diff options
| author | JPR | 2019-05-23 23:28:55 +0200 |
|---|---|---|
| committer | JPR | 2019-05-23 23:28:55 +0200 |
| commit | d306f5428db0d034aea55d3f0699c67c1f296cc1 (patch) | |
| tree | 540bcc09ec46c8a360cda9ed7fafa9ab631d3716 /theories/ZArith | |
| parent | 5cfdc20560392c2125dbcee31cfd308d5346b428 (diff) | |
Fixing typos - Part 3
Diffstat (limited to 'theories/ZArith')
| -rw-r--r-- | theories/ZArith/BinInt.v | 2 | ||||
| -rw-r--r-- | theories/ZArith/BinIntDef.v | 2 | ||||
| -rw-r--r-- | theories/ZArith/Int.v | 2 | ||||
| -rw-r--r-- | theories/ZArith/Zquot.v | 2 |
4 files changed, 4 insertions, 4 deletions
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v index a346ab8ccb..43841920e5 100644 --- a/theories/ZArith/BinInt.v +++ b/theories/ZArith/BinInt.v @@ -1259,7 +1259,7 @@ Proof. f_equal. now rewrite <- add_assoc, add_opp_diag_r, add_0_r. Qed. -(** * [testbit] in terms of comparision. *) +(** * [testbit] in terms of comparison. *) Lemma testbit_mod_pow2 a n i (H : 0 <= n) : testbit (a mod 2 ^ n) i = ((i <? n) && testbit a i)%bool. diff --git a/theories/ZArith/BinIntDef.v b/theories/ZArith/BinIntDef.v index 8cb62622db..a9a5f15f2e 100644 --- a/theories/ZArith/BinIntDef.v +++ b/theories/ZArith/BinIntDef.v @@ -28,7 +28,7 @@ Module Z. Definition t := Z. -(** ** Nicer names [Z.pos] and [Z.neg] for contructors *) +(** ** Nicer names [Z.pos] and [Z.neg] for constructors *) Notation pos := Zpos. Notation neg := Zneg. diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v index 0b0ed48d51..9cade75f08 100644 --- a/theories/ZArith/Int.v +++ b/theories/ZArith/Int.v @@ -13,7 +13,7 @@ (** We define a signature for an integer datatype based on [Z]. The goal is to allow a switch after extraction to ocaml's [big_int] or even [int] when finiteness isn't a problem - (typically : when mesuring the height of an AVL tree). + (typically : when measuring the height of an AVL tree). *) Require Import BinInt. diff --git a/theories/ZArith/Zquot.v b/theories/ZArith/Zquot.v index a619eb90ef..64431a9411 100644 --- a/theories/ZArith/Zquot.v +++ b/theories/ZArith/Zquot.v @@ -105,7 +105,7 @@ Proof. rewrite Z.rem_sign_nz; trivial. apply Z.square_nonneg. Qed. -(** This can also be said in a simplier way: *) +(** This can also be said in a simpler way: *) Theorem Zrem_sgn2 a b : 0 <= (Z.rem a b) * a. Proof. |
