aboutsummaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/TreeMod/ZTreeMod.v
diff options
context:
space:
mode:
authoremakarov2007-11-07 18:39:28 +0000
committeremakarov2007-11-07 18:39:28 +0000
commit1e57f0c3312713ac6137da0c3612605501f65d58 (patch)
treef2ee90ae17e86dd69fc9d07aa98d60b261b9ce42 /theories/Numbers/Integer/TreeMod/ZTreeMod.v
parent817cc54cff3d40adb15481fddba7448b7b024f26 (diff)
Replaced BinNat with a new version that is based on theories/Numbers/Natural/Binary/NBinDefs. Most of the entities in the new BinNat are notations for the development in Numbers. Also added min and max to the new natural numbers and integers.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10298 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer/TreeMod/ZTreeMod.v')
-rw-r--r--theories/Numbers/Integer/TreeMod/ZTreeMod.v22
1 files changed, 17 insertions, 5 deletions
diff --git a/theories/Numbers/Integer/TreeMod/ZTreeMod.v b/theories/Numbers/Integer/TreeMod/ZTreeMod.v
index 7ee894ca4c..75e9c9f77e 100644
--- a/theories/Numbers/Integer/TreeMod/ZTreeMod.v
+++ b/theories/Numbers/Integer/TreeMod/ZTreeMod.v
@@ -1,3 +1,15 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i i*)
+
Require Export NZAxioms.
Require Import NMake. (* contains W0Type *)
Require Import ZnZ.
@@ -24,17 +36,17 @@ Definition NZplus := w_op.(znz_add).
Definition NZminus := w_op.(znz_sub).
Definition NZtimes := w_op.(znz_mul).
-Theorem NZE_equiv : equiv NZ NZeq.
+Theorem NZeq_equiv : equiv NZ NZeq.
Proof.
unfold equiv, reflexive, symmetric, transitive, NZeq; repeat split; intros; auto.
now transitivity [| y |].
Qed.
Add Relation NZ NZeq
- reflexivity proved by (proj1 NZE_equiv)
- symmetry proved by (proj2 (proj2 NZE_equiv))
- transitivity proved by (proj1 (proj2 NZE_equiv))
-as NZE_rel.
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Proof.