diff options
| author | letouzey | 2009-12-15 18:20:03 +0000 |
|---|---|---|
| committer | letouzey | 2009-12-15 18:20:03 +0000 |
| commit | 4bf2fe115c9ea22d9e2b4d3bb392de2d4cf23adc (patch) | |
| tree | f2c40e96395bc921bbcf4f7b29f2fdf92c63a266 /theories/Numbers/Integer/Abstract/ZDivMath.v | |
| parent | 5976fd4370daefbe8eb597af64968f499ad94d46 (diff) | |
A generic euclidean division in Numbers (Still Work-In-Progress)
- For Z, we propose 3 conventions for the sign of the remainder...
- Instanciation for nat in NPeano.
- Beginning of instanciation in ZOdiv.
Still many proofs to finish, etc, etc, but soon we will have a decent
properties database for all divisions of all instances of Numbers (e.g. BigZ).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12590 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZDivMath.v')
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivMath.v | 396 |
1 files changed, 396 insertions, 0 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivMath.v b/theories/Numbers/Integer/Abstract/ZDivMath.v new file mode 100644 index 0000000000..dfc9ee4bc7 --- /dev/null +++ b/theories/Numbers/Integer/Abstract/ZDivMath.v @@ -0,0 +1,396 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** Euclidean Division for integers + + We use here the "mathematical" convention, i.e. Round-Toward-Bottom : + [a = bq+r /\ 0 < r < |b| ] + *) + +Require Import ZAxioms ZProperties NZDiv. + +Open Scope NumScope. + +Module Type ZDiv (Import Z : ZAxiomsSig). + + Parameter Inline div : t -> t -> t. + Parameter Inline modulo : t -> t -> t. + + Infix "/" := div : NumScope. + Infix "mod" := modulo (at level 40, no associativity) : NumScope. + + Instance div_wd : Proper (eq==>eq==>eq) div. + Instance mod_wd : Proper (eq==>eq==>eq) modulo. + + Definition abs z := max z (-z). + + Axiom div_mod : forall a b, b ~= 0 -> a == b*(a/b) + (a mod b). + Axiom mod_always_pos : forall a b, 0 <= a mod b < abs b. + +End ZDiv. + +Module Type ZDivSig := ZAxiomsSig <+ ZDiv. + +Module ZDivPropFunct (Import Z : ZDivSig). + (* TODO: en faire un arg du foncteur + comprendre le bug de SearchAbout *) + Module Import ZP := ZPropFunct Z. + +(** We benefit from what already exists for NZ *) + + Module Z' <: NZDivSig. + Include Z. + Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b. + Proof. + intros. rewrite <- (max_l b (-b)) at 3. + apply mod_always_pos. + apply le_trans with 0; [ rewrite opp_nonpos_nonneg |]; order. + Qed. + End Z'. + Module Import NZDivP := NZDivPropFunct Z'. + +(** Another formulation of the main equation *) + +Lemma mod_eq : + forall a b, b~=0 -> a mod b == a - b*(a/b). +Proof. +intros. +rewrite <- add_move_l. +symmetry. apply div_mod; auto. +Qed. + +(* STILL TODO ... + +(** A few sign rules (simple ones) *) + +Lemma div_mod_opp_opp : forall a b, b~=0 -> + (-a/-b) == a/b /\ (-a) mod (-b) == -(a mod b). +Proof. +intros a b Hb. +assert (-b ~= 0). + contradict Hb. rewrite eq_opp_l, opp_0 in Hb; auto. +assert (EQ := opp_involutive a). +rewrite (div_mod a b) in EQ at 2; auto. +rewrite (div_mod (-a) (-b)) in EQ; auto. + +destruct (lt_ge_cases 0 b). +rewrite opp_add_distr in EQ. +rewrite <- mul_opp_l, opp_involutive in EQ. +destruct (div_mod_unique b (-a/-b) (a/b) (-(-a mod -b)) (a mod b)); auto. +rewrite <- (opp_involutive b) at 3. +rewrite <- opp_lt_mono. +rewrite opp_nonneg_nonpos. +destruct (mod_neg_bound (-a) (-b)); auto. +rewrite opp_neg_pos; auto. +apply mod_pos_bound; auto. +split; auto. +rewrite eq_opp_r; auto. + +rewrite eq_opp_l in EQ. +rewrite opp_add_distr in EQ. +rewrite <- mul_opp_l in EQ. +destruct (div_mod_unique (-b) (-a/-b) (a/b) (-a mod -b) (-(a mod b))); auto. +apply mod_pos_bound; auto. +rewrite opp_pos_neg; order. +rewrite <- opp_lt_mono. +rewrite opp_nonneg_nonpos. +destruct (mod_neg_bound a b); intuition; order. +Qed. + +Lemma div_opp_opp : forall a b, b~=0 -> -a/-b == a/b. +Proof. +intros; destruct (div_mod_opp_opp a b); auto. +Qed. + +Lemma mod_opp_opp : forall a b, b~=0 -> (-a) mod (-b) == - (a mod b). +Proof. +intros; destruct (div_mod_opp_opp a b); auto. +Qed. + + +(** Uniqueness theorems *) + + +Theorem div_mod_unique : forall b q1 q2 r1 r2 : t, + (0<=r1<b \/ b<r1<=0) -> (0<=r2<b \/ b<r2<=0) -> + b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2. +Proof. +intros b q1 q2 r1 r2 Hr1 Hr2 EQ. +destruct Hr1; destruct Hr2; try (intuition; order). +apply div_mod_unique with b; auto. +rewrite <- opp_inj_wd in EQ. +rewrite 2 opp_add_distr in EQ. rewrite <- 2 mul_opp_l in EQ. +rewrite <- (opp_inj_wd r1 r2). +apply div_mod_unique with (-b); auto. +rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition. +rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition. +Qed. + +Theorem div_unique: + forall a b q r, (0<=r<b \/ b<r<=0) -> a == b*q + r -> q == a/b. +Proof. +intros a b q r Hr EQ. +assert (Hb : b~=0) by (destruct Hr; intuition; order). +rewrite (div_mod a b Hb) in EQ. +destruct (div_mod_unique b (a/b) q (a mod b) r); auto. +destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound]; + intuition order. +Qed. + +Theorem div_unique_pos: + forall a b q r, 0<=r<b -> a == b*q + r -> q == a/b. +Proof. intros; apply div_unique with r; auto. Qed. + +Theorem div_unique_neg: + forall a b q r, 0<=r<b -> a == b*q + r -> q == a/b. +Proof. intros; apply div_unique with r; auto. Qed. + +Theorem mod_unique: + forall a b q r, (0<=r<b \/ b<r<=0) -> a == b*q + r -> r == a mod b. +Proof. +intros a b q r Hr EQ. +assert (Hb : b~=0) by (destruct Hr; intuition; order). +rewrite (div_mod a b Hb) in EQ. +destruct (div_mod_unique b (a/b) q (a mod b) r); auto. +destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound]; + intuition order. +Qed. + +Theorem mod_unique_pos: + forall a b q r, 0<=r<b -> a == b*q + r -> r == a mod b. +Proof. intros; apply mod_unique with q; auto. Qed. + +Theorem mod_unique_neg: + forall a b q r, b<r<=0 -> a == b*q + r -> r == a mod b. +Proof. intros; apply mod_unique with q; auto. Qed. + + +(** A division by itself returns 1 *) + +Ltac pos_or_neg a := + destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT]. + +Lemma div_same : forall a, a~=0 -> a/a == 1. +Proof. +intros. pos_or_neg a. apply div_same; order. +rewrite <- div_opp_opp; auto. apply div_same; auto. +Qed. + +Lemma mod_same : forall a, a~=0 -> a mod a == 0. +Proof. +intros. rewrite mod_eq, div_same; auto. nzsimpl. apply sub_diag. +Qed. + +(** A division of a small number by a bigger one yields zero. *) + +Theorem div_small: forall a b, 0<=a<b -> a/b == 0. +Proof. exact div_small. Qed. + +(** Same situation, in term of modulo: *) + +Theorem mod_small: forall a b, 0<=a<b -> a mod b == a. +Proof. exact mod_small. Qed. + +(** * Basic values of divisions and modulo. *) + +Lemma div_0_l: forall a, a~=0 -> 0/a == 0. +Proof. +intros. pos_or_neg a. apply div_0_l; order. +rewrite <- div_opp_opp, opp_0; auto. apply div_0_l; auto. +Qed. + +Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0. +Proof. +intros; rewrite mod_eq, div_0_l; nzsimpl; auto. +Qed. + +Lemma div_1_r: forall a, a/1 == a. +Proof. +intros. symmetry. apply div_unique with 0. left. split; order || apply lt_0_1. +nzsimpl; auto. +Qed. + +Lemma mod_1_r: forall a, a mod 1 == 0. +Proof. +intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag. +intro EQ; symmetry in EQ; revert EQ; apply lt_neq; apply lt_0_1. +Qed. + +Lemma div_1_l: forall a, 1<a -> 1/a == 0. +Proof. exact div_1_l. Qed. + +Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1. +Proof. exact mod_1_l. Qed. + +Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a. +Proof. +intros. symmetry. apply div_unique with 0. +destruct (lt_ge_cases 0 b); [left|right]; split; order. +nzsimpl; apply mul_comm. +Qed. + +Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0. +Proof. +intros. rewrite mod_eq, div_mul; auto. rewrite mul_comm; apply sub_diag. +Qed. + +(** * Order results about mod and div *) + +(** A modulo cannot grow beyond its starting point. *) + +Theorem mod_le: forall a b, 0<=a -> 0<b -> a mod b <= a. +Proof. exact mod_le. Qed. + +Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b. +Proof. exact div_pos. Qed. + +Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b. +Proof. exact div_str_pos. Qed. + +(* A REVOIR APRES LA REGLE DES SIGNES +Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a<b \/ b<a<=0). +intros. apply div_small_iff; auto'. Qed. + +Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> a<b). +Proof. intros. apply mod_small_iff; auto'. Qed. + +Lemma div_str_pos_iff : forall a b, b~=0 -> (0<a/b <-> b<=a). +Proof. intros. apply div_str_pos_iff; auto'. Qed. +*) + +(** As soon as the divisor is strictly greater than 1, + the division is strictly decreasing. *) + +Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a. +Proof. exact div_lt. Qed. + +(* STILL TODO !! + +(** [le] is compatible with a positive division. *) + +Lemma div_le_mono: forall a b c, 0<c -> a<=b -> a/c <= b/c. +Proof. +intros. destruct (le_gt_cases 0 a). +apply div_le_mono; auto. +destruct (lt_ge_cases 0 b). +apply le_trans with 0. + admit. (* !!! *) +apply div_pos; order. +Admitted. (* !!! *) + +Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a. +Proof. intros. apply mul_div_le; auto'. Qed. + +Lemma mul_succ_div_gt: forall a b, b~=0 -> a < b*(S (a/b)). +Proof. intros; apply mul_succ_div_gt; auto'. Qed. + +(** The previous inequality is exact iff the modulo is zero. *) + +Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0). +Proof. intros. apply div_exact; auto'. Qed. + +(** Some additionnal inequalities about div. *) + +Theorem div_lt_upper_bound: + forall a b q, b~=0 -> a < b*q -> a/b < q. +Proof. intros. apply div_lt_upper_bound; auto'. Qed. + +Theorem div_le_upper_bound: + forall a b q, b~=0 -> a <= b*q -> a/b <= q. +Proof. intros; apply div_le_upper_bound; auto'. Qed. + +Theorem div_le_lower_bound: + forall a b q, b~=0 -> b*q <= a -> q <= a/b. +Proof. intros; apply div_le_lower_bound; auto'. Qed. + +(** A division respects opposite monotonicity for the divisor *) + +Lemma div_le_compat_l: forall p q r, 0<q<r -> p/r <= p/q. +Proof. intros. apply div_le_compat_l. auto'. auto. Qed. + +(** * Relations between usual operations and mod and div *) + +Lemma mod_add : forall a b c, c~=0 -> + (a + b * c) mod c == a mod c. +Proof. intros. apply mod_add; auto'. Qed. + +Lemma div_add : forall a b c, c~=0 -> + (a + b * c) / c == a / c + b. +Proof. intros. apply div_add; auto'. Qed. + +Lemma div_add_l: forall a b c, b~=0 -> + (a * b + c) / b == a + c / b. +Proof. intros. apply div_add_l; auto'. Qed. + +(** Cancellations. *) + +Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 -> + (a*c)/(b*c) == a/b. +Proof. intros. apply div_mul_cancel_r; auto'. Qed. + +Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> + (c*a)/(c*b) == a/b. +Proof. intros. apply div_mul_cancel_l; auto'. Qed. + +Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 -> + (c*a) mod (c*b) == c * (a mod b). +Proof. intros. apply mul_mod_distr_l; auto'. Qed. + +Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 -> + (a*c) mod (b*c) == (a mod b) * c. +Proof. intros. apply mul_mod_distr_r; auto'. Qed. + +(** Operations modulo. *) + +Theorem mod_mod: forall a n, n~=0 -> + (a mod n) mod n == a mod n. +Proof. intros. apply mod_mod; auto'. Qed. + +Lemma mul_mod_idemp_l : forall a b n, n~=0 -> + ((a mod n)*b) mod n == (a*b) mod n. +Proof. intros. apply mul_mod_idemp_l; auto'. Qed. + +Lemma mul_mod_idemp_r : forall a b n, n~=0 -> + (a*(b mod n)) mod n == (a*b) mod n. +Proof. intros. apply mul_mod_idemp_r; auto'. Qed. + +Theorem mul_mod: forall a b n, n~=0 -> + (a * b) mod n == ((a mod n) * (b mod n)) mod n. +Proof. intros. apply mul_mod; auto'. Qed. + +Lemma add_mod_idemp_l : forall a b n, n~=0 -> + ((a mod n)+b) mod n == (a+b) mod n. +Proof. intros. apply add_mod_idemp_l; auto'. Qed. + +Lemma add_mod_idemp_r : forall a b n, n~=0 -> + (a+(b mod n)) mod n == (a+b) mod n. +Proof. intros. apply add_mod_idemp_r; auto'. Qed. + +Theorem add_mod: forall a b n, n~=0 -> + (a+b) mod n == (a mod n + b mod n) mod n. +Proof. intros. apply add_mod; auto'. Qed. + +Lemma div_div : forall a b c, b~=0 -> c~=0 -> + (a/b)/c == a/(b*c). +Proof. intros. apply div_div; auto'. Qed. + +(** A last inequality: *) + +Theorem div_mul_le: + forall a b c, b~=0 -> c*(a/b) <= (c*a)/b. +Proof. intros. apply div_mul_le; auto'. Qed. + +(** mod is related to divisibility *) + +Lemma mod_divides : forall a b, b~=0 -> + (a mod b == 0 <-> exists c, a == b*c). +Proof. intros. apply mod_divides; auto'. Qed. +*) +*) + +End ZDivPropFunct. + |
