diff options
| author | coqbot-app[bot] | 2020-11-09 08:07:27 +0000 |
|---|---|---|
| committer | GitHub | 2020-11-09 08:07:27 +0000 |
| commit | fcc82eaf6054cce65821fafafedd329dab732994 (patch) | |
| tree | 913128da2f68d34d5987010534c630a2dd233ea3 /theories/Numbers | |
| parent | 6cebd412748b82c4c9bbef295503ed1954981b45 (diff) | |
| parent | db413d523cfe086cfe768232e465fee8fb51e17c (diff) | |
Merge PR #13173: Lint stdlib with -mangle-names #4
Reviewed-by: anton-trunov
Diffstat (limited to 'theories/Numbers')
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZAdd.v | 173 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZAddOrder.v | 8 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZBits.v | 63 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivFloor.v | 64 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivTrunc.v | 66 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZGcd.v | 12 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZLcm.v | 12 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZMaxMin.v | 72 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZMulOrder.v | 4 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZParity.v | 6 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZPow.v | 4 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZSgnAbs.v | 46 |
12 files changed, 265 insertions, 265 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZAdd.v b/theories/Numbers/Integer/Abstract/ZAdd.v index 2361d59c26..0c097b6773 100644 --- a/theories/Numbers/Integer/Abstract/ZAdd.v +++ b/theories/Numbers/Integer/Abstract/ZAdd.v @@ -20,159 +20,157 @@ Include ZBaseProp Z. Hint Rewrite opp_0 : nz. -Theorem add_pred_l : forall n m, P n + m == P (n + m). +Theorem add_pred_l n m : P n + m == P (n + m). Proof. -intros n m. rewrite <- (succ_pred n) at 2. now rewrite add_succ_l, pred_succ. Qed. -Theorem add_pred_r : forall n m, n + P m == P (n + m). +Theorem add_pred_r n m : n + P m == P (n + m). Proof. -intros n m; rewrite 2 (add_comm n); apply add_pred_l. +rewrite 2 (add_comm n); apply add_pred_l. Qed. -Theorem add_opp_r : forall n m, n + (- m) == n - m. +Theorem add_opp_r n m : n + (- m) == n - m. Proof. nzinduct m. now nzsimpl. intro m. rewrite opp_succ, sub_succ_r, add_pred_r. now rewrite pred_inj_wd. Qed. -Theorem sub_0_l : forall n, 0 - n == - n. +Theorem sub_0_l n : 0 - n == - n. Proof. -intro n; rewrite <- add_opp_r; now rewrite add_0_l. +rewrite <- add_opp_r; now rewrite add_0_l. Qed. -Theorem sub_succ_l : forall n m, S n - m == S (n - m). +Theorem sub_succ_l n m : S n - m == S (n - m). Proof. -intros n m; rewrite <- 2 add_opp_r; now rewrite add_succ_l. +rewrite <- 2 add_opp_r; now rewrite add_succ_l. Qed. -Theorem sub_pred_l : forall n m, P n - m == P (n - m). +Theorem sub_pred_l n m : P n - m == P (n - m). Proof. -intros n m. rewrite <- (succ_pred n) at 2. +rewrite <- (succ_pred n) at 2. rewrite sub_succ_l; now rewrite pred_succ. Qed. -Theorem sub_pred_r : forall n m, n - (P m) == S (n - m). +Theorem sub_pred_r n m : n - (P m) == S (n - m). Proof. -intros n m. rewrite <- (succ_pred m) at 2. +rewrite <- (succ_pred m) at 2. rewrite sub_succ_r; now rewrite succ_pred. Qed. -Theorem opp_pred : forall n, - (P n) == S (- n). +Theorem opp_pred n : - (P n) == S (- n). Proof. -intro n. rewrite <- (succ_pred n) at 2. +rewrite <- (succ_pred n) at 2. rewrite opp_succ. now rewrite succ_pred. Qed. -Theorem sub_diag : forall n, n - n == 0. +Theorem sub_diag n : n - n == 0. Proof. nzinduct n. now nzsimpl. intro n. rewrite sub_succ_r, sub_succ_l; now rewrite pred_succ. Qed. -Theorem add_opp_diag_l : forall n, - n + n == 0. +Theorem add_opp_diag_l n : - n + n == 0. Proof. -intro n; now rewrite add_comm, add_opp_r, sub_diag. +now rewrite add_comm, add_opp_r, sub_diag. Qed. -Theorem add_opp_diag_r : forall n, n + (- n) == 0. +Theorem add_opp_diag_r n : n + (- n) == 0. Proof. -intro n; rewrite add_comm; apply add_opp_diag_l. +rewrite add_comm; apply add_opp_diag_l. Qed. -Theorem add_opp_l : forall n m, - m + n == n - m. +Theorem add_opp_l n m : - m + n == n - m. Proof. -intros n m; rewrite <- add_opp_r; now rewrite add_comm. +rewrite <- add_opp_r; now rewrite add_comm. Qed. -Theorem add_sub_assoc : forall n m p, n + (m - p) == (n + m) - p. +Theorem add_sub_assoc n m p : n + (m - p) == (n + m) - p. Proof. -intros n m p; rewrite <- 2 add_opp_r; now rewrite add_assoc. +rewrite <- 2 add_opp_r; now rewrite add_assoc. Qed. -Theorem opp_involutive : forall n, - (- n) == n. +Theorem opp_involutive n : - (- n) == n. Proof. nzinduct n. now nzsimpl. intro n. rewrite opp_succ, opp_pred. now rewrite succ_inj_wd. Qed. -Theorem opp_add_distr : forall n m, - (n + m) == - n + (- m). +Theorem opp_add_distr n m : - (n + m) == - n + (- m). Proof. -intros n m; nzinduct n. +nzinduct n. now nzsimpl. intro n. rewrite add_succ_l; do 2 rewrite opp_succ; rewrite add_pred_l. now rewrite pred_inj_wd. Qed. -Theorem opp_sub_distr : forall n m, - (n - m) == - n + m. +Theorem opp_sub_distr n m : - (n - m) == - n + m. Proof. -intros n m; rewrite <- add_opp_r, opp_add_distr. +rewrite <- add_opp_r, opp_add_distr. now rewrite opp_involutive. Qed. -Theorem opp_inj : forall n m, - n == - m -> n == m. +Theorem opp_inj n m : - n == - m -> n == m. Proof. -intros n m H. apply opp_wd in H. now rewrite 2 opp_involutive in H. +intros H. apply opp_wd in H. now rewrite 2 opp_involutive in H. Qed. -Theorem opp_inj_wd : forall n m, - n == - m <-> n == m. +Theorem opp_inj_wd n m : - n == - m <-> n == m. Proof. -intros n m; split; [apply opp_inj | intros; now f_equiv]. +split; [apply opp_inj | intros; now f_equiv]. Qed. -Theorem eq_opp_l : forall n m, - n == m <-> n == - m. +Theorem eq_opp_l n m : - n == m <-> n == - m. Proof. -intros n m. now rewrite <- (opp_inj_wd (- n) m), opp_involutive. +now rewrite <- (opp_inj_wd (- n) m), opp_involutive. Qed. -Theorem eq_opp_r : forall n m, n == - m <-> - n == m. +Theorem eq_opp_r n m : n == - m <-> - n == m. Proof. symmetry; apply eq_opp_l. Qed. -Theorem sub_add_distr : forall n m p, n - (m + p) == (n - m) - p. +Theorem sub_add_distr n m p : n - (m + p) == (n - m) - p. Proof. -intros n m p; rewrite <- add_opp_r, opp_add_distr, add_assoc. +rewrite <- add_opp_r, opp_add_distr, add_assoc. now rewrite 2 add_opp_r. Qed. -Theorem sub_sub_distr : forall n m p, n - (m - p) == (n - m) + p. +Theorem sub_sub_distr n m p : n - (m - p) == (n - m) + p. Proof. -intros n m p; rewrite <- add_opp_r, opp_sub_distr, add_assoc. +rewrite <- add_opp_r, opp_sub_distr, add_assoc. now rewrite add_opp_r. Qed. -Theorem sub_opp_l : forall n m, - n - m == - m - n. +Theorem sub_opp_l n m : - n - m == - m - n. Proof. -intros n m. rewrite <- 2 add_opp_r. now rewrite add_comm. +rewrite <- 2 add_opp_r. now rewrite add_comm. Qed. -Theorem sub_opp_r : forall n m, n - (- m) == n + m. +Theorem sub_opp_r n m : n - (- m) == n + m. Proof. -intros n m; rewrite <- add_opp_r; now rewrite opp_involutive. +rewrite <- add_opp_r; now rewrite opp_involutive. Qed. -Theorem add_sub_swap : forall n m p, n + m - p == n - p + m. +Theorem add_sub_swap n m p : n + m - p == n - p + m. Proof. -intros n m p. rewrite <- add_sub_assoc, <- (add_opp_r n p), <- add_assoc. +rewrite <- add_sub_assoc, <- (add_opp_r n p), <- add_assoc. now rewrite add_opp_l. Qed. -Theorem sub_cancel_l : forall n m p, n - m == n - p <-> m == p. +Theorem sub_cancel_l n m p : n - m == n - p <-> m == p. Proof. -intros n m p. rewrite <- (add_cancel_l (n - m) (n - p) (- n)). +rewrite <- (add_cancel_l (n - m) (n - p) (- n)). rewrite 2 add_sub_assoc. rewrite add_opp_diag_l; rewrite 2 sub_0_l. apply opp_inj_wd. Qed. -Theorem sub_cancel_r : forall n m p, n - p == m - p <-> n == m. +Theorem sub_cancel_r n m p : n - p == m - p <-> n == m. Proof. -intros n m p. stepl (n - p + p == m - p + p) by apply add_cancel_r. now do 2 rewrite <- sub_sub_distr, sub_diag, sub_0_r. Qed. @@ -182,16 +180,15 @@ Qed. in the original equation ([add] or [sub]) and the indication whether the left or right term is moved. *) -Theorem add_move_l : forall n m p, n + m == p <-> m == p - n. +Theorem add_move_l n m p : n + m == p <-> m == p - n. Proof. -intros n m p. stepl (n + m - n == p - n) by apply sub_cancel_r. now rewrite add_comm, <- add_sub_assoc, sub_diag, add_0_r. Qed. -Theorem add_move_r : forall n m p, n + m == p <-> n == p - m. +Theorem add_move_r n m p : n + m == p <-> n == p - m. Proof. -intros n m p; rewrite add_comm; now apply add_move_l. +rewrite add_comm; now apply add_move_l. Qed. (** The two theorems above do not allow rewriting subformulas of the @@ -199,98 +196,98 @@ Qed. right-hand side of the equation. Hence the following two theorems. *) -Theorem sub_move_l : forall n m p, n - m == p <-> - m == p - n. +Theorem sub_move_l n m p : n - m == p <-> - m == p - n. Proof. -intros n m p; rewrite <- (add_opp_r n m); apply add_move_l. +rewrite <- (add_opp_r n m); apply add_move_l. Qed. -Theorem sub_move_r : forall n m p, n - m == p <-> n == p + m. +Theorem sub_move_r n m p : n - m == p <-> n == p + m. Proof. -intros n m p; rewrite <- (add_opp_r n m). now rewrite add_move_r, sub_opp_r. +rewrite <- (add_opp_r n m). now rewrite add_move_r, sub_opp_r. Qed. -Theorem add_move_0_l : forall n m, n + m == 0 <-> m == - n. +Theorem add_move_0_l n m : n + m == 0 <-> m == - n. Proof. -intros n m; now rewrite add_move_l, sub_0_l. +now rewrite add_move_l, sub_0_l. Qed. -Theorem add_move_0_r : forall n m, n + m == 0 <-> n == - m. +Theorem add_move_0_r n m : n + m == 0 <-> n == - m. Proof. -intros n m; now rewrite add_move_r, sub_0_l. +now rewrite add_move_r, sub_0_l. Qed. -Theorem sub_move_0_l : forall n m, n - m == 0 <-> - m == - n. +Theorem sub_move_0_l n m : n - m == 0 <-> - m == - n. Proof. -intros n m. now rewrite sub_move_l, sub_0_l. +now rewrite sub_move_l, sub_0_l. Qed. -Theorem sub_move_0_r : forall n m, n - m == 0 <-> n == m. +Theorem sub_move_0_r n m : n - m == 0 <-> n == m. Proof. -intros n m. now rewrite sub_move_r, add_0_l. +now rewrite sub_move_r, add_0_l. Qed. (** The following section is devoted to cancellation of like terms. The name includes the first operator and the position of the term being canceled. *) -Theorem add_simpl_l : forall n m, n + m - n == m. +Theorem add_simpl_l n m : n + m - n == m. Proof. -intros; now rewrite add_sub_swap, sub_diag, add_0_l. +now rewrite add_sub_swap, sub_diag, add_0_l. Qed. -Theorem add_simpl_r : forall n m, n + m - m == n. +Theorem add_simpl_r n m : n + m - m == n. Proof. -intros; now rewrite <- add_sub_assoc, sub_diag, add_0_r. +now rewrite <- add_sub_assoc, sub_diag, add_0_r. Qed. -Theorem sub_simpl_l : forall n m, - n - m + n == - m. +Theorem sub_simpl_l n m : - n - m + n == - m. Proof. -intros; now rewrite <- add_sub_swap, add_opp_diag_l, sub_0_l. +now rewrite <- add_sub_swap, add_opp_diag_l, sub_0_l. Qed. -Theorem sub_simpl_r : forall n m, n - m + m == n. +Theorem sub_simpl_r n m : n - m + m == n. Proof. -intros; now rewrite <- sub_sub_distr, sub_diag, sub_0_r. +now rewrite <- sub_sub_distr, sub_diag, sub_0_r. Qed. -Theorem sub_add : forall n m, m - n + n == m. +Theorem sub_add n m : m - n + n == m. Proof. - intros. now rewrite <- add_sub_swap, add_simpl_r. +now rewrite <- add_sub_swap, add_simpl_r. Qed. (** Now we have two sums or differences; the name includes the two operators and the position of the terms being canceled *) -Theorem add_add_simpl_l_l : forall n m p, (n + m) - (n + p) == m - p. +Theorem add_add_simpl_l_l n m p : (n + m) - (n + p) == m - p. Proof. -intros n m p. now rewrite (add_comm n m), <- add_sub_assoc, +now rewrite (add_comm n m), <- add_sub_assoc, sub_add_distr, sub_diag, sub_0_l, add_opp_r. Qed. -Theorem add_add_simpl_l_r : forall n m p, (n + m) - (p + n) == m - p. +Theorem add_add_simpl_l_r n m p : (n + m) - (p + n) == m - p. Proof. -intros n m p. rewrite (add_comm p n); apply add_add_simpl_l_l. +rewrite (add_comm p n); apply add_add_simpl_l_l. Qed. -Theorem add_add_simpl_r_l : forall n m p, (n + m) - (m + p) == n - p. +Theorem add_add_simpl_r_l n m p : (n + m) - (m + p) == n - p. Proof. -intros n m p. rewrite (add_comm n m); apply add_add_simpl_l_l. +rewrite (add_comm n m); apply add_add_simpl_l_l. Qed. -Theorem add_add_simpl_r_r : forall n m p, (n + m) - (p + m) == n - p. +Theorem add_add_simpl_r_r n m p : (n + m) - (p + m) == n - p. Proof. -intros n m p. rewrite (add_comm p m); apply add_add_simpl_r_l. +rewrite (add_comm p m); apply add_add_simpl_r_l. Qed. -Theorem sub_add_simpl_r_l : forall n m p, (n - m) + (m + p) == n + p. +Theorem sub_add_simpl_r_l n m p : (n - m) + (m + p) == n + p. Proof. -intros n m p. now rewrite <- sub_sub_distr, sub_add_distr, sub_diag, +now rewrite <- sub_sub_distr, sub_add_distr, sub_diag, sub_0_l, sub_opp_r. Qed. -Theorem sub_add_simpl_r_r : forall n m p, (n - m) + (p + m) == n + p. +Theorem sub_add_simpl_r_r n m p : (n - m) + (p + m) == n + p. Proof. -intros n m p. rewrite (add_comm p m); apply sub_add_simpl_r_l. +rewrite (add_comm p m); apply sub_add_simpl_r_l. Qed. (** Of course, there are many other variants *) diff --git a/theories/Numbers/Integer/Abstract/ZAddOrder.v b/theories/Numbers/Integer/Abstract/ZAddOrder.v index 40a37be5f9..5a293c6483 100644 --- a/theories/Numbers/Integer/Abstract/ZAddOrder.v +++ b/theories/Numbers/Integer/Abstract/ZAddOrder.v @@ -241,25 +241,25 @@ Qed. Theorem sub_neg_cases : forall n m, n - m < 0 -> n < 0 \/ 0 < m. Proof. -intros. +intros n m ?. rewrite <- (opp_neg_pos m). apply add_neg_cases. now rewrite add_opp_r. Qed. Theorem sub_pos_cases : forall n m, 0 < n - m -> 0 < n \/ m < 0. Proof. -intros. +intros n m ?. rewrite <- (opp_pos_neg m). apply add_pos_cases. now rewrite add_opp_r. Qed. Theorem sub_nonpos_cases : forall n m, n - m <= 0 -> n <= 0 \/ 0 <= m. Proof. -intros. +intros n m ?. rewrite <- (opp_nonpos_nonneg m). apply add_nonpos_cases. now rewrite add_opp_r. Qed. Theorem sub_nonneg_cases : forall n m, 0 <= n - m -> 0 <= n \/ m <= 0. Proof. -intros. +intros n m ?. rewrite <- (opp_nonneg_nonpos m). apply add_nonneg_cases. now rewrite add_opp_r. Qed. diff --git a/theories/Numbers/Integer/Abstract/ZBits.v b/theories/Numbers/Integer/Abstract/ZBits.v index 0f40d3d7b6..4d2361689d 100644 --- a/theories/Numbers/Integer/Abstract/ZBits.v +++ b/theories/Numbers/Integer/Abstract/ZBits.v @@ -244,7 +244,7 @@ Qed. Lemma bit0_odd : forall a, a.[0] = odd a. Proof. - intros. symmetry. + intros a. symmetry. destruct (exists_div2 a) as (a' & b & EQ). rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2. destruct b; simpl; apply odd_1 || apply odd_0. @@ -428,14 +428,14 @@ Qed. Lemma mul_pow2_bits : forall a n m, 0<=n -> (a*2^n).[m] = a.[m-n]. Proof. - intros. + intros a n m ?. rewrite <- (add_simpl_r m n) at 1. rewrite add_sub_swap, add_comm. now apply mul_pow2_bits_add. Qed. Lemma mul_pow2_bits_low : forall a n m, m<n -> (a*2^n).[m] = false. Proof. - intros. + intros a n m ?. destruct (le_gt_cases 0 n). rewrite mul_pow2_bits by trivial. apply testbit_neg_r. now apply lt_sub_0. @@ -561,7 +561,10 @@ Proof. split. apply bits_inj'. intros EQ n Hn; now rewrite EQ. Qed. -Ltac bitwise := apply bits_inj'; intros ?m ?Hm; autorewrite with bitwise. +Tactic Notation "bitwise" "as" simple_intropattern(m) simple_intropattern(Hm) + := apply bits_inj'; intros m Hm; autorewrite with bitwise. + +Ltac bitwise := bitwise as ?m ?Hm. Hint Rewrite lxor_spec lor_spec land_spec ldiff_spec bits_0 : bitwise. @@ -619,7 +622,7 @@ Qed. Lemma shiftl_spec : forall a n m, 0<=m -> (a << n).[m] = a.[m-n]. Proof. - intros. + intros a n m ?. destruct (le_gt_cases n m). now apply shiftl_spec_high. rewrite shiftl_spec_low, testbit_neg_r; trivial. now apply lt_sub_0. @@ -693,7 +696,7 @@ Qed. Lemma shiftl_shiftl : forall a n m, 0<=n -> (a << n) << m == a << (n+m). Proof. - intros a n p Hn. bitwise. + intros a n p Hn. bitwise as m Hm. rewrite 2 (shiftl_spec _ _ m) by trivial. rewrite add_comm, sub_add_distr. destruct (le_gt_cases 0 (m-p)) as [H|H]. @@ -745,8 +748,8 @@ Qed. Lemma shiftl_0_l : forall n, 0 << n == 0. Proof. - intros. - destruct (le_ge_cases 0 n). + intros n. + destruct (le_ge_cases 0 n) as [H|H]. rewrite shiftl_mul_pow2 by trivial. now nzsimpl. rewrite shiftl_div_pow2 by trivial. rewrite <- opp_nonneg_nonpos in H. nzsimpl; order_nz. @@ -901,7 +904,7 @@ Qed. Lemma lor_eq_0_l : forall a b, lor a b == 0 -> a == 0. Proof. - intros a b H. bitwise. + intros a b H. bitwise as m ?. apply (orb_false_iff a.[m] b.[m]). now rewrite <- lor_spec, H, bits_0. Qed. @@ -909,7 +912,7 @@ Qed. Lemma lor_eq_0_iff : forall a b, lor a b == 0 <-> a == 0 /\ b == 0. Proof. intros a b. split. - split. now apply lor_eq_0_l in H. + intro H; split. now apply lor_eq_0_l in H. rewrite lor_comm in H. now apply lor_eq_0_l in H. intros (EQ,EQ'). now rewrite EQ, lor_0_l. Qed. @@ -1022,13 +1025,13 @@ Proof. unfold clearbit. solve_proper. Qed. Lemma pow2_bits_true : forall n, 0<=n -> (2^n).[n] = true. Proof. - intros. rewrite <- (mul_1_l (2^n)). + intros n ?. rewrite <- (mul_1_l (2^n)). now rewrite mul_pow2_bits, sub_diag, bit0_odd, odd_1. Qed. Lemma pow2_bits_false : forall n m, n~=m -> (2^n).[m] = false. Proof. - intros. + intros n m ?. destruct (le_gt_cases 0 n); [|now rewrite pow_neg_r, bits_0]. destruct (le_gt_cases n m). rewrite <- (mul_1_l (2^n)), mul_pow2_bits; trivial. @@ -1073,7 +1076,7 @@ Qed. Lemma clearbit_eqb : forall a n m, (clearbit a n).[m] = a.[m] && negb (eqb n m). Proof. - intros. + intros a n m. destruct (le_gt_cases 0 m); [| now rewrite 2 testbit_neg_r]. rewrite clearbit_spec', ldiff_spec. f_equal. f_equal. destruct (le_gt_cases 0 n) as [Hn|Hn]. @@ -1090,7 +1093,7 @@ Qed. Lemma clearbit_eq : forall a n, (clearbit a n).[n] = false. Proof. - intros. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)). + intros a n. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)). apply andb_false_r. Qed. @@ -1161,7 +1164,7 @@ Proof. unfold lnot. solve_proper. Qed. Lemma lnot_spec : forall a n, 0<=n -> (lnot a).[n] = negb a.[n]. Proof. - intros. unfold lnot. rewrite <- (opp_involutive a) at 2. + intros a n ?. unfold lnot. rewrite <- (opp_involutive a) at 2. rewrite bits_opp, negb_involutive; trivial. Qed. @@ -1214,7 +1217,7 @@ Qed. Lemma lor_lnot_diag : forall a, lor a (lnot a) == -1. Proof. - intros a. bitwise. rewrite lnot_spec, bits_m1; trivial. + intros a. bitwise as m ?. rewrite lnot_spec, bits_m1; trivial. now destruct a.[m]. Qed. @@ -1267,7 +1270,7 @@ Qed. Lemma lxor_m1_r : forall a, lxor a (-1) == lnot a. Proof. - intros. now rewrite <- (lxor_0_r (lnot a)), <- lnot_m1, lxor_lnot_lnot. + intros a. now rewrite <- (lxor_0_r (lnot a)), <- lnot_m1, lxor_lnot_lnot. Qed. Lemma lxor_m1_l : forall a, lxor (-1) a == lnot a. @@ -1278,7 +1281,7 @@ Qed. Lemma lxor_lor : forall a b, land a b == 0 -> lxor a b == lor a b. Proof. - intros a b H. bitwise. + intros a b H. bitwise as m ?. assert (a.[m] && b.[m] = false) by now rewrite <- land_spec, H, bits_0. now destruct a.[m], b.[m]. @@ -1299,7 +1302,7 @@ Proof. unfold ones. solve_proper. Qed. Lemma ones_equiv : forall n, ones n == P (2^n). Proof. - intros. unfold ones. + intros n. unfold ones. destruct (le_gt_cases 0 n). now rewrite shiftl_mul_pow2, mul_1_l. f_equiv. rewrite pow_neg_r; trivial. @@ -1367,7 +1370,7 @@ Qed. Lemma lor_ones_low : forall a n, 0<=a -> log2 a < n -> lor a (ones n) == ones n. Proof. - intros a n Ha H. bitwise. destruct (le_gt_cases n m). + intros a n Ha H. bitwise as m ?. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; try split; trivial. now apply lt_le_trans with n. apply le_trans with (log2 a); order_pos. @@ -1376,7 +1379,7 @@ Qed. Lemma land_ones : forall a n, 0<=n -> land a (ones n) == a mod 2^n. Proof. - intros a n Hn. bitwise. destruct (le_gt_cases n m). + intros a n Hn. bitwise as m ?. destruct (le_gt_cases n m). rewrite ones_spec_high, mod_pow2_bits_high, andb_false_r; try split; trivial. rewrite ones_spec_low, mod_pow2_bits_low, andb_true_r; @@ -1396,7 +1399,7 @@ Qed. Lemma ldiff_ones_r : forall a n, 0<=n -> ldiff a (ones n) == (a >> n) << n. Proof. - intros a n Hn. bitwise. destruct (le_gt_cases n m). + intros a n Hn. bitwise as m ?. destruct (le_gt_cases n m). rewrite ones_spec_high, shiftl_spec_high, shiftr_spec; trivial. rewrite sub_add; trivial. apply andb_true_r. now apply le_0_sub. @@ -1408,7 +1411,7 @@ Qed. Lemma ldiff_ones_r_low : forall a n, 0<=a -> log2 a < n -> ldiff a (ones n) == 0. Proof. - intros a n Ha H. bitwise. destruct (le_gt_cases n m). + intros a n Ha H. bitwise as m ?. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; trivial. now apply lt_le_trans with n. split; trivial. now apply le_trans with (log2 a); order_pos. @@ -1418,7 +1421,7 @@ Qed. Lemma ldiff_ones_l_low : forall a n, 0<=a -> log2 a < n -> ldiff (ones n) a == lxor a (ones n). Proof. - intros a n Ha H. bitwise. destruct (le_gt_cases n m). + intros a n Ha H. bitwise as m ?. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; trivial. now apply lt_le_trans with n. split; trivial. now apply le_trans with (log2 a); order_pos. @@ -1585,7 +1588,7 @@ Qed. Lemma log2_shiftr : forall a n, 0<a -> log2 (a >> n) == max 0 (log2 a - n). Proof. intros a n Ha. - destruct (le_gt_cases 0 (log2 a - n)); + destruct (le_gt_cases 0 (log2 a - n)) as [H|H]; [rewrite max_r | rewrite max_l]; try order. apply log2_bits_unique. now rewrite shiftr_spec, sub_add, bit_log2. @@ -1698,7 +1701,7 @@ Qed. Lemma add_carry_div2 : forall a b (c0:bool), (a + b + c0)/2 == a/2 + b/2 + nextcarry a.[0] b.[0] c0. Proof. - intros. + intros a b c0. rewrite <- add3_bits_div2. rewrite (add_comm ((a/2)+_)). rewrite <- div_add by order'. @@ -1767,7 +1770,7 @@ Proof. apply div_lt_upper_bound. order'. now rewrite <- pow_succ_r. exists (c0 + 2*c). repeat split. (* step, add *) - bitwise. + bitwise as m Hm. le_elim Hm. rewrite <- (succ_pred m), lt_succ_r in Hm. rewrite <- (succ_pred m), <- !div2_bits, <- 2 lxor_spec by trivial. @@ -1777,7 +1780,7 @@ Proof. now rewrite add_b2z_double_bit0, add3_bit0, b2z_bit0. (* step, carry *) rewrite add_b2z_double_div2. - bitwise. + bitwise as m Hm. le_elim Hm. rewrite <- (succ_pred m), lt_succ_r in Hm. rewrite <- (succ_pred m), <- !div2_bits, IH2 by trivial. @@ -1905,7 +1908,7 @@ Proof. rewrite sub_add. symmetry. rewrite add_nocarry_lxor; trivial. - bitwise. + bitwise as m ?. apply bits_inj_iff in H. specialize (H m). rewrite ldiff_spec, bits_0 in H. now destruct a.[m], b.[m]. @@ -1938,7 +1941,7 @@ Lemma add_nocarry_mod_lt_pow2 : forall a b n, 0<=n -> land a b == 0 -> Proof. intros a b n Hn H. apply add_nocarry_lt_pow2. - bitwise. + bitwise as m ?. destruct (le_gt_cases n m). rewrite mod_pow2_bits_high; now split. now rewrite !mod_pow2_bits_low, <- land_spec, H, bits_0. diff --git a/theories/Numbers/Integer/Abstract/ZDivFloor.v b/theories/Numbers/Integer/Abstract/ZDivFloor.v index 44cba37eb2..d28d010ae8 100644 --- a/theories/Numbers/Integer/Abstract/ZDivFloor.v +++ b/theories/Numbers/Integer/Abstract/ZDivFloor.v @@ -51,7 +51,7 @@ Qed. Lemma mod_bound_abs : forall a b, b~=0 -> abs (a mod b) < abs b. Proof. -intros. +intros a b **. destruct (abs_spec b) as [(LE,EQ)|(LE,EQ)]; rewrite EQ. destruct (mod_pos_bound a b). order. now rewrite abs_eq. destruct (mod_neg_bound a b). order. rewrite abs_neq; trivial. @@ -87,11 +87,11 @@ Qed. Theorem div_unique_pos: forall a b q r, 0<=r<b -> a == b*q + r -> q == a/b. -Proof. intros; apply div_unique with r; auto. Qed. +Proof. intros a b q r **; apply div_unique with r; auto. Qed. Theorem div_unique_neg: forall a b q r, b<r<=0 -> a == b*q + r -> q == a/b. -Proof. intros; apply div_unique with r; auto. Qed. +Proof. intros a b q r **; apply div_unique with r; auto. Qed. Theorem mod_unique: forall a b q r, (0<=r<b \/ b<r<=0) -> a == b*q + r -> r == a mod b. @@ -106,11 +106,11 @@ Qed. Theorem mod_unique_pos: forall a b q r, 0<=r<b -> a == b*q + r -> r == a mod b. -Proof. intros; apply mod_unique with q; auto. Qed. +Proof. intros a b q r **; apply mod_unique with q; auto. Qed. Theorem mod_unique_neg: forall a b q r, b<r<=0 -> a == b*q + r -> r == a mod b. -Proof. intros; apply mod_unique with q; auto. Qed. +Proof. intros a b q r **; apply mod_unique with q; auto. Qed. (** Sign rules *) @@ -121,7 +121,7 @@ Ltac pos_or_neg a := Fact mod_bound_or : forall a b, b~=0 -> 0<=a mod b<b \/ b<a mod b<=0. Proof. -intros. +intros a b **. destruct (lt_ge_cases 0 b); [left|right]. apply mod_pos_bound; trivial. apply mod_neg_bound; order. Qed. @@ -129,7 +129,7 @@ Qed. Fact opp_mod_bound_or : forall a b, b~=0 -> 0 <= -(a mod b) < -b \/ -b < -(a mod b) <= 0. Proof. -intros. +intros a b **. destruct (lt_ge_cases 0 b); [right|left]. rewrite <- opp_lt_mono, opp_nonpos_nonneg. destruct (mod_pos_bound a b); intuition; order. @@ -139,14 +139,14 @@ Qed. Lemma div_opp_opp : forall a b, b~=0 -> -a/-b == a/b. Proof. -intros. symmetry. apply div_unique with (- (a mod b)). +intros a b **. symmetry. apply div_unique with (- (a mod b)). now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. Lemma mod_opp_opp : forall a b, b~=0 -> (-a) mod (-b) == - (a mod b). Proof. -intros. symmetry. apply mod_unique with (a/b). +intros a b **. symmetry. apply mod_unique with (a/b). now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. @@ -200,28 +200,28 @@ Qed. Lemma div_opp_r_z : forall a b, b~=0 -> a mod b == 0 -> a/(-b) == -(a/b). Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. rewrite div_opp_opp; auto using div_opp_l_z. Qed. Lemma div_opp_r_nz : forall a b, b~=0 -> a mod b ~= 0 -> a/(-b) == -(a/b)-1. Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. rewrite div_opp_opp; auto using div_opp_l_nz. Qed. Lemma mod_opp_r_z : forall a b, b~=0 -> a mod b == 0 -> a mod (-b) == 0. Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. now rewrite mod_opp_opp, mod_opp_l_z, opp_0. Qed. Lemma mod_opp_r_nz : forall a b, b~=0 -> a mod b ~= 0 -> a mod (-b) == (a mod b) - b. Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. rewrite mod_opp_opp, mod_opp_l_nz by trivial. now rewrite opp_sub_distr, add_comm, add_opp_r. Qed. @@ -247,7 +247,7 @@ Qed. Lemma mod_sign_mul : forall a b, b~=0 -> 0 <= (a mod b) * b. Proof. -intros. destruct (lt_ge_cases 0 b). +intros a b **. destruct (lt_ge_cases 0 b). apply mul_nonneg_nonneg; destruct (mod_pos_bound a b); order. apply mul_nonpos_nonpos; destruct (mod_neg_bound a b); order. Qed. @@ -256,7 +256,7 @@ Qed. Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. -intros. pos_or_neg a. apply div_same; order. +intros a ?. pos_or_neg a. apply div_same; order. rewrite <- div_opp_opp by trivial. now apply div_same. Qed. @@ -279,7 +279,7 @@ Proof. exact mod_small. Qed. Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. -intros. pos_or_neg a. apply div_0_l; order. +intros a ?. pos_or_neg a. apply div_0_l; order. rewrite <- div_opp_opp, opp_0 by trivial. now apply div_0_l. Qed. @@ -308,7 +308,7 @@ Proof. exact mod_1_l. Qed. Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a. Proof. -intros. symmetry. apply div_unique with 0. +intros a b ?. symmetry. apply div_unique with 0. destruct (lt_ge_cases 0 b); [left|right]; split; order. nzsimpl; apply mul_comm. Qed. @@ -350,7 +350,7 @@ Qed. Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<b \/ b<a<=0). Proof. -intros. +intros a b **. rewrite <- div_small_iff, mod_eq by trivial. rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l. rewrite eq_sym_iff, eq_mul_0. tauto. @@ -393,7 +393,7 @@ Qed. Lemma mul_div_le : forall a b, 0<b -> b*(a/b) <= a. Proof. -intros. +intros a b **. rewrite (div_mod a b) at 2; try order. rewrite <- (add_0_r (b*(a/b))) at 1. rewrite <- add_le_mono_l. @@ -412,7 +412,7 @@ Qed. Lemma mul_succ_div_gt: forall a b, 0<b -> a < b*(S (a/b)). Proof. -intros. +intros a b ?. nzsimpl. rewrite (div_mod a b) at 1; try order. rewrite <- add_lt_mono_l. @@ -432,7 +432,7 @@ Qed. Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0). Proof. -intros. +intros a b **. rewrite (div_mod a b) at 1; try order. rewrite <- (add_0_r (b*(a/b))) at 2. apply add_cancel_l. @@ -443,7 +443,7 @@ Qed. Theorem div_lt_upper_bound: forall a b q, 0<b -> a < b*q -> a/b < q. Proof. -intros. +intros a b q **. rewrite (mul_lt_mono_pos_l b) by trivial. apply le_lt_trans with a; trivial. now apply mul_div_le. @@ -452,7 +452,7 @@ Qed. Theorem div_le_upper_bound: forall a b q, 0<b -> a <= b*q -> a/b <= q. Proof. -intros. +intros a b q **. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. @@ -460,7 +460,7 @@ Qed. Theorem div_le_lower_bound: forall a b q, 0<b -> b*q <= a -> q <= a/b. Proof. -intros. +intros a b q **. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. @@ -475,7 +475,7 @@ Proof. exact div_le_compat_l. Qed. Lemma mod_add : forall a b c, c~=0 -> (a + b * c) mod c == a mod c. Proof. -intros. +intros a b c **. symmetry. apply mod_unique with (a/c+b); trivial. now apply mod_bound_or. @@ -486,7 +486,7 @@ Qed. Lemma div_add : forall a b c, c~=0 -> (a + b * c) / c == a / c + b. Proof. -intros. +intros a b c **. apply (mul_cancel_l _ _ c); try order. apply (add_cancel_r _ _ ((a+b*c) mod c)). rewrite <- div_mod, mod_add by order. @@ -506,7 +506,7 @@ Qed. Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 -> (a*c)/(b*c) == a/b. Proof. -intros. +intros a b c **. symmetry. apply div_unique with ((a mod b)*c). (* ineqs *) @@ -525,13 +525,13 @@ Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> (c*a)/(c*b) == a/b. Proof. -intros. rewrite !(mul_comm c); now apply div_mul_cancel_r. +intros a b c **. rewrite !(mul_comm c); now apply div_mul_cancel_r. Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 -> (c*a) mod (c*b) == c * (a mod b). Proof. -intros. +intros a b c **. rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))). rewrite <- div_mod. rewrite div_mul_cancel_l by trivial. @@ -543,7 +543,7 @@ Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 -> (a*c) mod (b*c) == (a mod b) * c. Proof. - intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. + intros a b c **. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. Qed. @@ -570,7 +570,7 @@ Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. - intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l. + intros a b n **. rewrite !(mul_comm a). now apply mul_mod_idemp_l. Qed. Theorem mul_mod: forall a b n, n~=0 -> @@ -591,7 +591,7 @@ Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> (a+(b mod n)) mod n == (a+b) mod n. Proof. - intros. rewrite !(add_comm a). now apply add_mod_idemp_l. + intros a b n **. rewrite !(add_comm a). now apply add_mod_idemp_l. Qed. Theorem add_mod: forall a b n, n~=0 -> diff --git a/theories/Numbers/Integer/Abstract/ZDivTrunc.v b/theories/Numbers/Integer/Abstract/ZDivTrunc.v index 4915d69c5b..7d374bd4be 100644 --- a/theories/Numbers/Integer/Abstract/ZDivTrunc.v +++ b/theories/Numbers/Integer/Abstract/ZDivTrunc.v @@ -69,7 +69,7 @@ Proof. intros. now rewrite rem_opp_r, rem_opp_l. Qed. Lemma quot_opp_l : forall a b, b ~= 0 -> (-a)÷b == -(a÷b). Proof. -intros. +intros a b ?. rewrite <- (mul_cancel_l _ _ b) by trivial. rewrite <- (add_cancel_r _ _ ((-a) rem b)). now rewrite <- quot_rem, rem_opp_l, mul_opp_r, <- opp_add_distr, <- quot_rem. @@ -77,7 +77,7 @@ Qed. Lemma quot_opp_r : forall a b, b ~= 0 -> a÷(-b) == -(a÷b). Proof. -intros. +intros a b ?. assert (-b ~= 0) by (now rewrite eq_opp_l, opp_0). rewrite <- (mul_cancel_l _ _ (-b)) by trivial. rewrite <- (add_cancel_r _ _ (a rem (-b))). @@ -105,17 +105,17 @@ Qed. Theorem quot_unique: forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a÷b. -Proof. intros; now apply NZQuot.div_unique with r. Qed. +Proof. intros a b q r **; now apply NZQuot.div_unique with r. Qed. Theorem rem_unique: forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a rem b. -Proof. intros; now apply NZQuot.mod_unique with q. Qed. +Proof. intros a b q r **; now apply NZQuot.mod_unique with q. Qed. (** A division by itself returns 1 *) Lemma quot_same : forall a, a~=0 -> a÷a == 1. Proof. -intros. pos_or_neg a. apply NZQuot.div_same; order. +intros a ?. pos_or_neg a. apply NZQuot.div_same; order. rewrite <- quot_opp_opp by trivial. now apply NZQuot.div_same. Qed. @@ -138,7 +138,7 @@ Proof. exact NZQuot.mod_small. Qed. Lemma quot_0_l: forall a, a~=0 -> 0÷a == 0. Proof. -intros. pos_or_neg a. apply NZQuot.div_0_l; order. +intros a ?. pos_or_neg a. apply NZQuot.div_0_l; order. rewrite <- quot_opp_opp, opp_0 by trivial. now apply NZQuot.div_0_l. Qed. @@ -149,7 +149,7 @@ Qed. Lemma quot_1_r: forall a, a÷1 == a. Proof. -intros. pos_or_neg a. now apply NZQuot.div_1_r. +intros a. pos_or_neg a. now apply NZQuot.div_1_r. apply opp_inj. rewrite <- quot_opp_l. apply NZQuot.div_1_r; order. intro EQ; symmetry in EQ; revert EQ; apply lt_neq, lt_0_1. Qed. @@ -168,7 +168,7 @@ Proof. exact NZQuot.mod_1_l. Qed. Lemma quot_mul : forall a b, b~=0 -> (a*b)÷b == a. Proof. -intros. pos_or_neg a; pos_or_neg b. apply NZQuot.div_mul; order. +intros a b ?. pos_or_neg a; pos_or_neg b. apply NZQuot.div_mul; order. rewrite <- quot_opp_opp, <- mul_opp_r by order. apply NZQuot.div_mul; order. rewrite <- opp_inj_wd, <- quot_opp_l, <- mul_opp_l by order. apply NZQuot.div_mul; order. @@ -190,7 +190,7 @@ Qed. Lemma rem_nonneg : forall a b, b~=0 -> 0 <= a -> 0 <= a rem b. Proof. - intros. pos_or_neg b. destruct (rem_bound_pos a b); order. + intros a b **. pos_or_neg b. destruct (rem_bound_pos a b); order. rewrite <- rem_opp_r; trivial. destruct (rem_bound_pos a (-b)); trivial. Qed. @@ -309,7 +309,7 @@ Proof. exact NZQuot.div_str_pos. Qed. Lemma quot_small_iff : forall a b, b~=0 -> (a÷b==0 <-> abs a < abs b). Proof. -intros. pos_or_neg a; pos_or_neg b. +intros a b ?. pos_or_neg a; pos_or_neg b. rewrite NZQuot.div_small_iff; try order. rewrite 2 abs_eq; intuition; order. rewrite <- opp_inj_wd, opp_0, <- quot_opp_r, NZQuot.div_small_iff by order. rewrite (abs_eq a), (abs_neq' b); intuition; order. @@ -321,7 +321,7 @@ Qed. Lemma rem_small_iff : forall a b, b~=0 -> (a rem b == a <-> abs a < abs b). Proof. -intros. rewrite rem_eq, <- quot_small_iff by order. +intros a b ?. rewrite rem_eq, <- quot_small_iff by order. rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l. rewrite eq_sym_iff, eq_mul_0. tauto. Qed. @@ -336,7 +336,7 @@ Proof. exact NZQuot.div_lt. Qed. Lemma quot_le_mono : forall a b c, 0<c -> a<=b -> a÷c <= b÷c. Proof. -intros. pos_or_neg a. apply NZQuot.div_le_mono; auto. +intros a b c **. pos_or_neg a. apply NZQuot.div_le_mono; auto. pos_or_neg b. apply le_trans with 0. rewrite <- opp_nonneg_nonpos, <- quot_opp_l by order. apply quot_pos; order. @@ -350,7 +350,7 @@ Qed. Lemma mul_quot_le : forall a b, 0<=a -> b~=0 -> 0 <= b*(a÷b) <= a. Proof. -intros. pos_or_neg b. +intros a b **. pos_or_neg b. split. apply mul_nonneg_nonneg; [|apply quot_pos]; order. apply NZQuot.mul_div_le; order. @@ -362,7 +362,7 @@ Qed. Lemma mul_quot_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a÷b) <= 0. Proof. -intros. +intros a b **. rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-quot_opp_l by order. rewrite <- opp_nonneg_nonpos in *. destruct (mul_quot_le (-a) b); tauto. @@ -415,7 +415,7 @@ Proof. exact NZQuot.div_lt_upper_bound. Qed. Theorem quot_le_upper_bound: forall a b q, 0<b -> a <= b*q -> a÷b <= q. Proof. -intros. +intros a b q **. rewrite <- (quot_mul q b) by order. apply quot_le_mono; trivial. now rewrite mul_comm. Qed. @@ -423,7 +423,7 @@ Qed. Theorem quot_le_lower_bound: forall a b q, 0<b -> b*q <= a -> q <= a÷b. Proof. -intros. +intros a b q **. rewrite <- (quot_mul q b) by order. apply quot_le_mono; trivial. now rewrite mul_comm. Qed. @@ -443,7 +443,7 @@ Lemma rem_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a -> (a + b * c) rem c == a rem c. Proof. assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) rem c == a rem c). - intros. pos_or_neg c. apply NZQuot.mod_add; order. + intros a b c **. pos_or_neg c. apply NZQuot.mod_add; order. rewrite <- (rem_opp_r a), <- (rem_opp_r (a+b*c)) by order. rewrite <- mul_opp_opp in *. apply NZQuot.mod_add; order. @@ -457,7 +457,7 @@ Qed. Lemma quot_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a -> (a + b * c) ÷ c == a ÷ c + b. Proof. -intros. +intros a b c **. rewrite <- (mul_cancel_l _ _ c) by trivial. rewrite <- (add_cancel_r _ _ ((a+b*c) rem c)). rewrite <- quot_rem, rem_add by trivial. @@ -476,14 +476,14 @@ Lemma quot_mul_cancel_r : forall a b c, b~=0 -> c~=0 -> (a*c)÷(b*c) == a÷b. Proof. assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a*c)÷(b*c) == a÷b). - intros. pos_or_neg c. apply NZQuot.div_mul_cancel_r; order. + intros a b c **. pos_or_neg c. apply NZQuot.div_mul_cancel_r; order. rewrite <- quot_opp_opp, <- 2 mul_opp_r. apply NZQuot.div_mul_cancel_r; order. rewrite <- neq_mul_0; intuition order. assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a*c)÷(b*c) == a÷b). - intros. pos_or_neg b. apply Aux1; order. + intros a b c **. pos_or_neg b. apply Aux1; order. apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_l; try order. apply Aux1; order. rewrite <- neq_mul_0; intuition order. -intros. pos_or_neg a. apply Aux2; order. +intros a b c **. pos_or_neg a. apply Aux2; order. apply opp_inj. rewrite <- 2 quot_opp_l, <- mul_opp_l; try order. apply Aux2; order. rewrite <- neq_mul_0; intuition order. Qed. @@ -491,13 +491,13 @@ Qed. Lemma quot_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> (c*a)÷(c*b) == a÷b. Proof. -intros. rewrite !(mul_comm c); now apply quot_mul_cancel_r. +intros a b c **. rewrite !(mul_comm c); now apply quot_mul_cancel_r. Qed. Lemma mul_rem_distr_r: forall a b c, b~=0 -> c~=0 -> (a*c) rem (b*c) == (a rem b) * c. Proof. -intros. +intros a b c **. assert (b*c ~= 0) by (rewrite <- neq_mul_0; tauto). rewrite ! rem_eq by trivial. rewrite quot_mul_cancel_r by order. @@ -507,7 +507,7 @@ Qed. Lemma mul_rem_distr_l: forall a b c, b~=0 -> c~=0 -> (c*a) rem (c*b) == c * (a rem b). Proof. -intros; rewrite !(mul_comm c); now apply mul_rem_distr_r. +intros a b c **; rewrite !(mul_comm c); now apply mul_rem_distr_r. Qed. (** Operations modulo. *) @@ -515,7 +515,7 @@ Qed. Theorem rem_rem: forall a n, n~=0 -> (a rem n) rem n == a rem n. Proof. -intros. pos_or_neg a; pos_or_neg n. apply NZQuot.mod_mod; order. +intros a n **. pos_or_neg a; pos_or_neg n. apply NZQuot.mod_mod; order. rewrite <- ! (rem_opp_r _ n) by trivial. apply NZQuot.mod_mod; order. apply opp_inj. rewrite <- !rem_opp_l by order. apply NZQuot.mod_mod; order. apply opp_inj. rewrite <- !rem_opp_opp by order. apply NZQuot.mod_mod; order. @@ -526,11 +526,11 @@ Lemma mul_rem_idemp_l : forall a b n, n~=0 -> Proof. assert (Aux1 : forall a b n, 0<=a -> 0<=b -> n~=0 -> ((a rem n)*b) rem n == (a*b) rem n). - intros. pos_or_neg n. apply NZQuot.mul_mod_idemp_l; order. + intros a b n **. pos_or_neg n. apply NZQuot.mul_mod_idemp_l; order. rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.mul_mod_idemp_l; order. assert (Aux2 : forall a b n, 0<=a -> n~=0 -> ((a rem n)*b) rem n == (a*b) rem n). - intros. pos_or_neg b. now apply Aux1. + intros a b n **. pos_or_neg b. now apply Aux1. apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_r by order. apply Aux1; order. intros a b n Hn. pos_or_neg a. now apply Aux2. @@ -541,7 +541,7 @@ Qed. Lemma mul_rem_idemp_r : forall a b n, n~=0 -> (a*(b rem n)) rem n == (a*b) rem n. Proof. -intros. rewrite !(mul_comm a). now apply mul_rem_idemp_l. +intros a b n **. rewrite !(mul_comm a). now apply mul_rem_idemp_l. Qed. Theorem mul_rem: forall a b n, n~=0 -> @@ -564,7 +564,7 @@ Lemma add_rem_idemp_l : forall a b n, n~=0 -> 0 <= a*b -> Proof. assert (Aux : forall a b n, 0<=a -> 0<=b -> n~=0 -> ((a rem n)+b) rem n == (a+b) rem n). - intros. pos_or_neg n. apply NZQuot.add_mod_idemp_l; order. + intros a b n **. pos_or_neg n. apply NZQuot.add_mod_idemp_l; order. rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.add_mod_idemp_l; order. intros a b n Hn Hab. destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)]. now apply Aux. @@ -576,7 +576,7 @@ Qed. Lemma add_rem_idemp_r : forall a b n, n~=0 -> 0 <= a*b -> (a+(b rem n)) rem n == (a+b) rem n. Proof. -intros. rewrite !(add_comm a). apply add_rem_idemp_l; trivial. +intros a b n **. rewrite !(add_comm a). apply add_rem_idemp_l; trivial. now rewrite mul_comm. Qed. @@ -598,16 +598,16 @@ Lemma quot_quot : forall a b c, b~=0 -> c~=0 -> (a÷b)÷c == a÷(b*c). Proof. assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a÷b)÷c == a÷(b*c)). - intros. pos_or_neg c. apply NZQuot.div_div; order. + intros a b c **. pos_or_neg c. apply NZQuot.div_div; order. apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_r; trivial. apply NZQuot.div_div; order. rewrite <- neq_mul_0; intuition order. assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a÷b)÷c == a÷(b*c)). - intros. pos_or_neg b. apply Aux1; order. + intros a b c **. pos_or_neg b. apply Aux1; order. apply opp_inj. rewrite <- quot_opp_l, <- 2 quot_opp_r, <- mul_opp_l; trivial. apply Aux1; trivial. rewrite <- neq_mul_0; intuition order. -intros. pos_or_neg a. apply Aux2; order. +intros a b c **. pos_or_neg a. apply Aux2; order. apply opp_inj. rewrite <- 3 quot_opp_l; try order. apply Aux2; order. rewrite <- neq_mul_0. tauto. Qed. diff --git a/theories/Numbers/Integer/Abstract/ZGcd.v b/theories/Numbers/Integer/Abstract/ZGcd.v index 09d28a18ec..755557ff17 100644 --- a/theories/Numbers/Integer/Abstract/ZGcd.v +++ b/theories/Numbers/Integer/Abstract/ZGcd.v @@ -98,7 +98,7 @@ Qed. Lemma gcd_abs_l : forall n m, gcd (abs n) m == gcd n m. Proof. - intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. + intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. easy. apply gcd_opp_l. Qed. @@ -125,7 +125,7 @@ Qed. Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m. Proof. - intros. apply gcd_unique_alt; try apply gcd_nonneg. + intros n m p. apply gcd_unique_alt; try apply gcd_nonneg. intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial. apply divide_add_r; trivial. now apply divide_mul_r. apply divide_add_cancel_r with (p*n); trivial. @@ -164,12 +164,12 @@ Proof. (* First, a version restricted to natural numbers *) assert (aux : forall n, 0<=n -> forall m, 0<=m -> Bezout n m (gcd n m)). intros n Hn; pattern n. - apply strong_right_induction with (z:=0); trivial. + apply (fun H => strong_right_induction _ H 0); trivial. unfold Bezout. solve_proper. clear n Hn. intros n Hn IHn. apply le_lteq in Hn; destruct Hn as [Hn|Hn]. intros m Hm; pattern m. - apply strong_right_induction with (z:=0); trivial. + apply (fun H => strong_right_induction _ H 0); trivial. unfold Bezout. solve_proper. clear m Hm. intros m Hm IHm. destruct (lt_trichotomy n m) as [LT|[EQ|LT]]. @@ -227,7 +227,7 @@ Qed. Lemma gcd_mul_mono_l_nonneg : forall n m p, 0<=p -> gcd (p*n) (p*m) == p * gcd n m. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_l. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_l. Qed. Lemma gcd_mul_mono_r : @@ -239,7 +239,7 @@ Qed. Lemma gcd_mul_mono_r_nonneg : forall n m p, 0<=p -> gcd (n*p) (m*p) == gcd n m * p. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_r. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_r. Qed. Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p). diff --git a/theories/Numbers/Integer/Abstract/ZLcm.v b/theories/Numbers/Integer/Abstract/ZLcm.v index 6aa828ebfc..c45ea12868 100644 --- a/theories/Numbers/Integer/Abstract/ZLcm.v +++ b/theories/Numbers/Integer/Abstract/ZLcm.v @@ -33,14 +33,14 @@ Module Type ZLcmProp Lemma quot_div_nonneg : forall a b, 0<=a -> 0<b -> a÷b == a/b. Proof. - intros. apply div_unique_pos with (a rem b). + intros a b **. apply div_unique_pos with (a rem b). now apply rem_bound_pos. apply quot_rem. order. Qed. Lemma rem_mod_nonneg : forall a b, 0<=a -> 0<b -> a rem b == a mod b. Proof. - intros. apply mod_unique_pos with (a÷b). + intros a b **. apply mod_unique_pos with (a÷b). now apply rem_bound_pos. apply quot_rem. order. Qed. @@ -290,7 +290,7 @@ Qed. Lemma lcm_divide_iff : forall n m p, (lcm n m | p) <-> (n | p) /\ (m | p). Proof. - intros. split. split. + intros n m p. split. split. transitivity (lcm n m); trivial using divide_lcm_l. transitivity (lcm n m); trivial using divide_lcm_r. intros (H,H'). now apply lcm_least. @@ -387,7 +387,7 @@ Qed. Lemma lcm_abs_l : forall n m, lcm (abs n) m == lcm n m. Proof. - intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. + intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. easy. apply lcm_opp_l. Qed. @@ -438,7 +438,7 @@ Qed. Lemma lcm_mul_mono_l_nonneg : forall n m p, 0<=p -> lcm (p*n) (p*m) == p * lcm n m. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l. Qed. Lemma lcm_mul_mono_r : @@ -450,7 +450,7 @@ Qed. Lemma lcm_mul_mono_r_nonneg : forall n m p, 0<=p -> lcm (n*p) (m*p) == lcm n m * p. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r. Qed. Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 -> diff --git a/theories/Numbers/Integer/Abstract/ZMaxMin.v b/theories/Numbers/Integer/Abstract/ZMaxMin.v index ed0b0c69a0..4af24b7754 100644 --- a/theories/Numbers/Integer/Abstract/ZMaxMin.v +++ b/theories/Numbers/Integer/Abstract/ZMaxMin.v @@ -20,133 +20,133 @@ Include ZMulOrderProp Z. (** Succ *) -Lemma succ_max_distr : forall n m, S (max n m) == max (S n) (S m). +Lemma succ_max_distr n m : S (max n m) == max (S n) (S m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?succ_le_mono. Qed. -Lemma succ_min_distr : forall n m, S (min n m) == min (S n) (S m). +Lemma succ_min_distr n m : S (min n m) == min (S n) (S m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?succ_le_mono. Qed. (** Pred *) -Lemma pred_max_distr : forall n m, P (max n m) == max (P n) (P m). +Lemma pred_max_distr n m : P (max n m) == max (P n) (P m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?pred_le_mono. Qed. -Lemma pred_min_distr : forall n m, P (min n m) == min (P n) (P m). +Lemma pred_min_distr n m : P (min n m) == min (P n) (P m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?pred_le_mono. Qed. (** Add *) -Lemma add_max_distr_l : forall n m p, max (p + n) (p + m) == p + max n m. +Lemma add_max_distr_l n m p : max (p + n) (p + m) == p + max n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_l. Qed. -Lemma add_max_distr_r : forall n m p, max (n + p) (m + p) == max n m + p. +Lemma add_max_distr_r n m p : max (n + p) (m + p) == max n m + p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_r. Qed. -Lemma add_min_distr_l : forall n m p, min (p + n) (p + m) == p + min n m. +Lemma add_min_distr_l n m p : min (p + n) (p + m) == p + min n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_l. Qed. -Lemma add_min_distr_r : forall n m p, min (n + p) (m + p) == min n m + p. +Lemma add_min_distr_r n m p : min (n + p) (m + p) == min n m + p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_r. Qed. (** Opp *) -Lemma opp_max_distr : forall n m, -(max n m) == min (-n) (-m). +Lemma opp_max_distr n m : -(max n m) == min (-n) (-m). Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite max_r by trivial. symmetry. apply min_r. now rewrite <- opp_le_mono. rewrite max_l by trivial. symmetry. apply min_l. now rewrite <- opp_le_mono. Qed. -Lemma opp_min_distr : forall n m, -(min n m) == max (-n) (-m). +Lemma opp_min_distr n m : -(min n m) == max (-n) (-m). Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite min_l by trivial. symmetry. apply max_l. now rewrite <- opp_le_mono. rewrite min_r by trivial. symmetry. apply max_r. now rewrite <- opp_le_mono. Qed. (** Sub *) -Lemma sub_max_distr_l : forall n m p, max (p - n) (p - m) == p - min n m. +Lemma sub_max_distr_l n m p : max (p - n) (p - m) == p - min n m. Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite min_l by trivial. apply max_l. now rewrite <- sub_le_mono_l. rewrite min_r by trivial. apply max_r. now rewrite <- sub_le_mono_l. Qed. -Lemma sub_max_distr_r : forall n m p, max (n - p) (m - p) == max n m - p. +Lemma sub_max_distr_r n m p : max (n - p) (m - p) == max n m - p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply sub_le_mono_r. Qed. -Lemma sub_min_distr_l : forall n m p, min (p - n) (p - m) == p - max n m. +Lemma sub_min_distr_l n m p : min (p - n) (p - m) == p - max n m. Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite max_r by trivial. apply min_r. now rewrite <- sub_le_mono_l. rewrite max_l by trivial. apply min_l. now rewrite <- sub_le_mono_l. Qed. -Lemma sub_min_distr_r : forall n m p, min (n - p) (m - p) == min n m - p. +Lemma sub_min_distr_r n m p : min (n - p) (m - p) == min n m - p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply sub_le_mono_r. Qed. (** Mul *) -Lemma mul_max_distr_nonneg_l : forall n m p, 0 <= p -> +Lemma mul_max_distr_nonneg_l n m p : 0 <= p -> max (p * n) (p * m) == p * max n m. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_l. Qed. -Lemma mul_max_distr_nonneg_r : forall n m p, 0 <= p -> +Lemma mul_max_distr_nonneg_r n m p : 0 <= p -> max (n * p) (m * p) == max n m * p. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_r. Qed. -Lemma mul_min_distr_nonneg_l : forall n m p, 0 <= p -> +Lemma mul_min_distr_nonneg_l n m p : 0 <= p -> min (p * n) (p * m) == p * min n m. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_l. Qed. -Lemma mul_min_distr_nonneg_r : forall n m p, 0 <= p -> +Lemma mul_min_distr_nonneg_r n m p : 0 <= p -> min (n * p) (m * p) == min n m * p. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_r. Qed. -Lemma mul_max_distr_nonpos_l : forall n m p, p <= 0 -> +Lemma mul_max_distr_nonpos_l n m p : p <= 0 -> max (p * n) (p * m) == p * min n m. Proof. intros. destruct (le_ge_cases n m). @@ -154,7 +154,7 @@ Proof. rewrite min_r by trivial. rewrite max_r. reflexivity. now apply mul_le_mono_nonpos_l. Qed. -Lemma mul_max_distr_nonpos_r : forall n m p, p <= 0 -> +Lemma mul_max_distr_nonpos_r n m p : p <= 0 -> max (n * p) (m * p) == min n m * p. Proof. intros. destruct (le_ge_cases n m). @@ -162,7 +162,7 @@ Proof. rewrite min_r by trivial. rewrite max_r. reflexivity. now apply mul_le_mono_nonpos_r. Qed. -Lemma mul_min_distr_nonpos_l : forall n m p, p <= 0 -> +Lemma mul_min_distr_nonpos_l n m p : p <= 0 -> min (p * n) (p * m) == p * max n m. Proof. intros. destruct (le_ge_cases n m). @@ -170,7 +170,7 @@ Proof. rewrite max_l by trivial. rewrite min_l. reflexivity. now apply mul_le_mono_nonpos_l. Qed. -Lemma mul_min_distr_nonpos_r : forall n m p, p <= 0 -> +Lemma mul_min_distr_nonpos_r n m p : p <= 0 -> min (n * p) (m * p) == max n m * p. Proof. intros. destruct (le_ge_cases n m). diff --git a/theories/Numbers/Integer/Abstract/ZMulOrder.v b/theories/Numbers/Integer/Abstract/ZMulOrder.v index 7d97d11818..0275a5fa65 100644 --- a/theories/Numbers/Integer/Abstract/ZMulOrder.v +++ b/theories/Numbers/Integer/Abstract/ZMulOrder.v @@ -167,7 +167,7 @@ Qed. Theorem eq_mul_1 : forall n m, n * m == 1 -> n == 1 \/ n == -1. Proof. assert (F := lt_m1_0). -zero_pos_neg n. +intro n; zero_pos_neg n. (* n = 0 *) intros m. nzsimpl. now left. (* 0 < n, proving P n /\ P (-n) *) @@ -205,7 +205,7 @@ Qed. Theorem lt_mul_r : forall n m p, 0 < n -> 1 < p -> n < m -> n < m * p. Proof. -intros. stepl (n * 1) by now rewrite mul_1_r. +intros n m p **. stepl (n * 1) by now rewrite mul_1_r. apply mul_lt_mono_nonneg. now apply lt_le_incl. assumption. apply le_0_1. assumption. Qed. diff --git a/theories/Numbers/Integer/Abstract/ZParity.v b/theories/Numbers/Integer/Abstract/ZParity.v index 4b61b18479..0f68278cf0 100644 --- a/theories/Numbers/Integer/Abstract/ZParity.v +++ b/theories/Numbers/Integer/Abstract/ZParity.v @@ -19,19 +19,19 @@ Include NZParityProp Z Z ZP. Lemma odd_pred : forall n, odd (P n) = even n. Proof. - intros. rewrite <- (succ_pred n) at 2. symmetry. apply even_succ. + intros n. rewrite <- (succ_pred n) at 2. symmetry. apply even_succ. Qed. Lemma even_pred : forall n, even (P n) = odd n. Proof. - intros. rewrite <- (succ_pred n) at 2. symmetry. apply odd_succ. + intros n. rewrite <- (succ_pred n) at 2. symmetry. apply odd_succ. Qed. Lemma even_opp : forall n, even (-n) = even n. Proof. assert (H : forall n, Even n -> Even (-n)). intros n (m,H). exists (-m). rewrite mul_opp_r. now f_equiv. - intros. rewrite eq_iff_eq_true, !even_spec. + intros n. rewrite eq_iff_eq_true, !even_spec. split. rewrite <- (opp_involutive n) at 2. apply H. apply H. Qed. diff --git a/theories/Numbers/Integer/Abstract/ZPow.v b/theories/Numbers/Integer/Abstract/ZPow.v index bec77fd136..9557212a86 100644 --- a/theories/Numbers/Integer/Abstract/ZPow.v +++ b/theories/Numbers/Integer/Abstract/ZPow.v @@ -73,7 +73,7 @@ Qed. Lemma pow_even_abs : forall a b, Even b -> a^b == (abs a)^b. Proof. - intros. destruct (abs_eq_or_opp a) as [EQ|EQ]; rewrite EQ. + intros a b ?. destruct (abs_eq_or_opp a) as [EQ|EQ]; rewrite EQ. reflexivity. symmetry. now apply pow_opp_even. Qed. @@ -119,7 +119,7 @@ Qed. Lemma abs_pow : forall a b, abs (a^b) == (abs a)^b. Proof. intros a b. - destruct (Even_or_Odd b). + destruct (Even_or_Odd b) as [H|H]. rewrite pow_even_abs by trivial. apply abs_eq, pow_nonneg, abs_nonneg. rewrite pow_odd_abs_sgn by trivial. diff --git a/theories/Numbers/Integer/Abstract/ZSgnAbs.v b/theories/Numbers/Integer/Abstract/ZSgnAbs.v index 03e0c0345d..3ebbec9397 100644 --- a/theories/Numbers/Integer/Abstract/ZSgnAbs.v +++ b/theories/Numbers/Integer/Abstract/ZSgnAbs.v @@ -40,11 +40,11 @@ Module Type GenericSgn (Import Z : ZDecAxiomsSig') (Import ZP : ZMulOrderProp Z) <: HasSgn Z. Definition sgn n := match compare 0 n with Eq => 0 | Lt => 1 | Gt => -1 end. - Lemma sgn_null : forall n, n==0 -> sgn n == 0. + Lemma sgn_null n : n==0 -> sgn n == 0. Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed. - Lemma sgn_pos : forall n, 0<n -> sgn n == 1. + Lemma sgn_pos n : 0<n -> sgn n == 1. Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed. - Lemma sgn_neg : forall n, n<0 -> sgn n == -1. + Lemma sgn_neg n : n<0 -> sgn n == -1. Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed. End GenericSgn. @@ -101,7 +101,7 @@ Qed. Lemma abs_opp : forall n, abs (-n) == abs n. Proof. - intros. destruct_max n. + intros n. destruct_max n. rewrite (abs_neq (-n)), opp_involutive. reflexivity. now rewrite opp_nonpos_nonneg. rewrite (abs_eq (-n)). reflexivity. @@ -115,14 +115,14 @@ Qed. Lemma abs_0_iff : forall n, abs n == 0 <-> n==0. Proof. - split. destruct_max n; auto. + intros n; split. destruct_max n; auto. now rewrite eq_opp_l, opp_0. intros EQ; rewrite EQ. rewrite abs_eq; auto using eq_refl, le_refl. Qed. Lemma abs_pos : forall n, 0 < abs n <-> n~=0. Proof. - intros. rewrite <- abs_0_iff. split; [intros LT| intros NEQ]. + intros n. rewrite <- abs_0_iff. split; [intros LT| intros NEQ]. intro EQ. rewrite EQ in LT. now elim (lt_irrefl 0). assert (LE : 0 <= abs n) by apply abs_nonneg. rewrite lt_eq_cases in LE; destruct LE; auto. @@ -131,12 +131,12 @@ Qed. Lemma abs_eq_or_opp : forall n, abs n == n \/ abs n == -n. Proof. - intros. destruct_max n; auto with relations. + intros n. destruct_max n; auto with relations. Qed. Lemma abs_or_opp_abs : forall n, n == abs n \/ n == - abs n. Proof. - intros. destruct_max n; rewrite ? opp_involutive; auto with relations. + intros n. destruct_max n; rewrite ? opp_involutive; auto with relations. Qed. Lemma abs_involutive : forall n, abs (abs n) == abs n. @@ -147,7 +147,7 @@ Qed. Lemma abs_spec : forall n, (0 <= n /\ abs n == n) \/ (n < 0 /\ abs n == -n). Proof. - intros. destruct (le_gt_cases 0 n). + intros n. destruct (le_gt_cases 0 n). left; split; auto. now apply abs_eq. right; split; auto. apply abs_neq. now apply lt_le_incl. Qed. @@ -156,7 +156,7 @@ Lemma abs_case_strong : forall (P:t->Prop) n, Proper (eq==>iff) P -> (0<=n -> P n) -> (n<=0 -> P (-n)) -> P (abs n). Proof. - intros. destruct_max n; auto. + intros P n **. destruct_max n; auto. Qed. Lemma abs_case : forall (P:t->Prop) n, Proper (eq==>iff) P -> @@ -196,7 +196,7 @@ Qed. Lemma abs_triangle : forall n m, abs (n + m) <= abs n + abs m. Proof. - intros. destruct_max n; destruct_max m. + intros n m. destruct_max n; destruct_max m. rewrite abs_eq. apply le_refl. now apply add_nonneg_nonneg. destruct_max (n+m); try rewrite opp_add_distr; apply add_le_mono_l || apply add_le_mono_r. @@ -212,7 +212,7 @@ Qed. Lemma abs_sub_triangle : forall n m, abs n - abs m <= abs (n-m). Proof. - intros. + intros n m. rewrite le_sub_le_add_l, add_comm. rewrite <- (sub_simpl_r n m) at 1. apply abs_triangle. @@ -223,10 +223,10 @@ Qed. Lemma abs_mul : forall n m, abs (n * m) == abs n * abs m. Proof. assert (H : forall n m, 0<=n -> abs (n*m) == n * abs m). - intros. destruct_max m. + intros n m ?. destruct_max m. rewrite abs_eq. apply eq_refl. now apply mul_nonneg_nonneg. rewrite abs_neq, mul_opp_r. reflexivity. now apply mul_nonneg_nonpos . - intros. destruct_max n. now apply H. + intros n m. destruct_max n. now apply H. rewrite <- mul_opp_opp, H, abs_opp. reflexivity. now apply opp_nonneg_nonpos. Qed. @@ -271,7 +271,7 @@ Qed. Lemma sgn_pos_iff : forall n, sgn n == 1 <-> 0<n. Proof. - split; try apply sgn_pos. destruct_sgn n; auto. + intros n; split; try apply sgn_pos. destruct_sgn n; auto. intros. elim (lt_neq 0 1); auto. apply lt_0_1. intros. elim (lt_neq (-1) 1); auto. apply lt_trans with 0. rewrite opp_neg_pos. apply lt_0_1. apply lt_0_1. @@ -279,7 +279,7 @@ Qed. Lemma sgn_null_iff : forall n, sgn n == 0 <-> n==0. Proof. - split; try apply sgn_null. destruct_sgn n; auto with relations. + intros n; split; try apply sgn_null. destruct_sgn n; auto with relations. intros. elim (lt_neq 0 1); auto with relations. apply lt_0_1. intros. elim (lt_neq (-1) 0); auto. rewrite opp_neg_pos. apply lt_0_1. @@ -287,7 +287,7 @@ Qed. Lemma sgn_neg_iff : forall n, sgn n == -1 <-> n<0. Proof. - split; try apply sgn_neg. destruct_sgn n; auto with relations. + intros n; split; try apply sgn_neg. destruct_sgn n; auto with relations. intros. elim (lt_neq (-1) 1); auto with relations. apply lt_trans with 0. rewrite opp_neg_pos. apply lt_0_1. apply lt_0_1. intros. elim (lt_neq (-1) 0); auto with relations. @@ -296,7 +296,7 @@ Qed. Lemma sgn_opp : forall n, sgn (-n) == - sgn n. Proof. - intros. destruct_sgn n. + intros n. destruct_sgn n. apply sgn_neg. now rewrite opp_neg_pos. setoid_replace n with 0 by auto with relations. rewrite opp_0. apply sgn_0. @@ -305,7 +305,7 @@ Qed. Lemma sgn_nonneg : forall n, 0 <= sgn n <-> 0 <= n. Proof. - split. + intros n; split. destruct_sgn n; intros. now apply lt_le_incl. order. @@ -323,7 +323,7 @@ Qed. Lemma sgn_mul : forall n m, sgn (n*m) == sgn n * sgn m. Proof. - intros. destruct_sgn n; nzsimpl. + intros n m. destruct_sgn n; nzsimpl. destruct_sgn m. apply sgn_pos. now apply mul_pos_pos. apply sgn_null. rewrite eq_mul_0; auto with relations. @@ -337,7 +337,7 @@ Qed. Lemma sgn_abs : forall n, n * sgn n == abs n. Proof. - intros. symmetry. + intros n. symmetry. destruct_sgn n; try rewrite mul_opp_r; nzsimpl. apply abs_eq. now apply lt_le_incl. rewrite abs_0_iff; auto with relations. @@ -346,7 +346,7 @@ Qed. Lemma abs_sgn : forall n, abs n * sgn n == n. Proof. - intros. + intros n. destruct_sgn n; try rewrite mul_opp_r; nzsimpl; auto. apply abs_eq. now apply lt_le_incl. rewrite eq_opp_l. apply abs_neq. now apply lt_le_incl. @@ -354,7 +354,7 @@ Qed. Lemma sgn_sgn : forall x, sgn (sgn x) == sgn x. Proof. - intros. + intros x. destruct (sgn_spec x) as [(LT,EQ)|[(EQ',EQ)|(LT,EQ)]]; rewrite EQ. apply sgn_pos, lt_0_1. now apply sgn_null. |
