diff options
| author | letouzey | 2010-11-02 15:10:43 +0000 |
|---|---|---|
| committer | letouzey | 2010-11-02 15:10:43 +0000 |
| commit | d6ebd62341fd6bbe2b7d4e5309d8e13f786a9462 (patch) | |
| tree | 575ec66b8028a599f94d293ae32260b09e7874ef /theories/Numbers/Integer | |
| parent | 1dccdb6b2c792969c5e09faebc2f761e46192ec4 (diff) | |
Numbers : log2. Abstraction, properties and implementations.
Btw, we finally declare the original Zpower as the power on Z.
We should switch to a more efficient one someday, but in the
meantime BigN is proved with respect to the old one.
TODO: reform Zlogarithm with respect to Zlog_def
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13606 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer')
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZAxioms.v | 8 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZProperties.v | 2 | ||||
| -rw-r--r-- | theories/Numbers/Integer/BigZ/BigZ.v | 3 | ||||
| -rw-r--r-- | theories/Numbers/Integer/BigZ/ZMake.v | 15 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Binary/ZBinary.v | 52 | ||||
| -rw-r--r-- | theories/Numbers/Integer/SpecViaZ/ZSig.v | 2 | ||||
| -rw-r--r-- | theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v | 17 |
7 files changed, 57 insertions, 42 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZAxioms.v b/theories/Numbers/Integer/Abstract/ZAxioms.v index 6e6cd7f0fc..47286c729e 100644 --- a/theories/Numbers/Integer/Abstract/ZAxioms.v +++ b/theories/Numbers/Integer/Abstract/ZAxioms.v @@ -9,7 +9,7 @@ (************************************************************************) Require Export NZAxioms. -Require Import NZPow NZSqrt. +Require Import NZPow NZSqrt NZLog. (** We obtain integers by postulating that successor of predecessor is identity. *) @@ -70,16 +70,16 @@ Module Type Parity (Import Z : ZAxiomsMiniSig'). Axiom odd_spec : forall n, odd n = true <-> Odd n. End Parity. -(** For the power and sqrt functions, the NZ axiomatizations are enough. *) +(** For pow sqrt log2, the NZ axiomatizations are enough. *) (** Let's group everything *) Module Type ZAxiomsSig := ZAxiomsMiniSig <+ HasCompare <+ HasAbs <+ HasSgn <+ Parity - <+ NZPow.NZPow <+ NZSqrt.NZSqrt. + <+ NZPow.NZPow <+ NZSqrt.NZSqrt <+ NZLog.NZLog2. Module Type ZAxiomsSig' := ZAxiomsMiniSig' <+ HasCompare <+ HasAbs <+ HasSgn <+ Parity - <+ NZPow.NZPow' <+ NZSqrt.NZSqrt'. + <+ NZPow.NZPow' <+ NZSqrt.NZSqrt' <+ NZLog.NZLog2. (** Division is left apart, since many different flavours are available *) diff --git a/theories/Numbers/Integer/Abstract/ZProperties.v b/theories/Numbers/Integer/Abstract/ZProperties.v index 8b34e5b2db..d2e9626737 100644 --- a/theories/Numbers/Integer/Abstract/ZProperties.v +++ b/theories/Numbers/Integer/Abstract/ZProperties.v @@ -12,4 +12,4 @@ Require Export ZAxioms ZMaxMin ZSgnAbs ZParity ZPow. Module Type ZProp (Z:ZAxiomsSig) := ZMaxMinProp Z <+ ZSgnAbsProp Z <+ ZParityProp Z <+ ZPowProp Z - <+ NZSqrt.NZSqrtProp Z Z. + <+ NZSqrt.NZSqrtProp Z Z <+ NZLog.NZLog2Prop Z Z Z. diff --git a/theories/Numbers/Integer/BigZ/BigZ.v b/theories/Numbers/Integer/BigZ/BigZ.v index 92be49bdaf..b2bf8703ea 100644 --- a/theories/Numbers/Integer/BigZ/BigZ.v +++ b/theories/Numbers/Integer/BigZ/BigZ.v @@ -63,10 +63,13 @@ Arguments Scope BigZ.eq_bool [bigZ_scope bigZ_scope]. Arguments Scope BigZ.pow_pos [bigZ_scope positive_scope]. Arguments Scope BigZ.pow_N [bigZ_scope N_scope]. Arguments Scope BigZ.pow [bigZ_scope bigZ_scope]. +Arguments Scope BigZ.log2 [bigZ_scope]. Arguments Scope BigZ.sqrt [bigZ_scope]. Arguments Scope BigZ.div_eucl [bigZ_scope bigZ_scope]. Arguments Scope BigZ.modulo [bigZ_scope bigZ_scope]. Arguments Scope BigZ.gcd [bigZ_scope bigZ_scope]. +Arguments Scope BigZ.even [bigZ_scope]. +Arguments Scope BigZ.odd [bigZ_scope]. Local Notation "0" := BigZ.zero : bigZ_scope. Local Notation "1" := BigZ.one : bigZ_scope. diff --git a/theories/Numbers/Integer/BigZ/ZMake.v b/theories/Numbers/Integer/BigZ/ZMake.v index 099554cd0b..b341b32095 100644 --- a/theories/Numbers/Integer/BigZ/ZMake.v +++ b/theories/Numbers/Integer/BigZ/ZMake.v @@ -332,6 +332,21 @@ Module Make (N:NType) <: ZType. apply N.spec_0. Qed. + Definition log2 x := + match x with + | Pos nx => Pos (N.log2 nx) + | Neg nx => zero + end. + + Theorem spec_log2: forall x, to_Z (log2 x) = Zlog2 (to_Z x). + Proof. + intros. destruct x as [p|p]; simpl. apply N.spec_log2. + rewrite N.spec_0. + destruct (Z_le_lt_eq_dec _ _ (N.spec_pos p)) as [LT|EQ]. + rewrite Zlog2_nonpos; auto with zarith. + now rewrite <- EQ. + Qed. + Definition sqrt x := match x with | Pos nx => Pos (N.sqrt nx) diff --git a/theories/Numbers/Integer/Binary/ZBinary.v b/theories/Numbers/Integer/Binary/ZBinary.v index 48d166c0ab..bdaa748e4a 100644 --- a/theories/Numbers/Integer/Binary/ZBinary.v +++ b/theories/Numbers/Integer/Binary/ZBinary.v @@ -9,40 +9,12 @@ (************************************************************************) -Require Import ZAxioms ZProperties. -Require Import BinInt Zcompare Zorder ZArith_dec Zbool Zeven Zsqrt_def. +Require Import ZAxioms ZProperties BinInt Zcompare Zorder ZArith_dec + Zbool Zeven Zsqrt_def Zpow_def Zlog_def. Local Open Scope Z_scope. -(** An alternative Zpow *) - -(** The Zpow is extensionnaly equal to Zpower in ZArith, but not - convertible with it. This Zpow uses a logarithmic number of - multiplications instead of a linear one. We should try someday to - replace Zpower with this Zpow. -*) - -Definition Zpow n m := - match m with - | Z0 => 1 - | Zpos p => Piter_op Zmult p n - | Zneg p => 0 - end. - -Lemma Zpow_0_r : forall n, Zpow n 0 = 1. -Proof. reflexivity. Qed. - -Lemma Zpow_succ_r : forall a b, 0<=b -> Zpow a (Zsucc b) = a * Zpow a b. -Proof. - intros a [|b|b] Hb; [ | |now elim Hb]; simpl. - now rewrite Zmult_1_r. - rewrite <- Pplus_one_succ_r. apply Piter_op_succ. apply Zmult_assoc. -Qed. - -Lemma Zpow_neg_r : forall a b, b<0 -> Zpow a b = 0. -Proof. - now destruct b. -Qed. +(** Bi-directional induction for Z. *) Theorem Z_bi_induction : forall A : Z -> Prop, Proper (eq ==> iff) A -> @@ -167,12 +139,12 @@ Definition odd := Zodd_bool. (** Power *) -Program Instance pow_wd : Proper (eq==>eq==>eq) Zpow. +Program Instance pow_wd : Proper (eq==>eq==>eq) Zpower. -Definition pow_0_r := Zpow_0_r. -Definition pow_succ_r := Zpow_succ_r. -Definition pow_neg_r := Zpow_neg_r. -Definition pow := Zpow. +Definition pow_0_r := Zpower_0_r. +Definition pow_succ_r := Zpower_succ_r. +Definition pow_neg_r := Zpower_neg_r. +Definition pow := Zpower. (** Sqrt *) @@ -185,6 +157,14 @@ Definition sqrt_spec := Zsqrt_spec. Definition sqrt_neg := Zsqrt_neg. Definition sqrt := Zsqrt. +(** Log2 *) + +Program Instance log2_wd : Proper (eq==>eq) Zlog2. + +Definition log2_spec := Zlog2_spec. +Definition log2_nonpos := Zlog2_nonpos. +Definition log2 := Zlog2. + (** We define [eq] only here to avoid refering to this [eq] above. *) Definition eq := (@eq Z). diff --git a/theories/Numbers/Integer/SpecViaZ/ZSig.v b/theories/Numbers/Integer/SpecViaZ/ZSig.v index 37f5b294e1..b5c761a6f2 100644 --- a/theories/Numbers/Integer/SpecViaZ/ZSig.v +++ b/theories/Numbers/Integer/SpecViaZ/ZSig.v @@ -51,6 +51,7 @@ Module Type ZType. Parameter pow_N : t -> N -> t. Parameter pow : t -> t -> t. Parameter sqrt : t -> t. + Parameter log2 : t -> t. Parameter div_eucl : t -> t -> t * t. Parameter div : t -> t -> t. Parameter modulo : t -> t -> t. @@ -79,6 +80,7 @@ Module Type ZType. Parameter spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z_of_N n. Parameter spec_pow: forall x n, [pow x n] = [x] ^ [n]. Parameter spec_sqrt: forall x, [sqrt x] = Zsqrt [x]. + Parameter spec_log2: forall x, [log2 x] = Zlog2 [x]. Parameter spec_div_eucl: forall x y, let (q,r) := div_eucl x y in ([q], [r]) = Zdiv_eucl [x] [y]. Parameter spec_div: forall x y, [div x y] = [x] / [y]. diff --git a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v index c2965016ad..96f243fa62 100644 --- a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v +++ b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v @@ -20,7 +20,7 @@ Hint Rewrite spec_0 spec_1 spec_2 spec_add spec_sub spec_pred spec_succ spec_mul spec_opp spec_of_Z spec_div spec_modulo spec_sqrt spec_compare spec_eq_bool spec_max spec_min spec_abs spec_sgn - spec_pow spec_even spec_odd + spec_pow spec_log2 spec_even spec_odd : zsimpl. Ltac zsimpl := autorewrite with zsimpl. @@ -293,6 +293,21 @@ Proof. intros n. zify. apply Zsqrt_neg. Qed. +(** Log2 *) + +Program Instance log2_wd : Proper (eq==>eq) log2. + +Lemma log2_spec : forall n, 0<n -> + 2^(log2 n) <= n /\ n < 2^(succ (log2 n)). +Proof. + intros n. zify. apply Zlog2_spec. +Qed. + +Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0. +Proof. + intros n. zify. apply Zlog2_nonpos. +Qed. + (** Even / Odd *) Definition Even n := exists m, n == 2*m. |
