aboutsummaryrefslogtreecommitdiff
path: root/theories/Structures
diff options
context:
space:
mode:
authorJasper Hugunin2021-01-08 14:14:58 -0800
committerJasper Hugunin2021-01-08 14:14:58 -0800
commit26f6b7ada0007fece59b0ff054ac13ec733dfcf8 (patch)
tree12a3affa67133aaca2a56ef0396d42af2017c7e1 /theories/Structures
parent8241077c681bb48a0b413e4ee68961f0684b0294 (diff)
Modify Structures/DecidableType.v to compile with -mangle-names
Diffstat (limited to 'theories/Structures')
-rw-r--r--theories/Structures/DecidableType.v24
1 files changed, 12 insertions, 12 deletions
diff --git a/theories/Structures/DecidableType.v b/theories/Structures/DecidableType.v
index c923b503a7..a49e21fa92 100644
--- a/theories/Structures/DecidableType.v
+++ b/theories/Structures/DecidableType.v
@@ -93,7 +93,7 @@ Module KeyDecidableType(D:DecidableType).
Lemma InA_eqk : forall p q m, eqk p q -> InA eqk p m -> InA eqk q m.
Proof.
- intros; apply InA_eqA with p; auto using eqk_equiv.
+ intros p q m **; apply InA_eqA with p; auto using eqk_equiv.
Qed.
Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
@@ -106,18 +106,18 @@ Module KeyDecidableType(D:DecidableType).
Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
Proof.
- firstorder.
- exists x; auto.
- induction H.
- destruct y.
- exists e; auto.
- destruct IHInA as [e H0].
+ intros k l; split; intros [y H].
+ exists y; auto.
+ induction H as [a l eq|a l H IH].
+ destruct a as [k' y'].
+ exists y'; auto.
+ destruct IH as [e H0].
exists e; auto.
Qed.
Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
Proof.
- intros; unfold MapsTo in *; apply InA_eqA with (x,e); auto using eqke_equiv.
+ intros l x y e **; unfold MapsTo in *; apply InA_eqA with (x,e); auto using eqke_equiv.
Qed.
Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
@@ -127,21 +127,21 @@ Module KeyDecidableType(D:DecidableType).
Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
Proof.
- inversion 1.
- inversion_clear H0; eauto.
+ inversion 1 as [? H0].
+ inversion_clear H0 as [? ? H1|]; eauto.
destruct H1; simpl in *; intuition.
Qed.
Lemma In_inv_2 : forall k k' e e' l,
InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
Proof.
- inversion_clear 1; compute in H0; intuition.
+ inversion_clear 1 as [? ? H0|? ? H0]; compute in H0; intuition.
Qed.
Lemma In_inv_3 : forall x x' l,
InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
Proof.
- inversion_clear 1; compute in H0; intuition.
+ inversion_clear 1 as [? ? H0|? ? H0]; compute in H0; intuition.
Qed.
End Elt.