diff options
| author | Vincent Laporte | 2019-10-23 10:03:35 +0000 |
|---|---|---|
| committer | Vincent Laporte | 2019-10-31 14:10:57 +0000 |
| commit | 7077567102a93a6ecdcf014b8d116b78c7872a07 (patch) | |
| tree | c814f3853a878843492b79440765ea99e4a3243e /theories/ZArith | |
| parent | 576dec25b30b0d1cceb7afa7768f86db7b7dbd25 (diff) | |
Zwf: use “lia” rather than “omega”
Diffstat (limited to 'theories/ZArith')
| -rw-r--r-- | theories/ZArith/Zwf.v | 15 |
1 files changed, 6 insertions, 9 deletions
diff --git a/theories/ZArith/Zwf.v b/theories/ZArith/Zwf.v index 853ec951ae..ca04bb4c8f 100644 --- a/theories/ZArith/Zwf.v +++ b/theories/ZArith/Zwf.v @@ -10,7 +10,7 @@ Require Import ZArith_base. Require Export Wf_nat. -Require Import Omega. +Require Import Lia. Local Open Scope Z_scope. (** Well-founded relations on Z. *) @@ -39,20 +39,19 @@ Section wf_proof. clear a; simple induction n; intros. (** n= 0 *) case H; intros. - case (lt_n_O (f a)); auto. + lia. apply Acc_intro; unfold Zwf; intros. - assert False; omega || contradiction. + lia. (** inductive case *) case H0; clear H0; intro; auto. apply Acc_intro; intros. apply H. unfold Zwf in H1. - case (Z.le_gt_cases c y); intro; auto with zarith. + case (Z.le_gt_cases c y); intro. 2: lia. left. - red in H0. apply lt_le_trans with (f a); auto with arith. unfold f. - apply Zabs2Nat.inj_lt; omega. + lia. apply (H (S (f a))); auto. Qed. @@ -83,9 +82,7 @@ Section wf_proof_up. Proof. apply well_founded_lt_compat with (f := f). unfold Zwf_up, f. - intros. - apply Zabs2Nat.inj_lt; try (apply Z.le_0_sub; intuition). - now apply Z.sub_lt_mono_l. + lia. Qed. End wf_proof_up. |
