diff options
| author | letouzey | 2008-06-03 00:04:16 +0000 |
|---|---|---|
| committer | letouzey | 2008-06-03 00:04:16 +0000 |
| commit | ebb3fe944b6bd1cd363e3348465d7ea2fd85c62c (patch) | |
| tree | 4703cbd152b97f0563a6df2567eef8f4984c81d4 /theories/Numbers/Integer/Abstract/ZPlusOrder.v | |
| parent | f82bfc64fca9fb46136d7aa26c09d64cde0432d2 (diff) | |
In abstract parts of theories/Numbers, plus/times becomes add/mul,
for increased consistency with bignums parts
(commit part II: names of files + additional translation minus --> sub)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11040 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZPlusOrder.v')
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZPlusOrder.v | 373 |
1 files changed, 0 insertions, 373 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZPlusOrder.v b/theories/Numbers/Integer/Abstract/ZPlusOrder.v deleted file mode 100644 index 85f6714987..0000000000 --- a/theories/Numbers/Integer/Abstract/ZPlusOrder.v +++ /dev/null @@ -1,373 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Evgeny Makarov, INRIA, 2007 *) -(************************************************************************) - -(*i $Id$ i*) - -Require Export ZLt. - -Module ZPlusOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig). -Module Export ZOrderPropMod := ZOrderPropFunct ZAxiomsMod. -Open Local Scope IntScope. - -(* Theorems that are true on both natural numbers and integers *) - -Theorem Zadd_lt_mono_l : forall n m p : Z, n < m <-> p + n < p + m. -Proof NZadd_lt_mono_l. - -Theorem Zadd_lt_mono_r : forall n m p : Z, n < m <-> n + p < m + p. -Proof NZadd_lt_mono_r. - -Theorem Zadd_lt_mono : forall n m p q : Z, n < m -> p < q -> n + p < m + q. -Proof NZadd_lt_mono. - -Theorem Zadd_le_mono_l : forall n m p : Z, n <= m <-> p + n <= p + m. -Proof NZadd_le_mono_l. - -Theorem Zadd_le_mono_r : forall n m p : Z, n <= m <-> n + p <= m + p. -Proof NZadd_le_mono_r. - -Theorem Zadd_le_mono : forall n m p q : Z, n <= m -> p <= q -> n + p <= m + q. -Proof NZadd_le_mono. - -Theorem Zadd_lt_le_mono : forall n m p q : Z, n < m -> p <= q -> n + p < m + q. -Proof NZadd_lt_le_mono. - -Theorem Zadd_le_lt_mono : forall n m p q : Z, n <= m -> p < q -> n + p < m + q. -Proof NZadd_le_lt_mono. - -Theorem Zadd_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n + m. -Proof NZadd_pos_pos. - -Theorem Zadd_pos_nonneg : forall n m : Z, 0 < n -> 0 <= m -> 0 < n + m. -Proof NZadd_pos_nonneg. - -Theorem Zadd_nonneg_pos : forall n m : Z, 0 <= n -> 0 < m -> 0 < n + m. -Proof NZadd_nonneg_pos. - -Theorem Zadd_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n + m. -Proof NZadd_nonneg_nonneg. - -Theorem Zlt_add_pos_l : forall n m : Z, 0 < n -> m < n + m. -Proof NZlt_add_pos_l. - -Theorem Zlt_add_pos_r : forall n m : Z, 0 < n -> m < m + n. -Proof NZlt_add_pos_r. - -Theorem Zle_lt_add_lt : forall n m p q : Z, n <= m -> p + m < q + n -> p < q. -Proof NZle_lt_add_lt. - -Theorem Zlt_le_add_lt : forall n m p q : Z, n < m -> p + m <= q + n -> p < q. -Proof NZlt_le_add_lt. - -Theorem Zle_le_add_le : forall n m p q : Z, n <= m -> p + m <= q + n -> p <= q. -Proof NZle_le_add_le. - -Theorem Zadd_lt_cases : forall n m p q : Z, n + m < p + q -> n < p \/ m < q. -Proof NZadd_lt_cases. - -Theorem Zadd_le_cases : forall n m p q : Z, n + m <= p + q -> n <= p \/ m <= q. -Proof NZadd_le_cases. - -Theorem Zadd_neg_cases : forall n m : Z, n + m < 0 -> n < 0 \/ m < 0. -Proof NZadd_neg_cases. - -Theorem Zadd_pos_cases : forall n m : Z, 0 < n + m -> 0 < n \/ 0 < m. -Proof NZadd_pos_cases. - -Theorem Zadd_nonpos_cases : forall n m : Z, n + m <= 0 -> n <= 0 \/ m <= 0. -Proof NZadd_nonpos_cases. - -Theorem Zadd_nonneg_cases : forall n m : Z, 0 <= n + m -> 0 <= n \/ 0 <= m. -Proof NZadd_nonneg_cases. - -(* Theorems that are either not valid on N or have different proofs on N and Z *) - -Theorem Zadd_neg_neg : forall n m : Z, n < 0 -> m < 0 -> n + m < 0. -Proof. -intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_lt_mono. -Qed. - -Theorem Zadd_neg_nonpos : forall n m : Z, n < 0 -> m <= 0 -> n + m < 0. -Proof. -intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_lt_le_mono. -Qed. - -Theorem Zadd_nonpos_neg : forall n m : Z, n <= 0 -> m < 0 -> n + m < 0. -Proof. -intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_le_lt_mono. -Qed. - -Theorem Zadd_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> n + m <= 0. -Proof. -intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_le_mono. -Qed. - -(** Minus and order *) - -Theorem Zlt_0_minus : forall n m : Z, 0 < m - n <-> n < m. -Proof. -intros n m. stepl (0 + n < m - n + n) by symmetry; apply Zadd_lt_mono_r. -rewrite Zadd_0_l; now rewrite Zminus_simpl_r. -Qed. - -Notation Zminus_pos := Zlt_0_minus (only parsing). - -Theorem Zle_0_minus : forall n m : Z, 0 <= m - n <-> n <= m. -Proof. -intros n m; stepl (0 + n <= m - n + n) by symmetry; apply Zadd_le_mono_r. -rewrite Zadd_0_l; now rewrite Zminus_simpl_r. -Qed. - -Notation Zminus_nonneg := Zle_0_minus (only parsing). - -Theorem Zlt_minus_0 : forall n m : Z, n - m < 0 <-> n < m. -Proof. -intros n m. stepl (n - m + m < 0 + m) by symmetry; apply Zadd_lt_mono_r. -rewrite Zadd_0_l; now rewrite Zminus_simpl_r. -Qed. - -Notation Zminus_neg := Zlt_minus_0 (only parsing). - -Theorem Zle_minus_0 : forall n m : Z, n - m <= 0 <-> n <= m. -Proof. -intros n m. stepl (n - m + m <= 0 + m) by symmetry; apply Zadd_le_mono_r. -rewrite Zadd_0_l; now rewrite Zminus_simpl_r. -Qed. - -Notation Zminus_nonpos := Zle_minus_0 (only parsing). - -Theorem Zopp_lt_mono : forall n m : Z, n < m <-> - m < - n. -Proof. -intros n m. stepr (m + - m < m + - n) by symmetry; apply Zadd_lt_mono_l. -do 2 rewrite Zadd_opp_r. rewrite Zminus_diag. symmetry; apply Zlt_0_minus. -Qed. - -Theorem Zopp_le_mono : forall n m : Z, n <= m <-> - m <= - n. -Proof. -intros n m. stepr (m + - m <= m + - n) by symmetry; apply Zadd_le_mono_l. -do 2 rewrite Zadd_opp_r. rewrite Zminus_diag. symmetry; apply Zle_0_minus. -Qed. - -Theorem Zopp_pos_neg : forall n : Z, 0 < - n <-> n < 0. -Proof. -intro n; rewrite (Zopp_lt_mono n 0); now rewrite Zopp_0. -Qed. - -Theorem Zopp_neg_pos : forall n : Z, - n < 0 <-> 0 < n. -Proof. -intro n. rewrite (Zopp_lt_mono 0 n). now rewrite Zopp_0. -Qed. - -Theorem Zopp_nonneg_nonpos : forall n : Z, 0 <= - n <-> n <= 0. -Proof. -intro n; rewrite (Zopp_le_mono n 0); now rewrite Zopp_0. -Qed. - -Theorem Zopp_nonpos_nonneg : forall n : Z, - n <= 0 <-> 0 <= n. -Proof. -intro n. rewrite (Zopp_le_mono 0 n). now rewrite Zopp_0. -Qed. - -Theorem Zminus_lt_mono_l : forall n m p : Z, n < m <-> p - m < p - n. -Proof. -intros n m p. do 2 rewrite <- Zadd_opp_r. rewrite <- Zadd_lt_mono_l. -apply Zopp_lt_mono. -Qed. - -Theorem Zminus_lt_mono_r : forall n m p : Z, n < m <-> n - p < m - p. -Proof. -intros n m p; do 2 rewrite <- Zadd_opp_r; apply Zadd_lt_mono_r. -Qed. - -Theorem Zminus_lt_mono : forall n m p q : Z, n < m -> q < p -> n - p < m - q. -Proof. -intros n m p q H1 H2. -apply NZlt_trans with (m - p); -[now apply -> Zminus_lt_mono_r | now apply -> Zminus_lt_mono_l]. -Qed. - -Theorem Zminus_le_mono_l : forall n m p : Z, n <= m <-> p - m <= p - n. -Proof. -intros n m p; do 2 rewrite <- Zadd_opp_r; rewrite <- Zadd_le_mono_l; -apply Zopp_le_mono. -Qed. - -Theorem Zminus_le_mono_r : forall n m p : Z, n <= m <-> n - p <= m - p. -Proof. -intros n m p; do 2 rewrite <- Zadd_opp_r; apply Zadd_le_mono_r. -Qed. - -Theorem Zminus_le_mono : forall n m p q : Z, n <= m -> q <= p -> n - p <= m - q. -Proof. -intros n m p q H1 H2. -apply NZle_trans with (m - p); -[now apply -> Zminus_le_mono_r | now apply -> Zminus_le_mono_l]. -Qed. - -Theorem Zminus_lt_le_mono : forall n m p q : Z, n < m -> q <= p -> n - p < m - q. -Proof. -intros n m p q H1 H2. -apply NZlt_le_trans with (m - p); -[now apply -> Zminus_lt_mono_r | now apply -> Zminus_le_mono_l]. -Qed. - -Theorem Zminus_le_lt_mono : forall n m p q : Z, n <= m -> q < p -> n - p < m - q. -Proof. -intros n m p q H1 H2. -apply NZle_lt_trans with (m - p); -[now apply -> Zminus_le_mono_r | now apply -> Zminus_lt_mono_l]. -Qed. - -Theorem Zle_lt_minus_lt : forall n m p q : Z, n <= m -> p - n < q - m -> p < q. -Proof. -intros n m p q H1 H2. apply (Zle_lt_add_lt (- m) (- n)); -[now apply -> Zopp_le_mono | now do 2 rewrite Zadd_opp_r]. -Qed. - -Theorem Zlt_le_minus_lt : forall n m p q : Z, n < m -> p - n <= q - m -> p < q. -Proof. -intros n m p q H1 H2. apply (Zlt_le_add_lt (- m) (- n)); -[now apply -> Zopp_lt_mono | now do 2 rewrite Zadd_opp_r]. -Qed. - -Theorem Zle_le_minus_lt : forall n m p q : Z, n <= m -> p - n <= q - m -> p <= q. -Proof. -intros n m p q H1 H2. apply (Zle_le_add_le (- m) (- n)); -[now apply -> Zopp_le_mono | now do 2 rewrite Zadd_opp_r]. -Qed. - -Theorem Zlt_add_lt_minus_r : forall n m p : Z, n + p < m <-> n < m - p. -Proof. -intros n m p. stepl (n + p - p < m - p) by symmetry; apply Zminus_lt_mono_r. -now rewrite Zadd_simpl_r. -Qed. - -Theorem Zle_add_le_minus_r : forall n m p : Z, n + p <= m <-> n <= m - p. -Proof. -intros n m p. stepl (n + p - p <= m - p) by symmetry; apply Zminus_le_mono_r. -now rewrite Zadd_simpl_r. -Qed. - -Theorem Zlt_add_lt_minus_l : forall n m p : Z, n + p < m <-> p < m - n. -Proof. -intros n m p. rewrite Zadd_comm; apply Zlt_add_lt_minus_r. -Qed. - -Theorem Zle_add_le_minus_l : forall n m p : Z, n + p <= m <-> p <= m - n. -Proof. -intros n m p. rewrite Zadd_comm; apply Zle_add_le_minus_r. -Qed. - -Theorem Zlt_minus_lt_add_r : forall n m p : Z, n - p < m <-> n < m + p. -Proof. -intros n m p. stepl (n - p + p < m + p) by symmetry; apply Zadd_lt_mono_r. -now rewrite Zminus_simpl_r. -Qed. - -Theorem Zle_minus_le_add_r : forall n m p : Z, n - p <= m <-> n <= m + p. -Proof. -intros n m p. stepl (n - p + p <= m + p) by symmetry; apply Zadd_le_mono_r. -now rewrite Zminus_simpl_r. -Qed. - -Theorem Zlt_minus_lt_add_l : forall n m p : Z, n - m < p <-> n < m + p. -Proof. -intros n m p. rewrite Zadd_comm; apply Zlt_minus_lt_add_r. -Qed. - -Theorem Zle_minus_le_add_l : forall n m p : Z, n - m <= p <-> n <= m + p. -Proof. -intros n m p. rewrite Zadd_comm; apply Zle_minus_le_add_r. -Qed. - -Theorem Zlt_minus_lt_add : forall n m p q : Z, n - m < p - q <-> n + q < m + p. -Proof. -intros n m p q. rewrite Zlt_minus_lt_add_l. rewrite Zadd_minus_assoc. -now rewrite <- Zlt_add_lt_minus_r. -Qed. - -Theorem Zle_minus_le_add : forall n m p q : Z, n - m <= p - q <-> n + q <= m + p. -Proof. -intros n m p q. rewrite Zle_minus_le_add_l. rewrite Zadd_minus_assoc. -now rewrite <- Zle_add_le_minus_r. -Qed. - -Theorem Zlt_minus_pos : forall n m : Z, 0 < m <-> n - m < n. -Proof. -intros n m. stepr (n - m < n - 0) by now rewrite Zminus_0_r. apply Zminus_lt_mono_l. -Qed. - -Theorem Zle_minus_nonneg : forall n m : Z, 0 <= m <-> n - m <= n. -Proof. -intros n m. stepr (n - m <= n - 0) by now rewrite Zminus_0_r. apply Zminus_le_mono_l. -Qed. - -Theorem Zminus_lt_cases : forall n m p q : Z, n - m < p - q -> n < m \/ q < p. -Proof. -intros n m p q H. rewrite Zlt_minus_lt_add in H. now apply Zadd_lt_cases. -Qed. - -Theorem Zminus_le_cases : forall n m p q : Z, n - m <= p - q -> n <= m \/ q <= p. -Proof. -intros n m p q H. rewrite Zle_minus_le_add in H. now apply Zadd_le_cases. -Qed. - -Theorem Zminus_neg_cases : forall n m : Z, n - m < 0 -> n < 0 \/ 0 < m. -Proof. -intros n m H; rewrite <- Zadd_opp_r in H. -setoid_replace (0 < m) with (- m < 0) using relation iff by (symmetry; apply Zopp_neg_pos). -now apply Zadd_neg_cases. -Qed. - -Theorem Zminus_pos_cases : forall n m : Z, 0 < n - m -> 0 < n \/ m < 0. -Proof. -intros n m H; rewrite <- Zadd_opp_r in H. -setoid_replace (m < 0) with (0 < - m) using relation iff by (symmetry; apply Zopp_pos_neg). -now apply Zadd_pos_cases. -Qed. - -Theorem Zminus_nonpos_cases : forall n m : Z, n - m <= 0 -> n <= 0 \/ 0 <= m. -Proof. -intros n m H; rewrite <- Zadd_opp_r in H. -setoid_replace (0 <= m) with (- m <= 0) using relation iff by (symmetry; apply Zopp_nonpos_nonneg). -now apply Zadd_nonpos_cases. -Qed. - -Theorem Zminus_nonneg_cases : forall n m : Z, 0 <= n - m -> 0 <= n \/ m <= 0. -Proof. -intros n m H; rewrite <- Zadd_opp_r in H. -setoid_replace (m <= 0) with (0 <= - m) using relation iff by (symmetry; apply Zopp_nonneg_nonpos). -now apply Zadd_nonneg_cases. -Qed. - -Section PosNeg. - -Variable P : Z -> Prop. -Hypothesis P_wd : predicate_wd Zeq P. - -Add Morphism P with signature Zeq ==> iff as P_morph. Proof. exact P_wd. Qed. - -Theorem Z0_pos_neg : - P 0 -> (forall n : Z, 0 < n -> P n /\ P (- n)) -> forall n : Z, P n. -Proof. -intros H1 H2 n. destruct (Zlt_trichotomy n 0) as [H3 | [H3 | H3]]. -apply <- Zopp_pos_neg in H3. apply H2 in H3. destruct H3 as [_ H3]. -now rewrite Zopp_involutive in H3. -now rewrite H3. -apply H2 in H3; now destruct H3. -Qed. - -End PosNeg. - -Ltac Z0_pos_neg n := induction_maker n ltac:(apply Z0_pos_neg). - -End ZPlusOrderPropFunct. - - |
