < Z.rem a b <= 0.
Proof.
- intros; generalize (Zrem_lt_neg a b); romega with *.
+ intros; generalize (Zrem_lt_neg a b); lia.
Qed.
@@ -171,12 +171,12 @@ Lemma Remainder_equiv : forall a b r,
Remainder a b r <-> Remainder_alt a b r.
Proof.
unfold Remainder, Remainder_alt; intuition.
- - romega with *.
- - romega with *.
- - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; romega.
+ - lia.
+ - lia.
+ - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; lia.
- assert (0 <= Z.sgn r * Z.sgn a).
{ rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto. }
- destruct r; simpl Z.sgn in *; romega with *.
+ destruct r; simpl Z.sgn in *; lia.
Qed.
Theorem Zquot_mod_unique_full a b q r :
@@ -185,7 +185,7 @@ Proof.
destruct 1 as [(H,H0)|(H,H0)]; intros.
apply Zdiv_mod_unique with b; auto.
apply Zrem_lt_pos; auto.
- romega with *.
+ lia.
rewrite <- H1; apply Z.quot_rem'.
rewrite <- (Z.opp_involutive a).
@@ -193,7 +193,7 @@ Proof.
generalize (Zdiv_mod_unique b (-q) (-a÷b) (-r) (Z.rem (-a) b)).
generalize (Zrem_lt_pos (-a) b).
rewrite <-Z.quot_rem', Z.mul_opp_r, <-Z.opp_add_distr, <-H1.
- romega with *.
+ lia.
Qed.
Theorem Zquot_unique_full a b q r :