diff options
| author | letouzey | 2008-06-02 23:26:13 +0000 |
|---|---|---|
| committer | letouzey | 2008-06-02 23:26:13 +0000 |
| commit | f82bfc64fca9fb46136d7aa26c09d64cde0432d2 (patch) | |
| tree | 471a75d813fb70072c384b926f334e27919cf889 /theories/Numbers/Integer/Binary | |
| parent | b37cc1ad85d2d1ac14abcd896f2939e871705f98 (diff) | |
In abstract parts of theories/Numbers, plus/times becomes add/mul,
for increased consistency with bignums parts
(commit part I: content of files)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11039 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer/Binary')
| -rw-r--r-- | theories/Numbers/Integer/Binary/ZBinary.v | 38 |
1 files changed, 19 insertions, 19 deletions
diff --git a/theories/Numbers/Integer/Binary/ZBinary.v b/theories/Numbers/Integer/Binary/ZBinary.v index 1df0a78339..acc77b3e78 100644 --- a/theories/Numbers/Integer/Binary/ZBinary.v +++ b/theories/Numbers/Integer/Binary/ZBinary.v @@ -8,7 +8,7 @@ (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) -(*i $Id:$ i*) +(*i $Id$ i*) Require Import ZTimesOrder. Require Import ZArith. @@ -24,9 +24,9 @@ Definition NZeq := (@eq Z). Definition NZ0 := 0. Definition NZsucc := Zsucc'. Definition NZpred := Zpred'. -Definition NZplus := Zplus. +Definition NZadd := Zplus. Definition NZminus := Zminus. -Definition NZtimes := Zmult. +Definition NZmul := Zmult. Theorem NZeq_equiv : equiv Z NZeq. Proof. @@ -49,7 +49,7 @@ Proof. congruence. Qed. -Add Morphism NZplus with signature NZeq ==> NZeq ==> NZeq as NZplus_wd. +Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd. Proof. congruence. Qed. @@ -59,7 +59,7 @@ Proof. congruence. Qed. -Add Morphism NZtimes with signature NZeq ==> NZeq ==> NZeq as NZtimes_wd. +Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd. Proof. congruence. Qed. @@ -79,12 +79,12 @@ intros; now apply -> AS. intros n H. rewrite <- (Zsucc'_pred' n) in H. now apply <- AS. Qed. -Theorem NZplus_0_l : forall n : Z, 0 + n = n. +Theorem NZadd_0_l : forall n : Z, 0 + n = n. Proof. exact Zplus_0_l. Qed. -Theorem NZplus_succ_l : forall n m : Z, (NZsucc n) + m = NZsucc (n + m). +Theorem NZadd_succ_l : forall n m : Z, (NZsucc n) + m = NZsucc (n + m). Proof. intros; do 2 rewrite <- Zsucc_succ'; apply Zplus_succ_l. Qed. @@ -100,12 +100,12 @@ intros; rewrite <- Zsucc_succ'; rewrite <- Zpred_pred'; apply Zminus_succ_r. Qed. -Theorem NZtimes_0_l : forall n : Z, 0 * n = 0. +Theorem NZmul_0_l : forall n : Z, 0 * n = 0. Proof. reflexivity. Qed. -Theorem NZtimes_succ_l : forall n m : Z, (NZsucc n) * m = n * m + m. +Theorem NZmul_succ_l : forall n m : Z, (NZsucc n) * m = n * m + m. Proof. intros; rewrite <- Zsucc_succ'; apply Zmult_succ_l. Qed. @@ -217,18 +217,18 @@ Module Export ZBinTimesOrderPropMod := ZTimesOrderPropFunct ZBinAxiomsMod. (** Z forms a ring *) -(*Lemma Zring : ring_theory 0 1 NZplus NZtimes NZminus Zopp NZeq. +(*Lemma Zring : ring_theory 0 1 NZadd NZmul NZminus Zopp NZeq. Proof. constructor. -exact Zplus_0_l. -exact Zplus_comm. -exact Zplus_assoc. -exact Ztimes_1_l. -exact Ztimes_comm. -exact Ztimes_assoc. -exact Ztimes_plus_distr_r. -intros; now rewrite Zplus_opp_minus. -exact Zplus_opp_r. +exact Zadd_0_l. +exact Zadd_comm. +exact Zadd_assoc. +exact Zmul_1_l. +exact Zmul_comm. +exact Zmul_assoc. +exact Zmul_add_distr_r. +intros; now rewrite Zadd_opp_minus. +exact Zadd_opp_r. Qed. Add Ring ZR : Zring.*) |
