diff options
| author | msozeau | 2007-08-07 18:36:25 +0000 |
|---|---|---|
| committer | msozeau | 2007-08-07 18:36:25 +0000 |
| commit | 2de683db51b44b8051ead6d89be67f0185e7e87d (patch) | |
| tree | adc23d9d0d2258efafae705563142ac35196039c /theories/Program/FixSub.v | |
| parent | 2fded684878073f1f028ebb856a455a0dc568caf (diff) | |
Move Program tactics into a proper theories/ directory as they are general purpose and can be used directly be the user. Document them. Change Prelude to disambiguate an import of a Tactics module.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10060 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Program/FixSub.v')
| -rw-r--r-- | theories/Program/FixSub.v | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/theories/Program/FixSub.v b/theories/Program/FixSub.v new file mode 100644 index 0000000000..58ac9d90ee --- /dev/null +++ b/theories/Program/FixSub.v @@ -0,0 +1,148 @@ +Require Import Wf. +Require Import Coq.Program.Utils. +Require Import ProofIrrelevance. + +(** Reformulation of the Wellfounded module using subsets where possible. *) + +Section Well_founded. + Variable A : Type. + Variable R : A -> A -> Prop. + Hypothesis Rwf : well_founded R. + + Section Acc. + + Variable P : A -> Type. + + Variable F_sub : forall x:A, (forall y: { y : A | R y x }, P (proj1_sig y)) -> P x. + + Fixpoint Fix_F_sub (x : A) (r : Acc R x) {struct r} : P x := + F_sub x (fun y: { y : A | R y x} => Fix_F_sub (proj1_sig y) + (Acc_inv r (proj1_sig y) (proj2_sig y))). + + Definition Fix_sub (x : A) := Fix_F_sub x (Rwf x). + End Acc. + + Section FixPoint. + Variable P : A -> Type. + + Variable F_sub : forall x:A, (forall y: { y : A | R y x }, P (proj1_sig y)) -> P x. + + Notation Fix_F := (Fix_F_sub P F_sub) (only parsing). (* alias *) + + Definition Fix (x:A) := Fix_F_sub P F_sub x (Rwf x). + + Hypothesis + F_ext : + forall (x:A) (f g:forall y:{y:A | R y x}, P (`y)), + (forall y:{ y:A | R y x}, f y = g y) -> F_sub x f = F_sub x g. + + Lemma Fix_F_eq : + forall (x:A) (r:Acc R x), + F_sub x (fun (y:{y:A|R y x}) => Fix_F (`y) (Acc_inv r (proj1_sig y) (proj2_sig y))) = Fix_F x r. + Proof. + destruct r using Acc_inv_dep; auto. + Qed. + + Lemma Fix_F_inv : forall (x:A) (r s:Acc R x), Fix_F x r = Fix_F x s. + Proof. + intro x; induction (Rwf x); intros. + rewrite <- (Fix_F_eq x r); rewrite <- (Fix_F_eq x s); intros. + apply F_ext; auto. + intros. + rewrite (proof_irrelevance (Acc R x) r s) ; auto. + Qed. + + Lemma Fix_eq : forall x:A, Fix x = F_sub x (fun (y:{y:A|R y x}) => Fix (proj1_sig y)). + Proof. + intro x; unfold Fix in |- *. + rewrite <- (Fix_F_eq ). + apply F_ext; intros. + apply Fix_F_inv. + Qed. + + Lemma fix_sub_eq : + forall x : A, + Fix_sub P F_sub x = + let f_sub := F_sub in + f_sub x (fun {y : A | R y x}=> Fix (`y)). + exact Fix_eq. + Qed. + + End FixPoint. + +End Well_founded. + +Extraction Inline Fix_F_sub Fix_sub. + +Require Import Wf_nat. +Require Import Lt. + +Section Well_founded_measure. + Variable A : Type. + Variable m : A -> nat. + + Section Acc. + + Variable P : A -> Type. + + Variable F_sub : forall x:A, (forall y: { y : A | m y < m x }, P (proj1_sig y)) -> P x. + + Fixpoint Fix_measure_F_sub (x : A) (r : Acc lt (m x)) {struct r} : P x := + F_sub x (fun y: { y : A | m y < m x} => Fix_measure_F_sub (proj1_sig y) + (Acc_inv r (m (proj1_sig y)) (proj2_sig y))). + + Definition Fix_measure_sub (x : A) := Fix_measure_F_sub x (lt_wf (m x)). + + End Acc. + + Section FixPoint. + Variable P : A -> Type. + + Variable F_sub : forall x:A, (forall y: { y : A | m y < m x }, P (proj1_sig y)) -> P x. + + Notation Fix_F := (Fix_measure_F_sub P F_sub) (only parsing). (* alias *) + + Definition Fix_measure (x:A) := Fix_measure_F_sub P F_sub x (lt_wf (m x)). + + Hypothesis + F_ext : + forall (x:A) (f g:forall y:{y:A | m y < m x}, P (`y)), + (forall y:{ y:A | m y < m x}, f y = g y) -> F_sub x f = F_sub x g. + + Lemma Fix_measure_F_eq : + forall (x:A) (r:Acc lt (m x)), + F_sub x (fun (y:{y:A|m y < m x}) => Fix_F (`y) (Acc_inv r (m (proj1_sig y)) (proj2_sig y))) = Fix_F x r. + Proof. + intros x. + set (y := m x). + unfold Fix_measure_F_sub. + intros r ; case r ; auto. + Qed. + + Lemma Fix_measure_F_inv : forall (x:A) (r s:Acc lt (m x)), Fix_F x r = Fix_F x s. + Proof. + intros x r s. + rewrite (proof_irrelevance (Acc lt (m x)) r s) ; auto. + Qed. + + Lemma Fix_measure_eq : forall x:A, Fix_measure x = F_sub x (fun (y:{y:A| m y < m x}) => Fix_measure (proj1_sig y)). + Proof. + intro x; unfold Fix_measure in |- *. + rewrite <- (Fix_measure_F_eq ). + apply F_ext; intros. + apply Fix_measure_F_inv. + Qed. + + Lemma fix_measure_sub_eq : + forall x : A, + Fix_measure_sub P F_sub x = + let f_sub := F_sub in + f_sub x (fun {y : A | m y < m x}=> Fix_measure (`y)). + exact Fix_measure_eq. + Qed. + + End FixPoint. + +End Well_founded_measure. + +Extraction Inline Fix_measure_F_sub Fix_measure_sub. |
