diff options
| author | Jasper Hugunin | 2020-10-08 17:24:31 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-10-08 17:24:31 -0700 |
| commit | 8c3231dc17e851a2c1e2777833f6fa5e24ba5e8e (patch) | |
| tree | 4cb8d15fc802fcdef8daa1ca35001e11b6191754 /theories/Numbers | |
| parent | 806421fb3d9d307e5ec84a6b45d419befb636b44 (diff) | |
Modify Numbers/Integer/Abstract/ZDivFloor.v to compile with -mangle-names
Diffstat (limited to 'theories/Numbers')
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivFloor.v | 64 |
1 files changed, 32 insertions, 32 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivFloor.v b/theories/Numbers/Integer/Abstract/ZDivFloor.v index 44cba37eb2..d28d010ae8 100644 --- a/theories/Numbers/Integer/Abstract/ZDivFloor.v +++ b/theories/Numbers/Integer/Abstract/ZDivFloor.v @@ -51,7 +51,7 @@ Qed. Lemma mod_bound_abs : forall a b, b~=0 -> abs (a mod b) < abs b. Proof. -intros. +intros a b **. destruct (abs_spec b) as [(LE,EQ)|(LE,EQ)]; rewrite EQ. destruct (mod_pos_bound a b). order. now rewrite abs_eq. destruct (mod_neg_bound a b). order. rewrite abs_neq; trivial. @@ -87,11 +87,11 @@ Qed. Theorem div_unique_pos: forall a b q r, 0<=r<b -> a == b*q + r -> q == a/b. -Proof. intros; apply div_unique with r; auto. Qed. +Proof. intros a b q r **; apply div_unique with r; auto. Qed. Theorem div_unique_neg: forall a b q r, b<r<=0 -> a == b*q + r -> q == a/b. -Proof. intros; apply div_unique with r; auto. Qed. +Proof. intros a b q r **; apply div_unique with r; auto. Qed. Theorem mod_unique: forall a b q r, (0<=r<b \/ b<r<=0) -> a == b*q + r -> r == a mod b. @@ -106,11 +106,11 @@ Qed. Theorem mod_unique_pos: forall a b q r, 0<=r<b -> a == b*q + r -> r == a mod b. -Proof. intros; apply mod_unique with q; auto. Qed. +Proof. intros a b q r **; apply mod_unique with q; auto. Qed. Theorem mod_unique_neg: forall a b q r, b<r<=0 -> a == b*q + r -> r == a mod b. -Proof. intros; apply mod_unique with q; auto. Qed. +Proof. intros a b q r **; apply mod_unique with q; auto. Qed. (** Sign rules *) @@ -121,7 +121,7 @@ Ltac pos_or_neg a := Fact mod_bound_or : forall a b, b~=0 -> 0<=a mod b<b \/ b<a mod b<=0. Proof. -intros. +intros a b **. destruct (lt_ge_cases 0 b); [left|right]. apply mod_pos_bound; trivial. apply mod_neg_bound; order. Qed. @@ -129,7 +129,7 @@ Qed. Fact opp_mod_bound_or : forall a b, b~=0 -> 0 <= -(a mod b) < -b \/ -b < -(a mod b) <= 0. Proof. -intros. +intros a b **. destruct (lt_ge_cases 0 b); [right|left]. rewrite <- opp_lt_mono, opp_nonpos_nonneg. destruct (mod_pos_bound a b); intuition; order. @@ -139,14 +139,14 @@ Qed. Lemma div_opp_opp : forall a b, b~=0 -> -a/-b == a/b. Proof. -intros. symmetry. apply div_unique with (- (a mod b)). +intros a b **. symmetry. apply div_unique with (- (a mod b)). now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. Lemma mod_opp_opp : forall a b, b~=0 -> (-a) mod (-b) == - (a mod b). Proof. -intros. symmetry. apply mod_unique with (a/b). +intros a b **. symmetry. apply mod_unique with (a/b). now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. @@ -200,28 +200,28 @@ Qed. Lemma div_opp_r_z : forall a b, b~=0 -> a mod b == 0 -> a/(-b) == -(a/b). Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. rewrite div_opp_opp; auto using div_opp_l_z. Qed. Lemma div_opp_r_nz : forall a b, b~=0 -> a mod b ~= 0 -> a/(-b) == -(a/b)-1. Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. rewrite div_opp_opp; auto using div_opp_l_nz. Qed. Lemma mod_opp_r_z : forall a b, b~=0 -> a mod b == 0 -> a mod (-b) == 0. Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. now rewrite mod_opp_opp, mod_opp_l_z, opp_0. Qed. Lemma mod_opp_r_nz : forall a b, b~=0 -> a mod b ~= 0 -> a mod (-b) == (a mod b) - b. Proof. -intros. rewrite <- (opp_involutive a) at 1. +intros a b **. rewrite <- (opp_involutive a) at 1. rewrite mod_opp_opp, mod_opp_l_nz by trivial. now rewrite opp_sub_distr, add_comm, add_opp_r. Qed. @@ -247,7 +247,7 @@ Qed. Lemma mod_sign_mul : forall a b, b~=0 -> 0 <= (a mod b) * b. Proof. -intros. destruct (lt_ge_cases 0 b). +intros a b **. destruct (lt_ge_cases 0 b). apply mul_nonneg_nonneg; destruct (mod_pos_bound a b); order. apply mul_nonpos_nonpos; destruct (mod_neg_bound a b); order. Qed. @@ -256,7 +256,7 @@ Qed. Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. -intros. pos_or_neg a. apply div_same; order. +intros a ?. pos_or_neg a. apply div_same; order. rewrite <- div_opp_opp by trivial. now apply div_same. Qed. @@ -279,7 +279,7 @@ Proof. exact mod_small. Qed. Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. -intros. pos_or_neg a. apply div_0_l; order. +intros a ?. pos_or_neg a. apply div_0_l; order. rewrite <- div_opp_opp, opp_0 by trivial. now apply div_0_l. Qed. @@ -308,7 +308,7 @@ Proof. exact mod_1_l. Qed. Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a. Proof. -intros. symmetry. apply div_unique with 0. +intros a b ?. symmetry. apply div_unique with 0. destruct (lt_ge_cases 0 b); [left|right]; split; order. nzsimpl; apply mul_comm. Qed. @@ -350,7 +350,7 @@ Qed. Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<b \/ b<a<=0). Proof. -intros. +intros a b **. rewrite <- div_small_iff, mod_eq by trivial. rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l. rewrite eq_sym_iff, eq_mul_0. tauto. @@ -393,7 +393,7 @@ Qed. Lemma mul_div_le : forall a b, 0<b -> b*(a/b) <= a. Proof. -intros. +intros a b **. rewrite (div_mod a b) at 2; try order. rewrite <- (add_0_r (b*(a/b))) at 1. rewrite <- add_le_mono_l. @@ -412,7 +412,7 @@ Qed. Lemma mul_succ_div_gt: forall a b, 0<b -> a < b*(S (a/b)). Proof. -intros. +intros a b ?. nzsimpl. rewrite (div_mod a b) at 1; try order. rewrite <- add_lt_mono_l. @@ -432,7 +432,7 @@ Qed. Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0). Proof. -intros. +intros a b **. rewrite (div_mod a b) at 1; try order. rewrite <- (add_0_r (b*(a/b))) at 2. apply add_cancel_l. @@ -443,7 +443,7 @@ Qed. Theorem div_lt_upper_bound: forall a b q, 0<b -> a < b*q -> a/b < q. Proof. -intros. +intros a b q **. rewrite (mul_lt_mono_pos_l b) by trivial. apply le_lt_trans with a; trivial. now apply mul_div_le. @@ -452,7 +452,7 @@ Qed. Theorem div_le_upper_bound: forall a b q, 0<b -> a <= b*q -> a/b <= q. Proof. -intros. +intros a b q **. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. @@ -460,7 +460,7 @@ Qed. Theorem div_le_lower_bound: forall a b q, 0<b -> b*q <= a -> q <= a/b. Proof. -intros. +intros a b q **. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. @@ -475,7 +475,7 @@ Proof. exact div_le_compat_l. Qed. Lemma mod_add : forall a b c, c~=0 -> (a + b * c) mod c == a mod c. Proof. -intros. +intros a b c **. symmetry. apply mod_unique with (a/c+b); trivial. now apply mod_bound_or. @@ -486,7 +486,7 @@ Qed. Lemma div_add : forall a b c, c~=0 -> (a + b * c) / c == a / c + b. Proof. -intros. +intros a b c **. apply (mul_cancel_l _ _ c); try order. apply (add_cancel_r _ _ ((a+b*c) mod c)). rewrite <- div_mod, mod_add by order. @@ -506,7 +506,7 @@ Qed. Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 -> (a*c)/(b*c) == a/b. Proof. -intros. +intros a b c **. symmetry. apply div_unique with ((a mod b)*c). (* ineqs *) @@ -525,13 +525,13 @@ Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> (c*a)/(c*b) == a/b. Proof. -intros. rewrite !(mul_comm c); now apply div_mul_cancel_r. +intros a b c **. rewrite !(mul_comm c); now apply div_mul_cancel_r. Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 -> (c*a) mod (c*b) == c * (a mod b). Proof. -intros. +intros a b c **. rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))). rewrite <- div_mod. rewrite div_mul_cancel_l by trivial. @@ -543,7 +543,7 @@ Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 -> (a*c) mod (b*c) == (a mod b) * c. Proof. - intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. + intros a b c **. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. Qed. @@ -570,7 +570,7 @@ Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. - intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l. + intros a b n **. rewrite !(mul_comm a). now apply mul_mod_idemp_l. Qed. Theorem mul_mod: forall a b n, n~=0 -> @@ -591,7 +591,7 @@ Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> (a+(b mod n)) mod n == (a+b) mod n. Proof. - intros. rewrite !(add_comm a). now apply add_mod_idemp_l. + intros a b n **. rewrite !(add_comm a). now apply add_mod_idemp_l. Qed. Theorem add_mod: forall a b n, n~=0 -> |
