diff options
| author | Vincent Laporte | 2018-09-06 17:49:28 +0200 |
|---|---|---|
| committer | Vincent Laporte | 2018-09-10 09:40:15 +0200 |
| commit | ddc25ec6150005e949442d422549fbc213d8f4af (patch) | |
| tree | 64de6ee7ff1a095151ad321a4015151f694df6ad /theories/ZArith | |
| parent | 69fb545f0fad2b356f5be1ce3e1a24b5afe26ce2 (diff) | |
Deprecate romega in favor of lia.
Diffstat (limited to 'theories/ZArith')
| -rw-r--r-- | theories/ZArith/Zquot.v | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/theories/ZArith/Zquot.v b/theories/ZArith/Zquot.v index e93ebb1ad5..0c9aca2657 100644 --- a/theories/ZArith/Zquot.v +++ b/theories/ZArith/Zquot.v @@ -8,7 +8,7 @@ (* * (see LICENSE file for the text of the license) *) (************************************************************************) -Require Import Nnat ZArith_base ROmega ZArithRing Zdiv Morphisms. +Require Import Nnat ZArith_base Lia ZArithRing Zdiv Morphisms. Local Open Scope Z_scope. @@ -129,33 +129,33 @@ Qed. Theorem Zrem_lt_pos a b : 0<=a -> b<>0 -> 0 <= Z.rem a b < Z.abs b. Proof. intros; generalize (Z.rem_nonneg a b) (Z.rem_bound_abs a b); - romega with *. + lia. Qed. Theorem Zrem_lt_neg a b : a<=0 -> b<>0 -> -Z.abs b < Z.rem a b <= 0. Proof. intros; generalize (Z.rem_nonpos a b) (Z.rem_bound_abs a b); - romega with *. + lia. Qed. Theorem Zrem_lt_pos_pos a b : 0<=a -> 0<b -> 0 <= Z.rem a b < b. Proof. - intros; generalize (Zrem_lt_pos a b); romega with *. + intros; generalize (Zrem_lt_pos a b); lia. Qed. Theorem Zrem_lt_pos_neg a b : 0<=a -> b<0 -> 0 <= Z.rem a b < -b. Proof. - intros; generalize (Zrem_lt_pos a b); romega with *. + intros; generalize (Zrem_lt_pos a b); lia. Qed. Theorem Zrem_lt_neg_pos a b : a<=0 -> 0<b -> -b < Z.rem a b <= 0. Proof. - intros; generalize (Zrem_lt_neg a b); romega with *. + intros; generalize (Zrem_lt_neg a b); lia. Qed. Theorem Zrem_lt_neg_neg a b : a<=0 -> b<0 -> b < Z.rem a b <= 0. Proof. - intros; generalize (Zrem_lt_neg a b); romega with *. + intros; generalize (Zrem_lt_neg a b); lia. Qed. @@ -171,12 +171,12 @@ Lemma Remainder_equiv : forall a b r, Remainder a b r <-> Remainder_alt a b r. Proof. unfold Remainder, Remainder_alt; intuition. - - romega with *. - - romega with *. - - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; romega. + - lia. + - lia. + - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; lia. - assert (0 <= Z.sgn r * Z.sgn a). { rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto. } - destruct r; simpl Z.sgn in *; romega with *. + destruct r; simpl Z.sgn in *; lia. Qed. Theorem Zquot_mod_unique_full a b q r : @@ -185,7 +185,7 @@ Proof. destruct 1 as [(H,H0)|(H,H0)]; intros. apply Zdiv_mod_unique with b; auto. apply Zrem_lt_pos; auto. - romega with *. + lia. rewrite <- H1; apply Z.quot_rem'. rewrite <- (Z.opp_involutive a). @@ -193,7 +193,7 @@ Proof. generalize (Zdiv_mod_unique b (-q) (-a÷b) (-r) (Z.rem (-a) b)). generalize (Zrem_lt_pos (-a) b). rewrite <-Z.quot_rem', Z.mul_opp_r, <-Z.opp_add_distr, <-H1. - romega with *. + lia. Qed. Theorem Zquot_unique_full a b q r : |
