diff options
| author | Pierre-Marie Pédrot | 2020-11-14 17:55:07 +0100 |
|---|---|---|
| committer | Pierre-Marie Pédrot | 2020-11-16 12:28:27 +0100 |
| commit | 68cd077344ce37db1a601079dbc4fdcae6c8d41f (patch) | |
| tree | edcad8a440c4fb61256ff26d5554dd17b8d03423 /theories/Structures | |
| parent | 7daf04e53bdee6b0c9d0171c1e0d05903d677d3a (diff) | |
Explicitly annotate all hint declarations of the standard library.
By default Coq stdlib warnings raise an error, so this is really required.
Diffstat (limited to 'theories/Structures')
| -rw-r--r-- | theories/Structures/DecidableType.v | 13 | ||||
| -rw-r--r-- | theories/Structures/Equalities.v | 2 | ||||
| -rw-r--r-- | theories/Structures/EqualitiesFacts.v | 7 | ||||
| -rw-r--r-- | theories/Structures/OrderedType.v | 32 | ||||
| -rw-r--r-- | theories/Structures/Orders.v | 1 | ||||
| -rw-r--r-- | theories/Structures/OrdersLists.v | 9 |
6 files changed, 64 insertions, 0 deletions
diff --git a/theories/Structures/DecidableType.v b/theories/Structures/DecidableType.v index 0c3bd9393b..c923b503a7 100644 --- a/theories/Structures/DecidableType.v +++ b/theories/Structures/DecidableType.v @@ -38,7 +38,9 @@ Module KeyDecidableType(D:DecidableType). Definition eqke (p p':key*elt) := eq (fst p) (fst p') /\ (snd p) = (snd p'). + #[local] Hint Unfold eqk eqke : core. + #[local] Hint Extern 2 (eqke ?a ?b) => split : core. (* eqke is stricter than eqk *) @@ -70,7 +72,9 @@ Module KeyDecidableType(D:DecidableType). unfold eqke; intuition; [ eauto | congruence ]. Qed. + #[local] Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl : core. + #[local] Hint Immediate eqk_sym eqke_sym : core. Global Instance eqk_equiv : Equivalence eqk. @@ -84,6 +88,7 @@ Module KeyDecidableType(D:DecidableType). Proof. unfold eqke; induction 1; intuition. Qed. + #[local] Hint Resolve InA_eqke_eqk : core. Lemma InA_eqk : forall p q m, eqk p q -> InA eqk p m -> InA eqk q m. @@ -94,6 +99,7 @@ Module KeyDecidableType(D:DecidableType). Definition MapsTo (k:key)(e:elt):= InA eqke (k,e). Definition In k m := exists e:elt, MapsTo k e m. + #[local] Hint Unfold MapsTo In : core. (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *) @@ -140,12 +146,19 @@ Module KeyDecidableType(D:DecidableType). End Elt. + #[global] Hint Unfold eqk eqke : core. + #[global] Hint Extern 2 (eqke ?a ?b) => split : core. + #[global] Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl : core. + #[global] Hint Immediate eqk_sym eqke_sym : core. + #[global] Hint Resolve InA_eqke_eqk : core. + #[global] Hint Unfold MapsTo In : core. + #[global] Hint Resolve In_inv_2 In_inv_3 : core. End KeyDecidableType. diff --git a/theories/Structures/Equalities.v b/theories/Structures/Equalities.v index 914361d718..7cd5943a3f 100644 --- a/theories/Structures/Equalities.v +++ b/theories/Structures/Equalities.v @@ -53,7 +53,9 @@ Module Type IsEqOrig (Import E:Eq'). Axiom eq_refl : forall x : t, x==x. Axiom eq_sym : forall x y : t, x==y -> y==x. Axiom eq_trans : forall x y z : t, x==y -> y==z -> x==z. + #[global] Hint Immediate eq_sym : core. + #[global] Hint Resolve eq_refl eq_trans : core. End IsEqOrig. diff --git a/theories/Structures/EqualitiesFacts.v b/theories/Structures/EqualitiesFacts.v index fe9794de8a..523240065d 100644 --- a/theories/Structures/EqualitiesFacts.v +++ b/theories/Structures/EqualitiesFacts.v @@ -22,6 +22,7 @@ Module KeyDecidableType(D:DecidableType). Definition eqk {elt} : relation (key*elt) := D.eq @@1. Definition eqke {elt} : relation (key*elt) := D.eq * Logic.eq. + #[global] Hint Unfold eqk eqke : core. (** eqk, eqke are equalities *) @@ -60,6 +61,7 @@ Module KeyDecidableType(D:DecidableType). Lemma eqk_1 {elt} k k' (e e':elt) : eqk (k,e) (k',e') -> D.eq k k'. Proof. trivial. Qed. + #[global] Hint Resolve eqke_1 eqke_2 eqk_1 : core. (* Additional facts *) @@ -69,6 +71,7 @@ Module KeyDecidableType(D:DecidableType). Proof. induction 1; firstorder. Qed. + #[global] Hint Resolve InA_eqke_eqk : core. Lemma InA_eqk_eqke {elt} p (m:list (key*elt)) : @@ -86,6 +89,7 @@ Module KeyDecidableType(D:DecidableType). Definition MapsTo {elt} (k:key)(e:elt):= InA eqke (k,e). Definition In {elt} k m := exists e:elt, MapsTo k e m. + #[global] Hint Unfold MapsTo In : core. (* Alternative formulations for [In k l] *) @@ -167,8 +171,11 @@ Module KeyDecidableType(D:DecidableType). eauto with *. Qed. + #[global] Hint Extern 2 (eqke ?a ?b) => split : core. + #[global] Hint Resolve InA_eqke_eqk : core. + #[global] Hint Resolve In_inv_2 In_inv_3 : core. End KeyDecidableType. diff --git a/theories/Structures/OrderedType.v b/theories/Structures/OrderedType.v index ecf0706a4f..dc7a48cd6b 100644 --- a/theories/Structures/OrderedType.v +++ b/theories/Structures/OrderedType.v @@ -44,7 +44,9 @@ Module Type MiniOrderedType. Parameter compare : forall x y : t, Compare lt eq x y. + #[global] Hint Immediate eq_sym : ordered_type. + #[global] Hint Resolve eq_refl eq_trans lt_not_eq lt_trans : ordered_type. End MiniOrderedType. @@ -144,8 +146,11 @@ Module OrderedTypeFacts (Import O: OrderedType). Lemma eq_not_gt x y : eq x y -> ~ lt y x. Proof. order. Qed. Lemma lt_not_gt x y : lt x y -> ~ lt y x. Proof. order. Qed. + #[global] Hint Resolve gt_not_eq eq_not_lt : ordered_type. + #[global] Hint Immediate eq_lt lt_eq le_eq eq_le neq_eq eq_neq : ordered_type. + #[global] Hint Resolve eq_not_gt lt_antirefl lt_not_gt : ordered_type. Lemma elim_compare_eq : @@ -248,7 +253,9 @@ Proof. exact (SortA_NoDupA eq_equiv lt_strorder lt_compat). Qed. End ForNotations. +#[global] Hint Resolve ListIn_In Sort_NoDup Inf_lt : ordered_type. +#[global] Hint Immediate In_eq Inf_lt : ordered_type. End OrderedTypeFacts. @@ -267,7 +274,9 @@ Module KeyOrderedType(O:OrderedType). eq (fst p) (fst p') /\ (snd p) = (snd p'). Definition ltk (p p':key*elt) := lt (fst p) (fst p'). + #[local] Hint Unfold eqk eqke ltk : ordered_type. + #[local] Hint Extern 2 (eqke ?a ?b) => split : ordered_type. (* eqke is stricter than eqk *) @@ -284,6 +293,7 @@ Module KeyOrderedType(O:OrderedType). Lemma ltk_right_l : forall x k e e', ltk (k,e) x -> ltk (k,e') x. Proof. auto. Qed. + #[local] Hint Immediate ltk_right_r ltk_right_l : ordered_type. (* eqk, eqke are equalities, ltk is a strict order *) @@ -320,8 +330,11 @@ Module KeyOrderedType(O:OrderedType). exact (lt_not_eq H H1). Qed. + #[local] Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl : ordered_type. + #[local] Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke : ordered_type. + #[local] Hint Immediate eqk_sym eqke_sym : ordered_type. Global Instance eqk_equiv : Equivalence eqk. @@ -360,7 +373,9 @@ Module KeyOrderedType(O:OrderedType). intros (k,e) (k',e') (k'',e''). unfold ltk, eqk; simpl; eauto with ordered_type. Qed. + #[local] Hint Resolve eqk_not_ltk : ordered_type. + #[local] Hint Immediate ltk_eqk eqk_ltk : ordered_type. Lemma InA_eqke_eqk : @@ -368,6 +383,7 @@ Module KeyOrderedType(O:OrderedType). Proof. unfold eqke; induction 1; intuition. Qed. + #[local] Hint Resolve InA_eqke_eqk : ordered_type. Definition MapsTo (k:key)(e:elt):= InA eqke (k,e). @@ -375,6 +391,7 @@ Module KeyOrderedType(O:OrderedType). Notation Sort := (sort ltk). Notation Inf := (lelistA ltk). + #[local] Hint Unfold MapsTo In : ordered_type. (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *) @@ -406,7 +423,9 @@ Module KeyOrderedType(O:OrderedType). Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l. Proof. exact (InfA_ltA ltk_strorder). Qed. + #[local] Hint Immediate Inf_eq : ordered_type. + #[local] Hint Resolve Inf_lt : ordered_type. Lemma Sort_Inf_In : @@ -470,18 +489,31 @@ Module KeyOrderedType(O:OrderedType). End Elt. + #[global] Hint Unfold eqk eqke ltk : ordered_type. + #[global] Hint Extern 2 (eqke ?a ?b) => split : ordered_type. + #[global] Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl : ordered_type. + #[global] Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke : ordered_type. + #[global] Hint Immediate eqk_sym eqke_sym : ordered_type. + #[global] Hint Resolve eqk_not_ltk : ordered_type. + #[global] Hint Immediate ltk_eqk eqk_ltk : ordered_type. + #[global] Hint Resolve InA_eqke_eqk : ordered_type. + #[global] Hint Unfold MapsTo In : ordered_type. + #[global] Hint Immediate Inf_eq : ordered_type. + #[global] Hint Resolve Inf_lt : ordered_type. + #[global] Hint Resolve Sort_Inf_NotIn : ordered_type. + #[global] Hint Resolve In_inv_2 In_inv_3 : ordered_type. End KeyOrderedType. diff --git a/theories/Structures/Orders.v b/theories/Structures/Orders.v index b3e3b6e853..b4ddd0b262 100644 --- a/theories/Structures/Orders.v +++ b/theories/Structures/Orders.v @@ -181,6 +181,7 @@ Module OTF_to_TotalOrder (O:OrderedTypeFull) <: TotalOrder we coerce [bool] into [Prop]. *) Local Coercion is_true : bool >-> Sortclass. +#[global] Hint Unfold is_true : core. Module Type HasLeb (Import T:Typ). diff --git a/theories/Structures/OrdersLists.v b/theories/Structures/OrdersLists.v index 3a5dbc2f88..bace70cbee 100644 --- a/theories/Structures/OrdersLists.v +++ b/theories/Structures/OrdersLists.v @@ -50,7 +50,9 @@ Proof. exact (InfA_alt O.eq_equiv O.lt_strorder O.lt_compat). Qed. Lemma Sort_NoDup : forall l, Sort l -> NoDup l. Proof. exact (SortA_NoDupA O.eq_equiv O.lt_strorder O.lt_compat) . Qed. +#[global] Hint Resolve ListIn_In Sort_NoDup Inf_lt : core. +#[global] Hint Immediate In_eq Inf_lt : core. End OrderedTypeLists. @@ -66,6 +68,7 @@ Module KeyOrderedType(O:OrderedType). Definition ltk {elt} : relation (key*elt) := O.lt @@1. + #[global] Hint Unfold ltk : core. (* ltk is a strict order *) @@ -109,7 +112,9 @@ Module KeyOrderedType(O:OrderedType). Lemma Inf_lt l x x' : ltk x x' -> Inf x' l -> Inf x l. Proof. apply InfA_ltA; auto with *. Qed. + #[local] Hint Immediate Inf_eq : core. + #[local] Hint Resolve Inf_lt : core. Lemma Sort_Inf_In l p q : Sort l -> Inf q l -> InA eqk p l -> ltk q p. @@ -148,9 +153,13 @@ Module KeyOrderedType(O:OrderedType). End Elt. + #[global] Hint Resolve ltk_not_eqk ltk_not_eqke : core. + #[global] Hint Immediate Inf_eq : core. + #[global] Hint Resolve Inf_lt : core. + #[global] Hint Resolve Sort_Inf_NotIn : core. End KeyOrderedType. |
