diff options
| author | Samuel Gruetter | 2018-08-10 16:54:10 -0400 |
|---|---|---|
| committer | Samuel Gruetter | 2018-08-10 16:54:10 -0400 |
| commit | 8be0a95911d2d042e5aff31373b9812cc299db87 (patch) | |
| tree | 699629f193e2635280ce765cf6d5d93e1e8478a2 /theories/Numbers/Integer/Abstract | |
| parent | 33805c4e94c5ea06e800da22733dc0cbbdff0e8e (diff) | |
one more fix to formulation of the Euclid Theorem in comment
as pointed out by @jashug
Diffstat (limited to 'theories/Numbers/Integer/Abstract')
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivEucl.v | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v index 63f17341af..5a7bd9ab30 100644 --- a/theories/Numbers/Integer/Abstract/ZDivEucl.v +++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v @@ -13,7 +13,7 @@ Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv. (** * Euclidean Division for integers, Euclid convention We use here the "usual" formulation of the Euclid Theorem - [forall a b, b<>0 -> exists r q, a = b*q+r /\ 0 < r < |b| ] + [forall a b, b<>0 -> exists r q, a = b*q+r /\ 0 <= r < |b| ] The outcome of the modulo function is hence always positive. This corresponds to convention "E" in the following paper: |
