aboutsummaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Binary
diff options
context:
space:
mode:
authorletouzey2008-06-02 23:26:13 +0000
committerletouzey2008-06-02 23:26:13 +0000
commitf82bfc64fca9fb46136d7aa26c09d64cde0432d2 (patch)
tree471a75d813fb70072c384b926f334e27919cf889 /theories/Numbers/Integer/Binary
parentb37cc1ad85d2d1ac14abcd896f2939e871705f98 (diff)
In abstract parts of theories/Numbers, plus/times becomes add/mul,
for increased consistency with bignums parts (commit part I: content of files) git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11039 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer/Binary')
-rw-r--r--theories/Numbers/Integer/Binary/ZBinary.v38
1 files changed, 19 insertions, 19 deletions
diff --git a/theories/Numbers/Integer/Binary/ZBinary.v b/theories/Numbers/Integer/Binary/ZBinary.v
index 1df0a78339..acc77b3e78 100644
--- a/theories/Numbers/Integer/Binary/ZBinary.v
+++ b/theories/Numbers/Integer/Binary/ZBinary.v
@@ -8,7 +8,7 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id:$ i*)
+(*i $Id$ i*)
Require Import ZTimesOrder.
Require Import ZArith.
@@ -24,9 +24,9 @@ Definition NZeq := (@eq Z).
Definition NZ0 := 0.
Definition NZsucc := Zsucc'.
Definition NZpred := Zpred'.
-Definition NZplus := Zplus.
+Definition NZadd := Zplus.
Definition NZminus := Zminus.
-Definition NZtimes := Zmult.
+Definition NZmul := Zmult.
Theorem NZeq_equiv : equiv Z NZeq.
Proof.
@@ -49,7 +49,7 @@ Proof.
congruence.
Qed.
-Add Morphism NZplus with signature NZeq ==> NZeq ==> NZeq as NZplus_wd.
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
Proof.
congruence.
Qed.
@@ -59,7 +59,7 @@ Proof.
congruence.
Qed.
-Add Morphism NZtimes with signature NZeq ==> NZeq ==> NZeq as NZtimes_wd.
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
Proof.
congruence.
Qed.
@@ -79,12 +79,12 @@ intros; now apply -> AS.
intros n H. rewrite <- (Zsucc'_pred' n) in H. now apply <- AS.
Qed.
-Theorem NZplus_0_l : forall n : Z, 0 + n = n.
+Theorem NZadd_0_l : forall n : Z, 0 + n = n.
Proof.
exact Zplus_0_l.
Qed.
-Theorem NZplus_succ_l : forall n m : Z, (NZsucc n) + m = NZsucc (n + m).
+Theorem NZadd_succ_l : forall n m : Z, (NZsucc n) + m = NZsucc (n + m).
Proof.
intros; do 2 rewrite <- Zsucc_succ'; apply Zplus_succ_l.
Qed.
@@ -100,12 +100,12 @@ intros; rewrite <- Zsucc_succ'; rewrite <- Zpred_pred';
apply Zminus_succ_r.
Qed.
-Theorem NZtimes_0_l : forall n : Z, 0 * n = 0.
+Theorem NZmul_0_l : forall n : Z, 0 * n = 0.
Proof.
reflexivity.
Qed.
-Theorem NZtimes_succ_l : forall n m : Z, (NZsucc n) * m = n * m + m.
+Theorem NZmul_succ_l : forall n m : Z, (NZsucc n) * m = n * m + m.
Proof.
intros; rewrite <- Zsucc_succ'; apply Zmult_succ_l.
Qed.
@@ -217,18 +217,18 @@ Module Export ZBinTimesOrderPropMod := ZTimesOrderPropFunct ZBinAxiomsMod.
(** Z forms a ring *)
-(*Lemma Zring : ring_theory 0 1 NZplus NZtimes NZminus Zopp NZeq.
+(*Lemma Zring : ring_theory 0 1 NZadd NZmul NZminus Zopp NZeq.
Proof.
constructor.
-exact Zplus_0_l.
-exact Zplus_comm.
-exact Zplus_assoc.
-exact Ztimes_1_l.
-exact Ztimes_comm.
-exact Ztimes_assoc.
-exact Ztimes_plus_distr_r.
-intros; now rewrite Zplus_opp_minus.
-exact Zplus_opp_r.
+exact Zadd_0_l.
+exact Zadd_comm.
+exact Zadd_assoc.
+exact Zmul_1_l.
+exact Zmul_comm.
+exact Zmul_assoc.
+exact Zmul_add_distr_r.
+intros; now rewrite Zadd_opp_minus.
+exact Zadd_opp_r.
Qed.
Add Ring ZR : Zring.*)