diff options
| author | herbelin | 2003-11-29 17:28:49 +0000 |
|---|---|---|
| committer | herbelin | 2003-11-29 17:28:49 +0000 |
| commit | 9a6e3fe764dc2543dfa94de20fe5eec42d6be705 (patch) | |
| tree | 77c0021911e3696a8c98e35a51840800db4be2a9 /theories/NArith/Pnat.v | |
| parent | 9058fb97426307536f56c3e7447be2f70798e081 (diff) | |
Remplacement des fichiers .v ancienne syntaxe de theories, contrib et states par les fichiers nouvelle syntaxe
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5027 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/NArith/Pnat.v')
| -rw-r--r-- | theories/NArith/Pnat.v | 599 |
1 files changed, 306 insertions, 293 deletions
diff --git a/theories/NArith/Pnat.v b/theories/NArith/Pnat.v index 22c6b5cb90..c0e2bb020f 100644 --- a/theories/NArith/Pnat.v +++ b/theories/NArith/Pnat.v @@ -8,7 +8,7 @@ (*i $Id$ i*) -Require BinPos. +Require Import BinPos. (**********************************************************************) (** Properties of the injection from binary positive numbers to Peano @@ -16,144 +16,142 @@ Require BinPos. (** Original development by Pierre Crégut, CNET, Lannion, France *) -Require Le. -Require Lt. -Require Gt. -Require Plus. -Require Mult. -Require Minus. +Require Import Le. +Require Import Lt. +Require Import Gt. +Require Import Plus. +Require Import Mult. +Require Import Minus. (** [nat_of_P] is a morphism for addition *) -Lemma convert_add_un : - (x:positive)(m:nat) - (positive_to_nat (add_un x) m) = (plus m (positive_to_nat x m)). +Lemma Pmult_nat_succ_morphism : + forall (p:positive) (n:nat), Pmult_nat (Psucc p) n = n + Pmult_nat p n. Proof. -Intro x; NewInduction x as [p IHp|p IHp|]; Simpl; Auto; Intro m; Rewrite IHp; -Rewrite plus_assoc_l; Trivial. +intro x; induction x as [p IHp| p IHp| ]; simpl in |- *; auto; intro m; + rewrite IHp; rewrite plus_assoc; trivial. Qed. -Lemma cvt_add_un : - (p:positive) (convert (add_un p)) = (S (convert p)). +Lemma nat_of_P_succ_morphism : + forall p:positive, nat_of_P (Psucc p) = S (nat_of_P p). Proof. - Intro; Change (S (convert p)) with (plus (S O) (convert p)); - Unfold convert; Apply convert_add_un. + intro; change (S (nat_of_P p)) with (1 + nat_of_P p) in |- *; + unfold nat_of_P in |- *; apply Pmult_nat_succ_morphism. Qed. -Theorem convert_add_carry : - (x,y:positive)(m:nat) - (positive_to_nat (add_carry x y) m) = - (plus m (positive_to_nat (add x y) m)). +Theorem Pmult_nat_plus_carry_morphism : + forall (p q:positive) (n:nat), + Pmult_nat (Pplus_carry p q) n = n + Pmult_nat (p + q) n. Proof. -Intro x; NewInduction x as [p IHp|p IHp|]; - Intro y; NewDestruct y; Simpl; Auto with arith; Intro m; [ - Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith -| Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith -| Rewrite convert_add_un; Rewrite plus_assoc_l; Trivial with arith -| Rewrite convert_add_un; Apply plus_assoc_r ]. +intro x; induction x as [p IHp| p IHp| ]; intro y; + [ destruct y as [p0| p0| ] + | destruct y as [p0| p0| ] + | destruct y as [p| p| ] ]; simpl in |- *; auto with arith; + intro m; + [ rewrite IHp; rewrite plus_assoc; trivial with arith + | rewrite IHp; rewrite plus_assoc; trivial with arith + | rewrite Pmult_nat_succ_morphism; rewrite plus_assoc; trivial with arith + | rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ]. Qed. -Theorem cvt_carry : - (x,y:positive)(convert (add_carry x y)) = (S (convert (add x y))). +Theorem nat_of_P_plus_carry_morphism : + forall p q:positive, nat_of_P (Pplus_carry p q) = S (nat_of_P (p + q)). Proof. -Intros;Unfold convert; Rewrite convert_add_carry; Simpl; Trivial with arith. +intros; unfold nat_of_P in |- *; rewrite Pmult_nat_plus_carry_morphism; + simpl in |- *; trivial with arith. Qed. -Theorem add_verif : - (x,y:positive)(m:nat) - (positive_to_nat (add x y) m) = - (plus (positive_to_nat x m) (positive_to_nat y m)). +Theorem Pmult_nat_l_plus_morphism : + forall (p q:positive) (n:nat), + Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n. Proof. -Intro x; NewInduction x as [p IHp|p IHp|]; - Intro y; NewDestruct y;Simpl;Auto with arith; [ - Intros m;Rewrite convert_add_carry; Rewrite IHp; - Rewrite plus_assoc_r; Rewrite plus_assoc_r; - Rewrite (plus_permute m (positive_to_nat p (plus m m))); Trivial with arith -| Intros m; Rewrite IHp; Apply plus_assoc_l -| Intros m; Rewrite convert_add_un; - Rewrite (plus_sym (plus m (positive_to_nat p (plus m m)))); - Apply plus_assoc_r -| Intros m; Rewrite IHp; Apply plus_permute -| Intros m; Rewrite convert_add_un; Apply plus_assoc_r ]. +intro x; induction x as [p IHp| p IHp| ]; intro y; + [ destruct y as [p0| p0| ] + | destruct y as [p0| p0| ] + | destruct y as [p| p| ] ]; simpl in |- *; auto with arith; + [ intros m; rewrite Pmult_nat_plus_carry_morphism; rewrite IHp; + rewrite plus_assoc_reverse; rewrite plus_assoc_reverse; + rewrite (plus_permute m (Pmult_nat p (m + m))); + trivial with arith + | intros m; rewrite IHp; apply plus_assoc + | intros m; rewrite Pmult_nat_succ_morphism; + rewrite (plus_comm (m + Pmult_nat p (m + m))); + apply plus_assoc_reverse + | intros m; rewrite IHp; apply plus_permute + | intros m; rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ]. Qed. -Theorem convert_add: - (x,y:positive) (convert (add x y)) = (plus (convert x) (convert y)). +Theorem nat_of_P_plus_morphism : + forall p q:positive, nat_of_P (p + q) = nat_of_P p + nat_of_P q. Proof. -Intros x y; Exact (add_verif x y (S O)). +intros x y; exact (Pmult_nat_l_plus_morphism x y 1). Qed. (** [Pmult_nat] is a morphism for addition *) -Lemma ZL2: - (y:positive)(m:nat) - (positive_to_nat y (plus m m)) = - (plus (positive_to_nat y m) (positive_to_nat y m)). +Lemma Pmult_nat_r_plus_morphism : + forall (p:positive) (n:nat), + Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n. Proof. -Intro y; NewInduction y as [p H|p H|]; Intro m; [ - Simpl; Rewrite H; Rewrite plus_assoc_r; - Rewrite (plus_permute m (positive_to_nat p (plus m m))); - Rewrite plus_assoc_r; Auto with arith -| Simpl; Rewrite H; Auto with arith -| Simpl; Trivial with arith ]. +intro y; induction y as [p H| p H| ]; intro m; + [ simpl in |- *; rewrite H; rewrite plus_assoc_reverse; + rewrite (plus_permute m (Pmult_nat p (m + m))); + rewrite plus_assoc_reverse; auto with arith + | simpl in |- *; rewrite H; auto with arith + | simpl in |- *; trivial with arith ]. Qed. -Lemma ZL6: - (p:positive) (positive_to_nat p (S (S O))) = (plus (convert p) (convert p)). +Lemma ZL6 : forall p:positive, Pmult_nat p 2 = nat_of_P p + nat_of_P p. Proof. -Intro p;Change (2) with (plus (S O) (S O)); Rewrite ZL2; Trivial. +intro p; change 2 with (1 + 1) in |- *; rewrite Pmult_nat_r_plus_morphism; + trivial. Qed. (** [nat_of_P] is a morphism for multiplication *) -Theorem times_convert : - (x,y:positive) (convert (times x y)) = (mult (convert x) (convert y)). -Proof. -Intros x y; NewInduction x as [ x' H | x' H | ]; [ - Change (times (xI x') y) with (add y (xO (times x' y))); Rewrite convert_add; - Unfold 2 3 convert; Simpl; Do 2 Rewrite ZL6; Rewrite H; - Rewrite -> mult_plus_distr; Reflexivity -| Unfold 1 2 convert; Simpl; Do 2 Rewrite ZL6; - Rewrite H; Rewrite mult_plus_distr; Reflexivity -| Simpl; Rewrite <- plus_n_O; Reflexivity ]. -Qed. -V7only [ - Comments "Compatibility with the old version of times and times_convert". - Syntactic Definition times1 := - [x:positive;_:positive->positive;y:positive](times x y). - Syntactic Definition times1_convert := - [x,y:positive;_:positive->positive](times_convert x y). -]. +Theorem nat_of_P_mult_morphism : + forall p q:positive, nat_of_P (p * q) = nat_of_P p * nat_of_P q. +Proof. +intros x y; induction x as [x' H| x' H| ]; + [ change (xI x' * y)%positive with (y + xO (x' * y))%positive in |- *; + rewrite nat_of_P_plus_morphism; unfold nat_of_P at 2 3 in |- *; + simpl in |- *; do 2 rewrite ZL6; rewrite H; rewrite mult_plus_distr_r; + reflexivity + | unfold nat_of_P at 1 2 in |- *; simpl in |- *; do 2 rewrite ZL6; rewrite H; + rewrite mult_plus_distr_r; reflexivity + | simpl in |- *; rewrite <- plus_n_O; reflexivity ]. +Qed. (** [nat_of_P] maps to the strictly positive subset of [nat] *) -Lemma ZL4: (y:positive) (EX h:nat |(convert y)=(S h)). +Lemma ZL4 : forall p:positive, exists h : nat | nat_of_P p = S h. Proof. -Intro y; NewInduction y as [p H|p H|]; [ - NewDestruct H as [x H1]; Exists (plus (S x) (S x)); - Unfold convert ;Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2; Unfold convert in H1; - Rewrite H1; Auto with arith -| NewDestruct H as [x H2]; Exists (plus x (S x)); Unfold convert; - Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2;Unfold convert in H2; Rewrite H2; Auto with arith -| Exists O ;Auto with arith ]. +intro y; induction y as [p H| p H| ]; + [ destruct H as [x H1]; exists (S x + S x); unfold nat_of_P in |- *; + simpl in |- *; change 2 with (1 + 1) in |- *; + rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H1; + rewrite H1; auto with arith + | destruct H as [x H2]; exists (x + S x); unfold nat_of_P in |- *; + simpl in |- *; change 2 with (1 + 1) in |- *; + rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H2; + rewrite H2; auto with arith + | exists 0; auto with arith ]. Qed. (** Extra lemmas on [lt] on Peano natural numbers *) -Lemma ZL7: - (m,n:nat) (lt m n) -> (lt (plus m m) (plus n n)). +Lemma ZL7 : forall n m:nat, n < m -> n + n < m + m. Proof. -Intros m n H; Apply lt_trans with m:=(plus m n); [ - Apply lt_reg_l with 1:=H -| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ]. +intros m n H; apply lt_trans with (m := m + n); + [ apply plus_lt_compat_l with (1 := H) + | rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ]. Qed. -Lemma ZL8: - (m,n:nat) (lt m n) -> (lt (S (plus m m)) (plus n n)). +Lemma ZL8 : forall n m:nat, n < m -> S (n + n) < m + m. Proof. -Intros m n H; Apply le_lt_trans with m:=(plus m n); [ - Change (lt (plus m m) (plus m n)) ; Apply lt_reg_l with 1:=H -| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ]. +intros m n H; apply le_lt_trans with (m := m + n); + [ change (m + m < m + n) in |- *; apply plus_lt_compat_l with (1 := H) + | rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ]. Qed. (** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed @@ -162,29 +160,30 @@ Qed. Part 1: [lt] on [positive] is finer than [lt] on [nat] *) -Lemma compare_convert_INFERIEUR : - (x,y:positive) (compare x y EGAL) = INFERIEUR -> - (lt (convert x) (convert y)). -Proof. -Intro x; NewInduction x as [p H|p H|];Intro y; NewDestruct y as [q|q|]; - Intro H2; [ - Unfold convert ;Simpl; Apply lt_n_S; - Do 2 Rewrite ZL6; Apply ZL7; Apply H; Simpl in H2; Assumption -| Unfold convert ;Simpl; Do 2 Rewrite ZL6; - Apply ZL8; Apply H;Simpl in H2; Apply ZLSI;Assumption -| Simpl; Discriminate H2 -| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; - Elim (ZLII p q H2); [ - Intros H3;Apply lt_S;Apply ZL7; Apply H;Apply H3 - | Intros E;Rewrite E;Apply lt_n_Sn] -| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; - Apply ZL7;Apply H;Assumption -| Simpl; Discriminate H2 -| Unfold convert ;Simpl; Apply lt_n_S; Rewrite ZL6; - Elim (ZL4 q);Intros h H3; Rewrite H3;Simpl; Apply lt_O_Sn -| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 q);Intros h H3; - Rewrite H3; Simpl; Rewrite <- plus_n_Sm; Apply lt_n_S; Apply lt_O_Sn -| Simpl; Discriminate H2 ]. +Lemma nat_of_P_lt_Lt_compare_morphism : + forall p q:positive, (p ?= q)%positive Eq = Lt -> nat_of_P p < nat_of_P q. +Proof. +intro x; induction x as [p H| p H| ]; intro y; destruct y as [q| q| ]; + intro H2; + [ unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; do 2 rewrite ZL6; + apply ZL7; apply H; simpl in H2; assumption + | unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; apply ZL8; + apply H; simpl in H2; apply Pcompare_Gt_Lt; assumption + | simpl in |- *; discriminate H2 + | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; + elim (Pcompare_Lt_Lt p q H2); + [ intros H3; apply lt_S; apply ZL7; apply H; apply H3 + | intros E; rewrite E; apply lt_n_Sn ] + | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; + apply ZL7; apply H; assumption + | simpl in |- *; discriminate H2 + | unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; rewrite ZL6; + elim (ZL4 q); intros h H3; rewrite H3; simpl in |- *; + apply lt_O_Sn + | unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6; elim (ZL4 q); + intros h H3; rewrite H3; simpl in |- *; rewrite <- plus_n_Sm; + apply lt_n_S; apply lt_O_Sn + | simpl in |- *; discriminate H2 ]. Qed. (** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed @@ -193,29 +192,30 @@ Qed. Part 1: [gt] on [positive] is finer than [gt] on [nat] *) -Lemma compare_convert_SUPERIEUR : - (x,y:positive) (compare x y EGAL)=SUPERIEUR -> (gt (convert x) (convert y)). -Proof. -Unfold gt; Intro x; NewInduction x as [p H|p H|]; - Intro y; NewDestruct y as [q|q|]; Intro H2; [ - Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; - Apply lt_n_S; Apply ZL7; Apply H;Assumption -| Simpl; Unfold convert ;Simpl; Do 2 Rewrite ZL6; - Elim (ZLSS p q H2); [ - Intros H3;Apply lt_S;Apply ZL7;Apply H;Assumption - | Intros E;Rewrite E;Apply lt_n_Sn] -| Unfold convert ;Simpl; Rewrite ZL6;Elim (ZL4 p); - Intros h H3;Rewrite H3;Simpl; Apply lt_n_S; Apply lt_O_Sn -| Simpl;Unfold convert ;Simpl;Do 2 Rewrite ZL6; - Apply ZL8; Apply H; Apply ZLIS; Assumption -| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; - Apply ZL7;Apply H;Assumption -| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 p); - Intros h H3;Rewrite H3;Simpl; Rewrite <- plus_n_Sm;Apply lt_n_S; - Apply lt_O_Sn -| Simpl; Discriminate H2 -| Simpl; Discriminate H2 -| Simpl; Discriminate H2 ]. +Lemma nat_of_P_gt_Gt_compare_morphism : + forall p q:positive, (p ?= q)%positive Eq = Gt -> nat_of_P p > nat_of_P q. +Proof. +unfold gt in |- *; intro x; induction x as [p H| p H| ]; intro y; + destruct y as [q| q| ]; intro H2; + [ simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; + apply lt_n_S; apply ZL7; apply H; assumption + | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; + elim (Pcompare_Gt_Gt p q H2); + [ intros H3; apply lt_S; apply ZL7; apply H; assumption + | intros E; rewrite E; apply lt_n_Sn ] + | unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6; elim (ZL4 p); + intros h H3; rewrite H3; simpl in |- *; apply lt_n_S; + apply lt_O_Sn + | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; + apply ZL8; apply H; apply Pcompare_Lt_Gt; assumption + | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; + apply ZL7; apply H; assumption + | unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6; elim (ZL4 p); + intros h H3; rewrite H3; simpl in |- *; rewrite <- plus_n_Sm; + apply lt_n_S; apply lt_O_Sn + | simpl in |- *; discriminate H2 + | simpl in |- *; discriminate H2 + | simpl in |- *; discriminate H2 ]. Qed. (** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed @@ -224,18 +224,18 @@ Qed. Part 2: [lt] on [nat] is finer than [lt] on [positive] *) -Lemma convert_compare_INFERIEUR : - (x,y:positive)(lt (convert x) (convert y)) -> (compare x y EGAL) = INFERIEUR. +Lemma nat_of_P_lt_Lt_compare_complement_morphism : + forall p q:positive, nat_of_P p < nat_of_P q -> (p ?= q)%positive Eq = Lt. Proof. -Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [ - Intros E; Rewrite (compare_convert_EGAL x y E); - Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ] -| Intros H;Elim H; [ - Auto - | Intros H1 H2; Absurd (lt (convert x) (convert y)); [ - Apply lt_not_sym; Change (gt (convert x) (convert y)); - Apply compare_convert_SUPERIEUR; Assumption - | Assumption ]]]. +intros x y; unfold gt in |- *; elim (Dcompare ((x ?= y)%positive Eq)); + [ intros E; rewrite (Pcompare_Eq_eq x y E); intros H; + absurd (nat_of_P y < nat_of_P y); [ apply lt_irrefl | assumption ] + | intros H; elim H; + [ auto + | intros H1 H2; absurd (nat_of_P x < nat_of_P y); + [ apply lt_asym; change (nat_of_P x > nat_of_P y) in |- *; + apply nat_of_P_gt_Gt_compare_morphism; assumption + | assumption ] ] ]. Qed. (** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed @@ -244,78 +244,78 @@ Qed. Part 2: [gt] on [nat] is finer than [gt] on [positive] *) -Lemma convert_compare_SUPERIEUR : - (x,y:positive)(gt (convert x) (convert y)) -> (compare x y EGAL) = SUPERIEUR. +Lemma nat_of_P_gt_Gt_compare_complement_morphism : + forall p q:positive, nat_of_P p > nat_of_P q -> (p ?= q)%positive Eq = Gt. Proof. -Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [ - Intros E; Rewrite (compare_convert_EGAL x y E); - Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ] -| Intros H;Elim H; [ - Intros H1 H2; Absurd (lt (convert y) (convert x)); [ - Apply lt_not_sym; Apply compare_convert_INFERIEUR; Assumption - | Assumption ] - | Auto]]. +intros x y; unfold gt in |- *; elim (Dcompare ((x ?= y)%positive Eq)); + [ intros E; rewrite (Pcompare_Eq_eq x y E); intros H; + absurd (nat_of_P y < nat_of_P y); [ apply lt_irrefl | assumption ] + | intros H; elim H; + [ intros H1 H2; absurd (nat_of_P y < nat_of_P x); + [ apply lt_asym; apply nat_of_P_lt_Lt_compare_morphism; assumption + | assumption ] + | auto ] ]. Qed. (** [nat_of_P] is strictly positive *) -Lemma compare_positive_to_nat_O : - (p:positive)(m:nat)(le m (positive_to_nat p m)). -NewInduction p; Simpl; Auto with arith. -Intro m; Apply le_trans with (plus m m); Auto with arith. +Lemma le_Pmult_nat : forall (p:positive) (n:nat), n <= Pmult_nat p n. +induction p; simpl in |- *; auto with arith. +intro m; apply le_trans with (m + m); auto with arith. Qed. -Lemma compare_convert_O : (p:positive)(lt O (convert p)). -Intro; Unfold convert; Apply lt_le_trans with (S O); Auto with arith. -Apply compare_positive_to_nat_O. +Lemma lt_O_nat_of_P : forall p:positive, 0 < nat_of_P p. +intro; unfold nat_of_P in |- *; apply lt_le_trans with 1; auto with arith. +apply le_Pmult_nat. Qed. (** Pmult_nat permutes with multiplication *) -Lemma positive_to_nat_mult : (p:positive) (n,m:nat) - (positive_to_nat p (mult m n))=(mult m (positive_to_nat p n)). +Lemma Pmult_nat_mult_permute : + forall (p:positive) (n m:nat), Pmult_nat p (m * n) = m * Pmult_nat p n. Proof. - Induction p. Intros. Simpl. Rewrite mult_plus_distr_r. Rewrite <- (mult_plus_distr_r m n n). - Rewrite (H (plus n n) m). Reflexivity. - Intros. Simpl. Rewrite <- (mult_plus_distr_r m n n). Apply H. - Trivial. + simple induction p. intros. simpl in |- *. rewrite mult_plus_distr_l. rewrite <- (mult_plus_distr_l m n n). + rewrite (H (n + n) m). reflexivity. + intros. simpl in |- *. rewrite <- (mult_plus_distr_l m n n). apply H. + trivial. Qed. -Lemma positive_to_nat_2 : (p:positive) - (positive_to_nat p (2))=(mult (2) (positive_to_nat p (1))). +Lemma Pmult_nat_2_mult_2_permute : + forall p:positive, Pmult_nat p 2 = 2 * Pmult_nat p 1. Proof. - Intros. Rewrite <- positive_to_nat_mult. Reflexivity. + intros. rewrite <- Pmult_nat_mult_permute. reflexivity. Qed. -Lemma positive_to_nat_4 : (p:positive) - (positive_to_nat p (4))=(mult (2) (positive_to_nat p (2))). +Lemma Pmult_nat_4_mult_2_permute : + forall p:positive, Pmult_nat p 4 = 2 * Pmult_nat p 2. Proof. - Intros. Rewrite <- positive_to_nat_mult. Reflexivity. + intros. rewrite <- Pmult_nat_mult_permute. reflexivity. Qed. (** Mapping of xH, xO and xI through [nat_of_P] *) -Lemma convert_xH : (convert xH)=(1). +Lemma nat_of_P_xH : nat_of_P 1 = 1. Proof. - Reflexivity. + reflexivity. Qed. -Lemma convert_xO : (p:positive) (convert (xO p))=(mult (2) (convert p)). +Lemma nat_of_P_xO : forall p:positive, nat_of_P (xO p) = 2 * nat_of_P p. Proof. - Induction p. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. - Rewrite positive_to_nat_4. Rewrite H. Simpl. Rewrite <- plus_Snm_nSm. Reflexivity. - Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4. - Rewrite H. Reflexivity. - Reflexivity. + simple induction p. unfold nat_of_P in |- *. simpl in |- *. intros. rewrite Pmult_nat_2_mult_2_permute. + rewrite Pmult_nat_4_mult_2_permute. rewrite H. simpl in |- *. rewrite <- plus_Snm_nSm. reflexivity. + unfold nat_of_P in |- *. simpl in |- *. intros. rewrite Pmult_nat_2_mult_2_permute. rewrite Pmult_nat_4_mult_2_permute. + rewrite H. reflexivity. + reflexivity. Qed. -Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))). +Lemma nat_of_P_xI : forall p:positive, nat_of_P (xI p) = S (2 * nat_of_P p). Proof. - Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2. - Rewrite positive_to_nat_4; Injection H; Intro H1; Rewrite H1; Rewrite <- plus_Snm_nSm; Reflexivity. - Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4. - Injection H; Intro H1; Rewrite H1; Reflexivity. - Reflexivity. + simple induction p. unfold nat_of_P in |- *. simpl in |- *. intro p0. intro. rewrite Pmult_nat_2_mult_2_permute. + rewrite Pmult_nat_4_mult_2_permute; injection H; intro H1; rewrite H1; + rewrite <- plus_Snm_nSm; reflexivity. + unfold nat_of_P in |- *. simpl in |- *. intros. rewrite Pmult_nat_2_mult_2_permute. rewrite Pmult_nat_4_mult_2_permute. + injection H; intro H1; rewrite H1; reflexivity. + reflexivity. Qed. (**********************************************************************) @@ -324,54 +324,61 @@ Qed. (** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *) -Theorem bij1 : (m:nat) (convert (anti_convert m)) = (S m). +Theorem nat_of_P_o_P_of_succ_nat_eq_succ : + forall n:nat, nat_of_P (P_of_succ_nat n) = S n. Proof. -Intro m; NewInduction m as [|n H]; [ - Reflexivity -| Simpl; Rewrite cvt_add_un; Rewrite H; Auto ]. +intro m; induction m as [| n H]; + [ reflexivity + | simpl in |- *; rewrite nat_of_P_succ_morphism; rewrite H; auto ]. Qed. (** Miscellaneous lemmas on [P_of_succ_nat] *) -Lemma ZL3: (x:nat) (add_un (anti_convert (plus x x))) = (xO (anti_convert x)). +Lemma ZL3 : + forall n:nat, Psucc (P_of_succ_nat (n + n)) = xO (P_of_succ_nat n). Proof. -Intro x; NewInduction x as [|n H]; [ - Simpl; Auto with arith -| Simpl; Rewrite plus_sym; Simpl; Rewrite H; Rewrite ZL1;Auto with arith]. +intro x; induction x as [| n H]; + [ simpl in |- *; auto with arith + | simpl in |- *; rewrite plus_comm; simpl in |- *; rewrite H; + rewrite xO_succ_permute; auto with arith ]. Qed. -Lemma ZL5: (x:nat) (anti_convert (plus (S x) (S x))) = (xI (anti_convert x)). +Lemma ZL5 : forall n:nat, P_of_succ_nat (S n + S n) = xI (P_of_succ_nat n). Proof. -Intro x; NewInduction x as [|n H];Simpl; [ - Auto with arith -| Rewrite <- plus_n_Sm; Simpl; Simpl in H; Rewrite H; Auto with arith]. +intro x; induction x as [| n H]; simpl in |- *; + [ auto with arith + | rewrite <- plus_n_Sm; simpl in |- *; simpl in H; rewrite H; + auto with arith ]. Qed. (** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *) -Theorem bij2 : (x:positive) (anti_convert (convert x)) = (add_un x). +Theorem P_of_succ_nat_o_nat_of_P_eq_succ : + forall p:positive, P_of_succ_nat (nat_of_P p) = Psucc p. Proof. -Intro x; NewInduction x as [p H|p H|]; [ - Simpl; Rewrite <- H; Change (2) with (plus (1) (1)); - Rewrite ZL2; Elim (ZL4 p); - Unfold convert; Intros n H1;Rewrite H1; Rewrite ZL3; Auto with arith -| Unfold convert ;Simpl; Change (2) with (plus (1) (1)); - Rewrite ZL2; - Rewrite <- (sub_add_one - (anti_convert - (plus (positive_to_nat p (S O)) (positive_to_nat p (S O))))); - Rewrite <- (sub_add_one (xI p)); - Simpl;Rewrite <- H;Elim (ZL4 p); Unfold convert ;Intros n H1;Rewrite H1; - Rewrite ZL5; Simpl; Trivial with arith -| Unfold convert; Simpl; Auto with arith ]. +intro x; induction x as [p H| p H| ]; + [ simpl in |- *; rewrite <- H; change 2 with (1 + 1) in |- *; + rewrite Pmult_nat_r_plus_morphism; elim (ZL4 p); + unfold nat_of_P in |- *; intros n H1; rewrite H1; + rewrite ZL3; auto with arith + | unfold nat_of_P in |- *; simpl in |- *; change 2 with (1 + 1) in |- *; + rewrite Pmult_nat_r_plus_morphism; + rewrite <- (Ppred_succ (P_of_succ_nat (Pmult_nat p 1 + Pmult_nat p 1))); + rewrite <- (Ppred_succ (xI p)); simpl in |- *; + rewrite <- H; elim (ZL4 p); unfold nat_of_P in |- *; + intros n H1; rewrite H1; rewrite ZL5; simpl in |- *; + trivial with arith + | unfold nat_of_P in |- *; simpl in |- *; auto with arith ]. Qed. (** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity on [positive] *) -Theorem bij3: (x:positive)(sub_un (anti_convert (convert x))) = x. +Theorem pred_o_P_of_succ_nat_o_nat_of_P_eq_id : + forall p:positive, Ppred (P_of_succ_nat (nat_of_P p)) = p. Proof. -Intros x; Rewrite bij2; Rewrite sub_add_one; Trivial with arith. +intros x; rewrite P_of_succ_nat_o_nat_of_P_eq_succ; rewrite Ppred_succ; + trivial with arith. Qed. (**********************************************************************) @@ -380,93 +387,99 @@ Qed. (** [nat_of_P] is a morphism for subtraction on positive numbers *) -Theorem true_sub_convert: - (x,y:positive) (compare x y EGAL) = SUPERIEUR -> - (convert (true_sub x y)) = (minus (convert x) (convert y)). +Theorem nat_of_P_minus_morphism : + forall p q:positive, + (p ?= q)%positive Eq = Gt -> nat_of_P (p - q) = nat_of_P p - nat_of_P q. Proof. -Intros x y H; Apply plus_reg_l with (convert y); -Rewrite le_plus_minus_r; [ - Rewrite <- convert_add; Rewrite sub_add; Auto with arith -| Apply lt_le_weak; Exact (compare_convert_SUPERIEUR x y H)]. +intros x y H; apply plus_reg_l with (nat_of_P y); rewrite le_plus_minus_r; + [ rewrite <- nat_of_P_plus_morphism; rewrite Pplus_minus; auto with arith + | apply lt_le_weak; exact (nat_of_P_gt_Gt_compare_morphism x y H) ]. Qed. (** [nat_of_P] is injective *) -Lemma convert_intro : (x,y:positive)(convert x)=(convert y) -> x=y. +Lemma nat_of_P_inj : forall p q:positive, nat_of_P p = nat_of_P q -> p = q. Proof. -Intros x y H;Rewrite <- (bij3 x);Rewrite <- (bij3 y); Rewrite H; Trivial with arith. +intros x y H; rewrite <- (pred_o_P_of_succ_nat_o_nat_of_P_eq_id x); + rewrite <- (pred_o_P_of_succ_nat_o_nat_of_P_eq_id y); + rewrite H; trivial with arith. Qed. -Lemma ZL16: (p,q:positive)(lt (minus (convert p) (convert q)) (convert p)). +Lemma ZL16 : forall p q:positive, nat_of_P p - nat_of_P q < nat_of_P p. Proof. -Intros p q; Elim (ZL4 p);Elim (ZL4 q); Intros h H1 i H2; -Rewrite H1;Rewrite H2; Simpl;Unfold lt; Apply le_n_S; Apply le_minus. +intros p q; elim (ZL4 p); elim (ZL4 q); intros h H1 i H2; rewrite H1; + rewrite H2; simpl in |- *; unfold lt in |- *; apply le_n_S; + apply le_minus. Qed. -Lemma ZL17: (p,q:positive)(lt (convert p) (convert (add p q))). +Lemma ZL17 : forall p q:positive, nat_of_P p < nat_of_P (p + q). Proof. -Intros p q; Rewrite convert_add;Unfold lt;Elim (ZL4 q); Intros k H;Rewrite H; -Rewrite plus_sym;Simpl; Apply le_n_S; Apply le_plus_r. +intros p q; rewrite nat_of_P_plus_morphism; unfold lt in |- *; elim (ZL4 q); + intros k H; rewrite H; rewrite plus_comm; simpl in |- *; + apply le_n_S; apply le_plus_r. Qed. (** Comparison and subtraction *) -Lemma compare_true_sub_right : - (p,q,z:positive) - (compare q p EGAL)=INFERIEUR-> - (compare z p EGAL)=SUPERIEUR-> - (compare z q EGAL)=SUPERIEUR-> - (compare (true_sub z p) (true_sub z q) EGAL)=INFERIEUR. -Proof. -Intros; Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [ - Rewrite true_sub_convert; [ - Apply simpl_lt_plus_l with p:=(convert q); Rewrite le_plus_minus_r; [ - Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert p); - Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [ - Rewrite (plus_sym (convert p)); Apply lt_reg_l; - Apply compare_convert_INFERIEUR; Assumption - | Apply lt_le_weak; Apply compare_convert_INFERIEUR; - Apply ZC1; Assumption ] - | Apply lt_le_weak;Apply compare_convert_INFERIEUR; - Apply ZC1; Assumption ] - | Assumption ] - | Assumption ]. -Qed. - -Lemma compare_true_sub_left : - (p,q,z:positive) - (compare q p EGAL)=INFERIEUR-> - (compare p z EGAL)=SUPERIEUR-> - (compare q z EGAL)=SUPERIEUR-> - (compare (true_sub q z) (true_sub p z) EGAL)=INFERIEUR. -Proof. -Intros p q z; Intros; - Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [ - Rewrite true_sub_convert; [ - Unfold gt; Apply simpl_lt_plus_l with p:=(convert z); - Rewrite le_plus_minus_r; [ - Rewrite le_plus_minus_r; [ - Apply compare_convert_INFERIEUR;Assumption - | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;Assumption] - | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1; Assumption] - | Assumption] -| Assumption]. +Lemma Pcompare_minus_r : + forall p q r:positive, + (q ?= p)%positive Eq = Lt -> + (r ?= p)%positive Eq = Gt -> + (r ?= q)%positive Eq = Gt -> (r - p ?= r - q)%positive Eq = Lt. +Proof. +intros; apply nat_of_P_lt_Lt_compare_complement_morphism; + rewrite nat_of_P_minus_morphism; + [ rewrite nat_of_P_minus_morphism; + [ apply plus_lt_reg_l with (p := nat_of_P q); rewrite le_plus_minus_r; + [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p); + rewrite plus_assoc; rewrite le_plus_minus_r; + [ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l; + apply nat_of_P_lt_Lt_compare_morphism; + assumption + | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; + apply ZC1; assumption ] + | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; + assumption ] + | assumption ] + | assumption ]. +Qed. + +Lemma Pcompare_minus_l : + forall p q r:positive, + (q ?= p)%positive Eq = Lt -> + (p ?= r)%positive Eq = Gt -> + (q ?= r)%positive Eq = Gt -> (q - r ?= p - r)%positive Eq = Lt. +Proof. +intros p q z; intros; apply nat_of_P_lt_Lt_compare_complement_morphism; + rewrite nat_of_P_minus_morphism; + [ rewrite nat_of_P_minus_morphism; + [ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z); + rewrite le_plus_minus_r; + [ rewrite le_plus_minus_r; + [ apply nat_of_P_lt_Lt_compare_morphism; assumption + | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; + apply ZC1; assumption ] + | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; + assumption ] + | assumption ] + | assumption ]. Qed. (** Distributivity of multiplication over subtraction *) -Theorem times_true_sub_distr: - (x,y,z:positive) (compare y z EGAL) = SUPERIEUR -> - (times x (true_sub y z)) = (true_sub (times x y) (times x z)). -Proof. -Intros x y z H; Apply convert_intro; -Rewrite times_convert; Rewrite true_sub_convert; [ - Rewrite true_sub_convert; [ - Do 2 Rewrite times_convert; - Do 3 Rewrite (mult_sym (convert x));Apply mult_minus_distr - | Apply convert_compare_SUPERIEUR; Do 2 Rewrite times_convert; - Unfold gt; Elim (ZL4 x);Intros h H1;Rewrite H1; Apply lt_mult_left; - Exact (compare_convert_SUPERIEUR y z H) ] -| Assumption ]. +Theorem Pmult_minus_distr_l : + forall p q r:positive, + (q ?= r)%positive Eq = Gt -> + (p * (q - r))%positive = (p * q - p * r)%positive. +Proof. +intros x y z H; apply nat_of_P_inj; rewrite nat_of_P_mult_morphism; + rewrite nat_of_P_minus_morphism; + [ rewrite nat_of_P_minus_morphism; + [ do 2 rewrite nat_of_P_mult_morphism; + do 3 rewrite (mult_comm (nat_of_P x)); apply mult_minus_distr_r + | apply nat_of_P_gt_Gt_compare_complement_morphism; + do 2 rewrite nat_of_P_mult_morphism; unfold gt in |- *; + elim (ZL4 x); intros h H1; rewrite H1; apply mult_S_lt_compat_l; + exact (nat_of_P_gt_Gt_compare_morphism y z H) ] + | assumption ]. Qed. - |
