aboutsummaryrefslogtreecommitdiff
path: root/theories/ZArith
diff options
context:
space:
mode:
authorJPR2019-05-23 23:28:55 +0200
committerJPR2019-05-23 23:28:55 +0200
commitd306f5428db0d034aea55d3f0699c67c1f296cc1 (patch)
tree540bcc09ec46c8a360cda9ed7fafa9ab631d3716 /theories/ZArith
parent5cfdc20560392c2125dbcee31cfd308d5346b428 (diff)
Fixing typos - Part 3
Diffstat (limited to 'theories/ZArith')
-rw-r--r--theories/ZArith/BinInt.v2
-rw-r--r--theories/ZArith/BinIntDef.v2
-rw-r--r--theories/ZArith/Int.v2
-rw-r--r--theories/ZArith/Zquot.v2
4 files changed, 4 insertions, 4 deletions
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v
index a346ab8ccb..43841920e5 100644
--- a/theories/ZArith/BinInt.v
+++ b/theories/ZArith/BinInt.v
@@ -1259,7 +1259,7 @@ Proof.
f_equal. now rewrite <- add_assoc, add_opp_diag_r, add_0_r.
Qed.
-(** * [testbit] in terms of comparision. *)
+(** * [testbit] in terms of comparison. *)
Lemma testbit_mod_pow2 a n i (H : 0 <= n)
: testbit (a mod 2 ^ n) i = ((i <? n) && testbit a i)%bool.
diff --git a/theories/ZArith/BinIntDef.v b/theories/ZArith/BinIntDef.v
index 8cb62622db..a9a5f15f2e 100644
--- a/theories/ZArith/BinIntDef.v
+++ b/theories/ZArith/BinIntDef.v
@@ -28,7 +28,7 @@ Module Z.
Definition t := Z.
-(** ** Nicer names [Z.pos] and [Z.neg] for contructors *)
+(** ** Nicer names [Z.pos] and [Z.neg] for constructors *)
Notation pos := Zpos.
Notation neg := Zneg.
diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v
index 0b0ed48d51..9cade75f08 100644
--- a/theories/ZArith/Int.v
+++ b/theories/ZArith/Int.v
@@ -13,7 +13,7 @@
(** We define a signature for an integer datatype based on [Z].
The goal is to allow a switch after extraction to ocaml's
[big_int] or even [int] when finiteness isn't a problem
- (typically : when mesuring the height of an AVL tree).
+ (typically : when measuring the height of an AVL tree).
*)
Require Import BinInt.
diff --git a/theories/ZArith/Zquot.v b/theories/ZArith/Zquot.v
index a619eb90ef..64431a9411 100644
--- a/theories/ZArith/Zquot.v
+++ b/theories/ZArith/Zquot.v
@@ -105,7 +105,7 @@ Proof.
rewrite Z.rem_sign_nz; trivial. apply Z.square_nonneg.
Qed.
-(** This can also be said in a simplier way: *)
+(** This can also be said in a simpler way: *)
Theorem Zrem_sgn2 a b : 0 <= (Z.rem a b) * a.
Proof.