diff options
| author | herbelin | 2003-11-29 17:28:49 +0000 |
|---|---|---|
| committer | herbelin | 2003-11-29 17:28:49 +0000 |
| commit | 9a6e3fe764dc2543dfa94de20fe5eec42d6be705 (patch) | |
| tree | 77c0021911e3696a8c98e35a51840800db4be2a9 /theories/IntMap/Mapsubset.v | |
| parent | 9058fb97426307536f56c3e7447be2f70798e081 (diff) | |
Remplacement des fichiers .v ancienne syntaxe de theories, contrib et states par les fichiers nouvelle syntaxe
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5027 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/IntMap/Mapsubset.v')
| -rw-r--r-- | theories/IntMap/Mapsubset.v | 740 |
1 files changed, 396 insertions, 344 deletions
diff --git a/theories/IntMap/Mapsubset.v b/theories/IntMap/Mapsubset.v index defe49712c..cff8f670bb 100644 --- a/theories/IntMap/Mapsubset.v +++ b/theories/IntMap/Mapsubset.v @@ -7,548 +7,600 @@ (***********************************************************************) (*i $Id$ i*) -Require Bool. -Require Sumbool. -Require Arith. -Require ZArith. -Require Addr. -Require Adist. -Require Addec. -Require Map. -Require Fset. -Require Mapaxioms. -Require Mapiter. +Require Import Bool. +Require Import Sumbool. +Require Import Arith. +Require Import ZArith. +Require Import Addr. +Require Import Adist. +Require Import Addec. +Require Import Map. +Require Import Fset. +Require Import Mapaxioms. +Require Import Mapiter. Section MapSubsetDef. - Variable A, B : Set. + Variables A B : Set. - Definition MapSubset := [m:(Map A)] [m':(Map B)] - (a:ad) (in_dom A a m)=true -> (in_dom B a m')=true. + Definition MapSubset (m:Map A) (m':Map B) := + forall a:ad, in_dom A a m = true -> in_dom B a m' = true. - Definition MapSubset_1 := [m:(Map A)] [m':(Map B)] - Cases (MapSweep A [a:ad][_:A] (negb (in_dom B a m')) m) of - NONE => true - | _ => false - end. + Definition MapSubset_1 (m:Map A) (m':Map B) := + match MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m with + | NONE => true + | _ => false + end. - Definition MapSubset_2 := [m:(Map A)] [m':(Map B)] - (eqmap A (MapDomRestrBy A B m m') (M0 A)). + Definition MapSubset_2 (m:Map A) (m':Map B) := + eqmap A (MapDomRestrBy A B m m') (M0 A). - Lemma MapSubset_imp_1 : (m:(Map A)) (m':(Map B)) - (MapSubset m m') -> (MapSubset_1 m m')=true. + Lemma MapSubset_imp_1 : + forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_1 m m' = true. Proof. - Unfold MapSubset MapSubset_1. Intros. - Elim (option_sum ? (MapSweep A [a:ad][_:A](negb (in_dom B a m')) m)). - Intro H0. Elim H0. Intro r. Elim r. Intros a y H1. Cut (negb (in_dom B a m'))=true. - Intro. Cut (in_dom A a m)=false. Intro. Unfold in_dom in H3. - Rewrite (MapSweep_semantics_2 ? ? m a y H1) in H3. Discriminate H3. - Elim (sumbool_of_bool (in_dom A a m)). Intro H3. Rewrite (H a H3) in H2. Discriminate H2. - Trivial. - Exact (MapSweep_semantics_1 ? ? m a y H1). - Intro H0. Rewrite H0. Reflexivity. + unfold MapSubset, MapSubset_1 in |- *. intros. + elim + (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). + intro H0. elim H0. intro r. elim r. intros a y H1. cut (negb (in_dom B a m') = true). + intro. cut (in_dom A a m = false). intro. unfold in_dom in H3. + rewrite (MapSweep_semantics_2 _ _ m a y H1) in H3. discriminate H3. + elim (sumbool_of_bool (in_dom A a m)). intro H3. rewrite (H a H3) in H2. discriminate H2. + trivial. + exact (MapSweep_semantics_1 _ _ m a y H1). + intro H0. rewrite H0. reflexivity. Qed. - Lemma MapSubset_1_imp : (m:(Map A)) (m':(Map B)) - (MapSubset_1 m m')=true -> (MapSubset m m'). + Lemma MapSubset_1_imp : + forall (m:Map A) (m':Map B), MapSubset_1 m m' = true -> MapSubset m m'. Proof. - Unfold MapSubset MapSubset_1. Unfold 2 in_dom. Intros. Elim (option_sum ? (MapGet A m a)). - Intro H1. Elim H1. Intros y H2. - Elim (option_sum ? (MapSweep A [a:ad][_:A](negb (in_dom B a m')) m)). Intro H3. - Elim H3. Intro r. Elim r. Intros a' y' H4. Rewrite H4 in H. Discriminate H. - Intro H3. Cut (negb (in_dom B a m'))=false. Intro. Rewrite (negb_intro (in_dom B a m')). - Rewrite H4. Reflexivity. - Exact (MapSweep_semantics_3 ? ? m H3 a y H2). - Intro H1. Rewrite H1 in H0. Discriminate H0. + unfold MapSubset, MapSubset_1 in |- *. unfold in_dom at 2 in |- *. intros. elim (option_sum _ (MapGet A m a)). + intro H1. elim H1. intros y H2. + elim + (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). intro H3. + elim H3. intro r. elim r. intros a' y' H4. rewrite H4 in H. discriminate H. + intro H3. cut (negb (in_dom B a m') = false). intro. rewrite (negb_intro (in_dom B a m')). + rewrite H4. reflexivity. + exact (MapSweep_semantics_3 _ _ m H3 a y H2). + intro H1. rewrite H1 in H0. discriminate H0. Qed. - Lemma map_dom_empty_1 : - (m:(Map A)) (eqmap A m (M0 A)) -> (a:ad) (in_dom ? a m)=false. + Lemma map_dom_empty_1 : + forall m:Map A, eqmap A m (M0 A) -> forall a:ad, in_dom _ a m = false. Proof. - Unfold eqmap eqm in_dom. Intros. Rewrite (H a). Reflexivity. + unfold eqmap, eqm, in_dom in |- *. intros. rewrite (H a). reflexivity. Qed. - Lemma map_dom_empty_2 : - (m:(Map A)) ((a:ad) (in_dom ? a m)=false) -> (eqmap A m (M0 A)). + Lemma map_dom_empty_2 : + forall m:Map A, (forall a:ad, in_dom _ a m = false) -> eqmap A m (M0 A). Proof. - Unfold eqmap eqm in_dom. Intros. - Cut (Cases (MapGet A m a) of NONE => false | (SOME _) => true end)=false. - Case (MapGet A m a). Trivial. - Intros. Discriminate H0. - Exact (H a). + unfold eqmap, eqm, in_dom in |- *. intros. + cut + (match MapGet A m a with + | NONE => false + | SOME _ => true + end = false). + case (MapGet A m a). trivial. + intros. discriminate H0. + exact (H a). Qed. - Lemma MapSubset_imp_2 : - (m:(Map A)) (m':(Map B)) (MapSubset m m') -> (MapSubset_2 m m'). + Lemma MapSubset_imp_2 : + forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_2 m m'. Proof. - Unfold MapSubset MapSubset_2. Intros. Apply map_dom_empty_2. Intro. Rewrite in_dom_restrby. - Elim (sumbool_of_bool (in_dom A a m)). Intro H0. Rewrite H0. Rewrite (H a H0). Reflexivity. - Intro H0. Rewrite H0. Reflexivity. + unfold MapSubset, MapSubset_2 in |- *. intros. apply map_dom_empty_2. intro. rewrite in_dom_restrby. + elim (sumbool_of_bool (in_dom A a m)). intro H0. rewrite H0. rewrite (H a H0). reflexivity. + intro H0. rewrite H0. reflexivity. Qed. - Lemma MapSubset_2_imp : - (m:(Map A)) (m':(Map B)) (MapSubset_2 m m') -> (MapSubset m m'). + Lemma MapSubset_2_imp : + forall (m:Map A) (m':Map B), MapSubset_2 m m' -> MapSubset m m'. Proof. - Unfold MapSubset MapSubset_2. Intros. Cut (in_dom ? a (MapDomRestrBy A B m m'))=false. - Rewrite in_dom_restrby. Intro. Elim (andb_false_elim ? ? H1). Rewrite H0. - Intro H2. Discriminate H2. - Intro H2. Rewrite (negb_intro (in_dom B a m')). Rewrite H2. Reflexivity. - Exact (map_dom_empty_1 ? H a). + unfold MapSubset, MapSubset_2 in |- *. intros. cut (in_dom _ a (MapDomRestrBy A B m m') = false). + rewrite in_dom_restrby. intro. elim (andb_false_elim _ _ H1). rewrite H0. + intro H2. discriminate H2. + intro H2. rewrite (negb_intro (in_dom B a m')). rewrite H2. reflexivity. + exact (map_dom_empty_1 _ H a). Qed. End MapSubsetDef. Section MapSubsetOrder. - Variable A, B, C : Set. + Variables A B C : Set. - Lemma MapSubset_refl : (m:(Map A)) (MapSubset A A m m). + Lemma MapSubset_refl : forall m:Map A, MapSubset A A m m. Proof. - Unfold MapSubset. Trivial. + unfold MapSubset in |- *. trivial. Qed. - Lemma MapSubset_antisym : (m:(Map A)) (m':(Map B)) - (MapSubset A B m m') -> (MapSubset B A m' m) -> - (eqmap unit (MapDom A m) (MapDom B m')). + Lemma MapSubset_antisym : + forall (m:Map A) (m':Map B), + MapSubset A B m m' -> + MapSubset B A m' m -> eqmap unit (MapDom A m) (MapDom B m'). Proof. - Unfold MapSubset eqmap eqm. Intros. Elim (option_sum ? (MapGet ? (MapDom A m) a)). - Intro H1. Elim H1. Intro t. Elim t. Intro H2. Elim (option_sum ? (MapGet ? (MapDom B m') a)). - Intro H3. Elim H3. Intro t'. Elim t'. Intro H4. Rewrite H4. Exact H2. - Intro H3. Cut (in_dom B a m')=true. Intro. Rewrite (MapDom_Dom B m' a) in H4. - Unfold in_FSet in_dom in H4. Rewrite H3 in H4. Discriminate H4. - Apply H. Rewrite (MapDom_Dom A m a). Unfold in_FSet in_dom. Rewrite H2. Reflexivity. - Intro H1. Elim (option_sum ? (MapGet ? (MapDom B m') a)). Intro H2. Elim H2. Intros t H3. - Cut (in_dom A a m)=true. Intro. Rewrite (MapDom_Dom A m a) in H4. Unfold in_FSet in_dom in H4. - Rewrite H1 in H4. Discriminate H4. - Apply H0. Rewrite (MapDom_Dom B m' a). Unfold in_FSet in_dom. Rewrite H3. Reflexivity. - Intro H2. Rewrite H2. Exact H1. + unfold MapSubset, eqmap, eqm in |- *. intros. elim (option_sum _ (MapGet _ (MapDom A m) a)). + intro H1. elim H1. intro t. elim t. intro H2. elim (option_sum _ (MapGet _ (MapDom B m') a)). + intro H3. elim H3. intro t'. elim t'. intro H4. rewrite H4. exact H2. + intro H3. cut (in_dom B a m' = true). intro. rewrite (MapDom_Dom B m' a) in H4. + unfold in_FSet, in_dom in H4. rewrite H3 in H4. discriminate H4. + apply H. rewrite (MapDom_Dom A m a). unfold in_FSet, in_dom in |- *. rewrite H2. reflexivity. + intro H1. elim (option_sum _ (MapGet _ (MapDom B m') a)). intro H2. elim H2. intros t H3. + cut (in_dom A a m = true). intro. rewrite (MapDom_Dom A m a) in H4. unfold in_FSet, in_dom in H4. + rewrite H1 in H4. discriminate H4. + apply H0. rewrite (MapDom_Dom B m' a). unfold in_FSet, in_dom in |- *. rewrite H3. reflexivity. + intro H2. rewrite H2. exact H1. Qed. - Lemma MapSubset_trans : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (MapSubset A B m m') -> (MapSubset B C m' m'') -> (MapSubset A C m m''). + Lemma MapSubset_trans : + forall (m:Map A) (m':Map B) (m'':Map C), + MapSubset A B m m' -> MapSubset B C m' m'' -> MapSubset A C m m''. Proof. - Unfold MapSubset. Intros. Apply H0. Apply H. Assumption. + unfold MapSubset in |- *. intros. apply H0. apply H. assumption. Qed. End MapSubsetOrder. Section FSubsetOrder. - Lemma FSubset_refl : (s:FSet) (MapSubset ? ? s s). + Lemma FSubset_refl : forall s:FSet, MapSubset _ _ s s. Proof. - Exact (MapSubset_refl unit). + exact (MapSubset_refl unit). Qed. - Lemma FSubset_antisym : (s,s':FSet) - (MapSubset ? ? s s') -> (MapSubset ? ? s' s) -> (eqmap unit s s'). + Lemma FSubset_antisym : + forall s s':FSet, + MapSubset _ _ s s' -> MapSubset _ _ s' s -> eqmap unit s s'. Proof. - Intros. Rewrite <- (FSet_Dom s). Rewrite <- (FSet_Dom s'). - Exact (MapSubset_antisym ? ? s s' H H0). + intros. rewrite <- (FSet_Dom s). rewrite <- (FSet_Dom s'). + exact (MapSubset_antisym _ _ s s' H H0). Qed. - Lemma FSubset_trans : (s,s',s'':FSet) - (MapSubset ? ? s s') -> (MapSubset ? ? s' s'') -> (MapSubset ? ? s s''). + Lemma FSubset_trans : + forall s s' s'':FSet, + MapSubset _ _ s s' -> MapSubset _ _ s' s'' -> MapSubset _ _ s s''. Proof. - Exact (MapSubset_trans unit unit unit). + exact (MapSubset_trans unit unit unit). Qed. End FSubsetOrder. Section MapSubsetExtra. - Variable A, B : Set. + Variables A B : Set. - Lemma MapSubset_Dom_1 : (m:(Map A)) (m':(Map B)) - (MapSubset A B m m') -> (MapSubset unit unit (MapDom A m) (MapDom B m')). + Lemma MapSubset_Dom_1 : + forall (m:Map A) (m':Map B), + MapSubset A B m m' -> MapSubset unit unit (MapDom A m) (MapDom B m'). Proof. - Unfold MapSubset. Intros. Elim (MapDom_semantics_2 ? m a H0). Intros y H1. - Cut (in_dom A a m)=true->(in_dom B a m')=true. Intro. Unfold in_dom in H2. - Rewrite H1 in H2. Elim (option_sum ? (MapGet B m' a)). Intro H3. Elim H3. - Intros y' H4. Exact (MapDom_semantics_1 ? m' a y' H4). - Intro H3. Rewrite H3 in H2. Cut false=true. Intro. Discriminate H4. - Apply H2. Reflexivity. - Exact (H a). + unfold MapSubset in |- *. intros. elim (MapDom_semantics_2 _ m a H0). intros y H1. + cut (in_dom A a m = true -> in_dom B a m' = true). intro. unfold in_dom in H2. + rewrite H1 in H2. elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. + intros y' H4. exact (MapDom_semantics_1 _ m' a y' H4). + intro H3. rewrite H3 in H2. cut (false = true). intro. discriminate H4. + apply H2. reflexivity. + exact (H a). Qed. - Lemma MapSubset_Dom_2 : (m:(Map A)) (m':(Map B)) - (MapSubset unit unit (MapDom A m) (MapDom B m')) -> (MapSubset A B m m'). + Lemma MapSubset_Dom_2 : + forall (m:Map A) (m':Map B), + MapSubset unit unit (MapDom A m) (MapDom B m') -> MapSubset A B m m'. Proof. - Unfold MapSubset. Intros. Unfold in_dom in H0. Elim (option_sum ? (MapGet A m a)). - Intro H1. Elim H1. Intros y H2. - Elim (MapDom_semantics_2 ? ? ? (H a (MapDom_semantics_1 ? ? ? ? H2))). Intros y' H3. - Unfold in_dom. Rewrite H3. Reflexivity. - Intro H1. Rewrite H1 in H0. Discriminate H0. + unfold MapSubset in |- *. intros. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). + intro H1. elim H1. intros y H2. + elim (MapDom_semantics_2 _ _ _ (H a (MapDom_semantics_1 _ _ _ _ H2))). intros y' H3. + unfold in_dom in |- *. rewrite H3. reflexivity. + intro H1. rewrite H1 in H0. discriminate H0. Qed. - Lemma MapSubset_1_Dom : (m:(Map A)) (m':(Map B)) - (MapSubset_1 A B m m')=(MapSubset_1 unit unit (MapDom A m) (MapDom B m')). + Lemma MapSubset_1_Dom : + forall (m:Map A) (m':Map B), + MapSubset_1 A B m m' = MapSubset_1 unit unit (MapDom A m) (MapDom B m'). Proof. - Intros. Elim (sumbool_of_bool (MapSubset_1 A B m m')). Intro H. Rewrite H. - Apply sym_eq. Apply MapSubset_imp_1. Apply MapSubset_Dom_1. Exact (MapSubset_1_imp ? ? ? ? H). - Intro H. Rewrite H. Elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))). - Intro H0. - Rewrite (MapSubset_imp_1 ? ? ? ? (MapSubset_Dom_2 ? ? (MapSubset_1_imp ? ? ? ? H0))) in H. - Discriminate H. - Intro. Apply sym_eq. Assumption. + intros. elim (sumbool_of_bool (MapSubset_1 A B m m')). intro H. rewrite H. + apply sym_eq. apply MapSubset_imp_1. apply MapSubset_Dom_1. exact (MapSubset_1_imp _ _ _ _ H). + intro H. rewrite H. elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))). + intro H0. + rewrite + (MapSubset_imp_1 _ _ _ _ + (MapSubset_Dom_2 _ _ (MapSubset_1_imp _ _ _ _ H0))) + in H. + discriminate H. + intro. apply sym_eq. assumption. Qed. - Lemma MapSubset_Put : (m:(Map A)) (a:ad) (y:A) (MapSubset A A m (MapPut A m a y)). + Lemma MapSubset_Put : + forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut A m a y). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_put. Rewrite H. Apply orb_b_true. + unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite H. apply orb_b_true. Qed. - Lemma MapSubset_Put_mono : (m:(Map A)) (m':(Map B)) (a:ad) (y:A) (y':B) - (MapSubset A B m m') -> (MapSubset A B (MapPut A m a y) (MapPut B m' a y')). + Lemma MapSubset_Put_mono : + forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B), + MapSubset A B m m' -> MapSubset A B (MapPut A m a y) (MapPut B m' a y'). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_put. Rewrite (in_dom_put A m a y a0) in H0. - Elim (orb_true_elim ? ? H0). Intro H1. Rewrite H1. Reflexivity. - Intro H1. Rewrite (H ? H1). Apply orb_b_true. + unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite (in_dom_put A m a y a0) in H0. + elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity. + intro H1. rewrite (H _ H1). apply orb_b_true. Qed. - Lemma MapSubset_Put_behind : - (m:(Map A)) (a:ad) (y:A) (MapSubset A A m (MapPut_behind A m a y)). + Lemma MapSubset_Put_behind : + forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut_behind A m a y). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_put_behind. Rewrite H. Apply orb_b_true. + unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. rewrite H. apply orb_b_true. Qed. - Lemma MapSubset_Put_behind_mono : (m:(Map A)) (m':(Map B)) (a:ad) (y:A) (y':B) - (MapSubset A B m m') -> - (MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y')). + Lemma MapSubset_Put_behind_mono : + forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B), + MapSubset A B m m' -> + MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y'). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_put_behind. - Rewrite (in_dom_put_behind A m a y a0) in H0. - Elim (orb_true_elim ? ? H0). Intro H1. Rewrite H1. Reflexivity. - Intro H1. Rewrite (H ? H1). Apply orb_b_true. + unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. + rewrite (in_dom_put_behind A m a y a0) in H0. + elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity. + intro H1. rewrite (H _ H1). apply orb_b_true. Qed. - Lemma MapSubset_Remove : (m:(Map A)) (a:ad) (MapSubset A A (MapRemove A m a) m). + Lemma MapSubset_Remove : + forall (m:Map A) (a:ad), MapSubset A A (MapRemove A m a) m. Proof. - Unfold MapSubset. Intros. Unfold MapSubset. Intros. Rewrite (in_dom_remove ? m a a0) in H. - Elim (andb_prop ? ? H). Trivial. + unfold MapSubset in |- *. intros. unfold MapSubset in |- *. intros. rewrite (in_dom_remove _ m a a0) in H. + elim (andb_prop _ _ H). trivial. Qed. - Lemma MapSubset_Remove_mono : (m:(Map A)) (m':(Map B)) (a:ad) - (MapSubset A B m m') -> (MapSubset A B (MapRemove A m a) (MapRemove B m' a)). + Lemma MapSubset_Remove_mono : + forall (m:Map A) (m':Map B) (a:ad), + MapSubset A B m m' -> MapSubset A B (MapRemove A m a) (MapRemove B m' a). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_remove. Rewrite (in_dom_remove A m a a0) in H0. - Elim (andb_prop ? ? H0). Intros. Rewrite H1. Rewrite (H ? H2). Reflexivity. + unfold MapSubset in |- *. intros. rewrite in_dom_remove. rewrite (in_dom_remove A m a a0) in H0. + elim (andb_prop _ _ H0). intros. rewrite H1. rewrite (H _ H2). reflexivity. Qed. - Lemma MapSubset_Merge_l : (m,m':(Map A)) (MapSubset A A m (MapMerge A m m')). + Lemma MapSubset_Merge_l : + forall m m':Map A, MapSubset A A m (MapMerge A m m'). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite H. Reflexivity. + unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. reflexivity. Qed. - Lemma MapSubset_Merge_r : (m,m':(Map A)) (MapSubset A A m' (MapMerge A m m')). + Lemma MapSubset_Merge_r : + forall m m':Map A, MapSubset A A m' (MapMerge A m m'). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite H. Apply orb_b_true. + unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. apply orb_b_true. Qed. - Lemma MapSubset_Merge_mono : (m,m':(Map A)) (m'',m''':(Map B)) - (MapSubset A B m m'') -> (MapSubset A B m' m''') -> - (MapSubset A B (MapMerge A m m') (MapMerge B m'' m''')). + Lemma MapSubset_Merge_mono : + forall (m m':Map A) (m'' m''':Map B), + MapSubset A B m m'' -> + MapSubset A B m' m''' -> + MapSubset A B (MapMerge A m m') (MapMerge B m'' m'''). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite (in_dom_merge A m m' a) in H1. - Elim (orb_true_elim ? ? H1). Intro H2. Rewrite (H ? H2). Reflexivity. - Intro H2. Rewrite (H0 ? H2). Apply orb_b_true. + unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite (in_dom_merge A m m' a) in H1. + elim (orb_true_elim _ _ H1). intro H2. rewrite (H _ H2). reflexivity. + intro H2. rewrite (H0 _ H2). apply orb_b_true. Qed. - Lemma MapSubset_DomRestrTo_l : (m:(Map A)) (m':(Map B)) - (MapSubset A A (MapDomRestrTo A B m m') m). + Lemma MapSubset_DomRestrTo_l : + forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrTo A B m m') m. Proof. - Unfold MapSubset. Intros. Rewrite (in_dom_restrto ? ? m m' a) in H. Elim (andb_prop ? ? H). - Trivial. + unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H). + trivial. Qed. - Lemma MapSubset_DomRestrTo_r: (m:(Map A)) (m':(Map B)) - (MapSubset A B (MapDomRestrTo A B m m') m'). + Lemma MapSubset_DomRestrTo_r : + forall (m:Map A) (m':Map B), MapSubset A B (MapDomRestrTo A B m m') m'. Proof. - Unfold MapSubset. Intros. Rewrite (in_dom_restrto ? ? m m' a) in H. Elim (andb_prop ? ? H). - Trivial. + unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H). + trivial. Qed. - Lemma MapSubset_ext : (m0,m1:(Map A)) (m2,m3:(Map B)) - (eqmap A m0 m1) -> (eqmap B m2 m3) -> - (MapSubset A B m0 m2) -> (MapSubset A B m1 m3). + Lemma MapSubset_ext : + forall (m0 m1:Map A) (m2 m3:Map B), + eqmap A m0 m1 -> + eqmap B m2 m3 -> MapSubset A B m0 m2 -> MapSubset A B m1 m3. Proof. - Intros. Apply MapSubset_2_imp. Unfold MapSubset_2. - Apply eqmap_trans with m':=(MapDomRestrBy A B m0 m2). Apply MapDomRestrBy_ext. Apply eqmap_sym. - Assumption. - Apply eqmap_sym. Assumption. - Exact (MapSubset_imp_2 ? ? ? ? H1). + intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. + apply eqmap_trans with (m' := MapDomRestrBy A B m0 m2). apply MapDomRestrBy_ext. apply eqmap_sym. + assumption. + apply eqmap_sym. assumption. + exact (MapSubset_imp_2 _ _ _ _ H1). Qed. - Variable C, D : Set. + Variables C D : Set. - Lemma MapSubset_DomRestrTo_mono : - (m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D)) - (MapSubset ? ? m m'') -> (MapSubset ? ? m' m''') -> - (MapSubset ? ? (MapDomRestrTo ? ? m m') (MapDomRestrTo ? ? m'' m''')). + Lemma MapSubset_DomRestrTo_mono : + forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D), + MapSubset _ _ m m'' -> + MapSubset _ _ m' m''' -> + MapSubset _ _ (MapDomRestrTo _ _ m m') (MapDomRestrTo _ _ m'' m'''). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_restrto. Rewrite (in_dom_restrto A B m m' a) in H1. - Elim (andb_prop ? ? H1). Intros. Rewrite (H ? H2). Rewrite (H0 ? H3). Reflexivity. + unfold MapSubset in |- *. intros. rewrite in_dom_restrto. rewrite (in_dom_restrto A B m m' a) in H1. + elim (andb_prop _ _ H1). intros. rewrite (H _ H2). rewrite (H0 _ H3). reflexivity. Qed. - Lemma MapSubset_DomRestrBy_l : (m:(Map A)) (m':(Map B)) - (MapSubset A A (MapDomRestrBy A B m m') m). + Lemma MapSubset_DomRestrBy_l : + forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrBy A B m m') m. Proof. - Unfold MapSubset. Intros. Rewrite (in_dom_restrby ? ? m m' a) in H. Elim (andb_prop ? ? H). - Trivial. + unfold MapSubset in |- *. intros. rewrite (in_dom_restrby _ _ m m' a) in H. elim (andb_prop _ _ H). + trivial. Qed. - Lemma MapSubset_DomRestrBy_mono : - (m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D)) - (MapSubset ? ? m m'') -> (MapSubset ? ? m''' m') -> - (MapSubset ? ? (MapDomRestrBy ? ? m m') (MapDomRestrBy ? ? m'' m''')). + Lemma MapSubset_DomRestrBy_mono : + forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D), + MapSubset _ _ m m'' -> + MapSubset _ _ m''' m' -> + MapSubset _ _ (MapDomRestrBy _ _ m m') (MapDomRestrBy _ _ m'' m'''). Proof. - Unfold MapSubset. Intros. Rewrite in_dom_restrby. Rewrite (in_dom_restrby A B m m' a) in H1. - Elim (andb_prop ? ? H1). Intros. Rewrite (H ? H2). Elim (sumbool_of_bool (in_dom D a m''')). - Intro H4. Rewrite (H0 ? H4) in H3. Discriminate H3. - Intro H4. Rewrite H4. Reflexivity. + unfold MapSubset in |- *. intros. rewrite in_dom_restrby. rewrite (in_dom_restrby A B m m' a) in H1. + elim (andb_prop _ _ H1). intros. rewrite (H _ H2). elim (sumbool_of_bool (in_dom D a m''')). + intro H4. rewrite (H0 _ H4) in H3. discriminate H3. + intro H4. rewrite H4. reflexivity. Qed. End MapSubsetExtra. Section MapDisjointDef. - Variable A, B : Set. + Variables A B : Set. - Definition MapDisjoint := [m:(Map A)] [m':(Map B)] - (a:ad) (in_dom A a m)=true -> (in_dom B a m')=true -> False. + Definition MapDisjoint (m:Map A) (m':Map B) := + forall a:ad, in_dom A a m = true -> in_dom B a m' = true -> False. - Definition MapDisjoint_1 := [m:(Map A)] [m':(Map B)] - Cases (MapSweep A [a:ad][_:A] (in_dom B a m') m) of - NONE => true - | _ => false - end. + Definition MapDisjoint_1 (m:Map A) (m':Map B) := + match MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m with + | NONE => true + | _ => false + end. - Definition MapDisjoint_2 := [m:(Map A)] [m':(Map B)] - (eqmap A (MapDomRestrTo A B m m') (M0 A)). + Definition MapDisjoint_2 (m:Map A) (m':Map B) := + eqmap A (MapDomRestrTo A B m m') (M0 A). - Lemma MapDisjoint_imp_1 : (m:(Map A)) (m':(Map B)) - (MapDisjoint m m') -> (MapDisjoint_1 m m')=true. + Lemma MapDisjoint_imp_1 : + forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_1 m m' = true. Proof. - Unfold MapDisjoint MapDisjoint_1. Intros. - Elim (option_sum ? (MapSweep A [a:ad][_:A](in_dom B a m') m)). Intro H0. Elim H0. - Intro r. Elim r. Intros a y H1. Cut (in_dom A a m)=true->(in_dom B a m')=true->False. - Intro. Unfold 1 in_dom in H2. Rewrite (MapSweep_semantics_2 ? ? ? ? ? H1) in H2. - Rewrite (MapSweep_semantics_1 ? ? ? ? ? H1) in H2. Elim (H2 (refl_equal ? ?) (refl_equal ? ?)). - Exact (H a). - Intro H0. Rewrite H0. Reflexivity. + unfold MapDisjoint, MapDisjoint_1 in |- *. intros. + elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H0. elim H0. + intro r. elim r. intros a y H1. cut (in_dom A a m = true -> in_dom B a m' = true -> False). + intro. unfold in_dom at 1 in H2. rewrite (MapSweep_semantics_2 _ _ _ _ _ H1) in H2. + rewrite (MapSweep_semantics_1 _ _ _ _ _ H1) in H2. elim (H2 (refl_equal _) (refl_equal _)). + exact (H a). + intro H0. rewrite H0. reflexivity. Qed. - Lemma MapDisjoint_1_imp : (m:(Map A)) (m':(Map B)) - (MapDisjoint_1 m m')=true -> (MapDisjoint m m'). + Lemma MapDisjoint_1_imp : + forall (m:Map A) (m':Map B), MapDisjoint_1 m m' = true -> MapDisjoint m m'. Proof. - Unfold MapDisjoint MapDisjoint_1. Intros. - Elim (option_sum ? (MapSweep A [a:ad][_:A](in_dom B a m') m)). Intro H2. Elim H2. - Intro r. Elim r. Intros a' y' H3. Rewrite H3 in H. Discriminate H. - Intro H2. Unfold in_dom in H0. Elim (option_sum ? (MapGet A m a)). Intro H3. Elim H3. - Intros y H4. Rewrite (MapSweep_semantics_3 ? ? ? H2 a y H4) in H1. Discriminate H1. - Intro H3. Rewrite H3 in H0. Discriminate H0. + unfold MapDisjoint, MapDisjoint_1 in |- *. intros. + elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H2. elim H2. + intro r. elim r. intros a' y' H3. rewrite H3 in H. discriminate H. + intro H2. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). intro H3. elim H3. + intros y H4. rewrite (MapSweep_semantics_3 _ _ _ H2 a y H4) in H1. discriminate H1. + intro H3. rewrite H3 in H0. discriminate H0. Qed. - Lemma MapDisjoint_imp_2 : (m:(Map A)) (m':(Map B)) (MapDisjoint m m') -> - (MapDisjoint_2 m m'). + Lemma MapDisjoint_imp_2 : + forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_2 m m'. Proof. - Unfold MapDisjoint MapDisjoint_2. Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrTo_semantics A B m m' a). - Cut (in_dom A a m)=true->(in_dom B a m')=true->False. Intro. - Elim (option_sum ? (MapGet A m a)). Intro H1. Elim H1. Intros y H2. Unfold 1 in_dom in H0. - Elim (option_sum ? (MapGet B m' a)). Intro H3. Elim H3. Intros y' H4. Unfold 1 in_dom in H0. - Rewrite H4 in H0. Rewrite H2 in H0. Elim (H0 (refl_equal ? ?) (refl_equal ? ?)). - Intro H3. Rewrite H3. Reflexivity. - Intro H1. Rewrite H1. Case (MapGet B m' a); Reflexivity. - Exact (H a). + unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrTo_semantics A B m m' a). + cut (in_dom A a m = true -> in_dom B a m' = true -> False). intro. + elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. unfold in_dom at 1 in H0. + elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. intros y' H4. unfold in_dom at 1 in H0. + rewrite H4 in H0. rewrite H2 in H0. elim (H0 (refl_equal _) (refl_equal _)). + intro H3. rewrite H3. reflexivity. + intro H1. rewrite H1. case (MapGet B m' a); reflexivity. + exact (H a). Qed. - Lemma MapDisjoint_2_imp : (m:(Map A)) (m':(Map B)) (MapDisjoint_2 m m') -> - (MapDisjoint m m'). + Lemma MapDisjoint_2_imp : + forall (m:Map A) (m':Map B), MapDisjoint_2 m m' -> MapDisjoint m m'. Proof. - Unfold MapDisjoint MapDisjoint_2. Unfold eqmap eqm. Intros. Elim (in_dom_some ? ? ? H0). - Intros y H2. Elim (in_dom_some ? ? ? H1). Intros y' H3. - Cut (MapGet A (MapDomRestrTo A B m m') a)=(NONE A). Intro. - Rewrite (MapDomRestrTo_semantics ? ? m m' a) in H4. Rewrite H3 in H4. Rewrite H2 in H4. - Discriminate H4. - Exact (H a). + unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. elim (in_dom_some _ _ _ H0). + intros y H2. elim (in_dom_some _ _ _ H1). intros y' H3. + cut (MapGet A (MapDomRestrTo A B m m') a = NONE A). intro. + rewrite (MapDomRestrTo_semantics _ _ m m' a) in H4. rewrite H3 in H4. rewrite H2 in H4. + discriminate H4. + exact (H a). Qed. - Lemma Map_M0_disjoint : (m:(Map B)) (MapDisjoint (M0 A) m). + Lemma Map_M0_disjoint : forall m:Map B, MapDisjoint (M0 A) m. Proof. - Unfold MapDisjoint in_dom. Intros. Discriminate H. + unfold MapDisjoint, in_dom in |- *. intros. discriminate H. Qed. - Lemma Map_disjoint_M0 : (m:(Map A)) (MapDisjoint m (M0 B)). + Lemma Map_disjoint_M0 : forall m:Map A, MapDisjoint m (M0 B). Proof. - Unfold MapDisjoint in_dom. Intros. Discriminate H0. + unfold MapDisjoint, in_dom in |- *. intros. discriminate H0. Qed. End MapDisjointDef. Section MapDisjointExtra. - Variable A, B : Set. + Variables A B : Set. - Lemma MapDisjoint_ext : (m0,m1:(Map A)) (m2,m3:(Map B)) - (eqmap A m0 m1) -> (eqmap B m2 m3) -> - (MapDisjoint A B m0 m2) -> (MapDisjoint A B m1 m3). + Lemma MapDisjoint_ext : + forall (m0 m1:Map A) (m2 m3:Map B), + eqmap A m0 m1 -> + eqmap B m2 m3 -> MapDisjoint A B m0 m2 -> MapDisjoint A B m1 m3. Proof. - Intros. Apply MapDisjoint_2_imp. Unfold MapDisjoint_2. - Apply eqmap_trans with m':=(MapDomRestrTo A B m0 m2). Apply eqmap_sym. Apply MapDomRestrTo_ext. - Assumption. - Assumption. - Exact (MapDisjoint_imp_2 ? ? ? ? H1). + intros. apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. + apply eqmap_trans with (m' := MapDomRestrTo A B m0 m2). apply eqmap_sym. apply MapDomRestrTo_ext. + assumption. + assumption. + exact (MapDisjoint_imp_2 _ _ _ _ H1). Qed. - Lemma MapMerge_disjoint : (m,m':(Map A)) (MapDisjoint A A m m') -> - (a:ad) (in_dom A a (MapMerge A m m'))= - (orb (andb (in_dom A a m) (negb (in_dom A a m'))) - (andb (in_dom A a m') (negb (in_dom A a m)))). + Lemma MapMerge_disjoint : + forall m m':Map A, + MapDisjoint A A m m' -> + forall a:ad, + in_dom A a (MapMerge A m m') = + orb (andb (in_dom A a m) (negb (in_dom A a m'))) + (andb (in_dom A a m') (negb (in_dom A a m))). Proof. - Unfold MapDisjoint. Intros. Rewrite in_dom_merge. Elim (sumbool_of_bool (in_dom A a m)). - Intro H0. Rewrite H0. Elim (sumbool_of_bool (in_dom A a m')). Intro H1. Elim (H a H0 H1). - Intro H1. Rewrite H1. Reflexivity. - Intro H0. Rewrite H0. Simpl. Rewrite andb_b_true. Reflexivity. + unfold MapDisjoint in |- *. intros. rewrite in_dom_merge. elim (sumbool_of_bool (in_dom A a m)). + intro H0. rewrite H0. elim (sumbool_of_bool (in_dom A a m')). intro H1. elim (H a H0 H1). + intro H1. rewrite H1. reflexivity. + intro H0. rewrite H0. simpl in |- *. rewrite andb_b_true. reflexivity. Qed. - Lemma MapDisjoint_M2_l : (m0,m1:(Map A)) (m2,m3:(Map B)) - (MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)) -> (MapDisjoint A B m0 m2). + Lemma MapDisjoint_M2_l : + forall (m0 m1:Map A) (m2 m3:Map B), + MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m0 m2. Proof. - Unfold MapDisjoint in_dom. Intros. Elim (option_sum ? (MapGet A m0 a)). Intro H2. - Elim H2. Intros y H3. Elim (option_sum ? (MapGet B m2 a)). Intro H4. Elim H4. - Intros y' H5. Apply (H (ad_double a)). - Rewrite (MapGet_M2_bit_0_0 ? (ad_double a) (ad_double_bit_0 a) m0 m1). - Rewrite (ad_double_div_2 a). Rewrite H3. Reflexivity. - Rewrite (MapGet_M2_bit_0_0 ? (ad_double a) (ad_double_bit_0 a) m2 m3). - Rewrite (ad_double_div_2 a). Rewrite H5. Reflexivity. - Intro H4. Rewrite H4 in H1. Discriminate H1. - Intro H2. Rewrite H2 in H0. Discriminate H0. + unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m0 a)). intro H2. + elim H2. intros y H3. elim (option_sum _ (MapGet B m2 a)). intro H4. elim H4. + intros y' H5. apply (H (ad_double a)). + rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m0 m1). + rewrite (ad_double_div_2 a). rewrite H3. reflexivity. + rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m2 m3). + rewrite (ad_double_div_2 a). rewrite H5. reflexivity. + intro H4. rewrite H4 in H1. discriminate H1. + intro H2. rewrite H2 in H0. discriminate H0. Qed. - Lemma MapDisjoint_M2_r : (m0,m1:(Map A)) (m2,m3:(Map B)) - (MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)) -> (MapDisjoint A B m1 m3). + Lemma MapDisjoint_M2_r : + forall (m0 m1:Map A) (m2 m3:Map B), + MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m1 m3. Proof. - Unfold MapDisjoint in_dom. Intros. Elim (option_sum ? (MapGet A m1 a)). Intro H2. - Elim H2. Intros y H3. Elim (option_sum ? (MapGet B m3 a)). Intro H4. Elim H4. - Intros y' H5. Apply (H (ad_double_plus_un a)). - Rewrite (MapGet_M2_bit_0_1 ? (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m0 m1). - Rewrite (ad_double_plus_un_div_2 a). Rewrite H3. Reflexivity. - Rewrite (MapGet_M2_bit_0_1 ? (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m2 m3). - Rewrite (ad_double_plus_un_div_2 a). Rewrite H5. Reflexivity. - Intro H4. Rewrite H4 in H1. Discriminate H1. - Intro H2. Rewrite H2 in H0. Discriminate H0. + unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m1 a)). intro H2. + elim H2. intros y H3. elim (option_sum _ (MapGet B m3 a)). intro H4. elim H4. + intros y' H5. apply (H (ad_double_plus_un a)). + rewrite + (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) + m0 m1). + rewrite (ad_double_plus_un_div_2 a). rewrite H3. reflexivity. + rewrite + (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) + m2 m3). + rewrite (ad_double_plus_un_div_2 a). rewrite H5. reflexivity. + intro H4. rewrite H4 in H1. discriminate H1. + intro H2. rewrite H2 in H0. discriminate H0. Qed. - Lemma MapDisjoint_M2 : (m0,m1:(Map A)) (m2,m3:(Map B)) - (MapDisjoint A B m0 m2) -> (MapDisjoint A B m1 m3) -> - (MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)). + Lemma MapDisjoint_M2 : + forall (m0 m1:Map A) (m2 m3:Map B), + MapDisjoint A B m0 m2 -> + MapDisjoint A B m1 m3 -> MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3). Proof. - Unfold MapDisjoint in_dom. Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H3. - Rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1. - Rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. Exact (H0 (ad_div_2 a) H1 H2). - Intro H3. Rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1. - Rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. Exact (H (ad_div_2 a) H1 H2). + unfold MapDisjoint, in_dom in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3. + rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1. + rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. exact (H0 (ad_div_2 a) H1 H2). + intro H3. rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1. + rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. exact (H (ad_div_2 a) H1 H2). Qed. - Lemma MapDisjoint_M1_l : (m:(Map A)) (a:ad) (y:B) - (MapDisjoint B A (M1 B a y) m) -> (in_dom A a m)=false. + Lemma MapDisjoint_M1_l : + forall (m:Map A) (a:ad) (y:B), + MapDisjoint B A (M1 B a y) m -> in_dom A a m = false. Proof. - Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (in_dom A a m)). Intro H0. - Elim (H a (in_dom_M1_1 B a y) H0). - Trivial. + unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0. + elim (H a (in_dom_M1_1 B a y) H0). + trivial. Qed. - Lemma MapDisjoint_M1_r : (m:(Map A)) (a:ad) (y:B) - (MapDisjoint A B m (M1 B a y)) -> (in_dom A a m)=false. + Lemma MapDisjoint_M1_r : + forall (m:Map A) (a:ad) (y:B), + MapDisjoint A B m (M1 B a y) -> in_dom A a m = false. Proof. - Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (in_dom A a m)). Intro H0. - Elim (H a H0 (in_dom_M1_1 B a y)). - Trivial. + unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0. + elim (H a H0 (in_dom_M1_1 B a y)). + trivial. Qed. - Lemma MapDisjoint_M1_conv_l : (m:(Map A)) (a:ad) (y:B) - (in_dom A a m)=false -> (MapDisjoint B A (M1 B a y) m). + Lemma MapDisjoint_M1_conv_l : + forall (m:Map A) (a:ad) (y:B), + in_dom A a m = false -> MapDisjoint B A (M1 B a y) m. Proof. - Unfold MapDisjoint. Intros. Rewrite (in_dom_M1_2 B a a0 y H0) in H. Rewrite H1 in H. - Discriminate H. + unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H0) in H. rewrite H1 in H. + discriminate H. Qed. - Lemma MapDisjoint_M1_conv_r : (m:(Map A)) (a:ad) (y:B) - (in_dom A a m)=false -> (MapDisjoint A B m (M1 B a y)). + Lemma MapDisjoint_M1_conv_r : + forall (m:Map A) (a:ad) (y:B), + in_dom A a m = false -> MapDisjoint A B m (M1 B a y). Proof. - Unfold MapDisjoint. Intros. Rewrite (in_dom_M1_2 B a a0 y H1) in H. Rewrite H0 in H. - Discriminate H. + unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H1) in H. rewrite H0 in H. + discriminate H. Qed. - Lemma MapDisjoint_sym : (m:(Map A)) (m':(Map B)) - (MapDisjoint A B m m') -> (MapDisjoint B A m' m). + Lemma MapDisjoint_sym : + forall (m:Map A) (m':Map B), MapDisjoint A B m m' -> MapDisjoint B A m' m. Proof. - Unfold MapDisjoint. Intros. Exact (H ? H1 H0). + unfold MapDisjoint in |- *. intros. exact (H _ H1 H0). Qed. - Lemma MapDisjoint_empty : (m:(Map A)) (MapDisjoint A A m m) -> (eqmap A m (M0 A)). + Lemma MapDisjoint_empty : + forall m:Map A, MapDisjoint A A m m -> eqmap A m (M0 A). Proof. - Unfold eqmap eqm. Intros. Rewrite <- (MapDomRestrTo_idempotent A m a). - Exact (MapDisjoint_imp_2 A A m m H a). + unfold eqmap, eqm in |- *. intros. rewrite <- (MapDomRestrTo_idempotent A m a). + exact (MapDisjoint_imp_2 A A m m H a). Qed. - Lemma MapDelta_disjoint : (m,m':(Map A)) (MapDisjoint A A m m') -> - (eqmap A (MapDelta A m m') (MapMerge A m m')). + Lemma MapDelta_disjoint : + forall m m':Map A, + MapDisjoint A A m m' -> eqmap A (MapDelta A m m') (MapMerge A m m'). Proof. - Intros. - Apply eqmap_trans with m':=(MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')). - Apply MapDelta_as_DomRestrBy. - Apply eqmap_trans with m':=(MapDomRestrBy A A (MapMerge A m m') (M0 A)). - Apply MapDomRestrBy_ext. Apply eqmap_refl. - Exact (MapDisjoint_imp_2 A A m m' H). - Apply MapDomRestrBy_m_empty. + intros. + apply eqmap_trans with + (m' := MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')). + apply MapDelta_as_DomRestrBy. + apply eqmap_trans with (m' := MapDomRestrBy A A (MapMerge A m m') (M0 A)). + apply MapDomRestrBy_ext. apply eqmap_refl. + exact (MapDisjoint_imp_2 A A m m' H). + apply MapDomRestrBy_m_empty. Qed. Variable C : Set. - Lemma MapDomRestr_disjoint : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m'')). + Lemma MapDomRestr_disjoint : + forall (m:Map A) (m':Map B) (m'':Map C), + MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m''). Proof. - Unfold MapDisjoint. Intros m m' m'' a. Rewrite in_dom_restrto. Rewrite in_dom_restrby. - Intros. Elim (andb_prop ? ? H). Elim (andb_prop ? ? H0). Intros. Rewrite H4 in H2. - Discriminate H2. + unfold MapDisjoint in |- *. intros m m' m'' a. rewrite in_dom_restrto. rewrite in_dom_restrby. + intros. elim (andb_prop _ _ H). elim (andb_prop _ _ H0). intros. rewrite H4 in H2. + discriminate H2. Qed. - Lemma MapDelta_RestrTo_disjoint : (m,m':(Map A)) - (MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m')). + Lemma MapDelta_RestrTo_disjoint : + forall m m':Map A, + MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m'). Proof. - Unfold MapDisjoint. Intros m m' a. Rewrite in_dom_delta. Rewrite in_dom_restrto. - Intros. Elim (andb_prop ? ? H0). Intros. Rewrite H1 in H. Rewrite H2 in H. Discriminate H. + unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto. + intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H. Qed. - Lemma MapDelta_RestrTo_disjoint_2 : (m,m':(Map A)) - (MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m)). + Lemma MapDelta_RestrTo_disjoint_2 : + forall m m':Map A, + MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m). Proof. - Unfold MapDisjoint. Intros m m' a. Rewrite in_dom_delta. Rewrite in_dom_restrto. - Intros. Elim (andb_prop ? ? H0). Intros. Rewrite H1 in H. Rewrite H2 in H. Discriminate H. + unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto. + intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H. Qed. Variable D : Set. - Lemma MapSubset_Disjoint : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D)) - (MapSubset ? ? m m') -> (MapSubset ? ? m'' m''') -> (MapDisjoint ? ? m' m''') -> - (MapDisjoint ? ? m m''). + Lemma MapSubset_Disjoint : + forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D), + MapSubset _ _ m m' -> + MapSubset _ _ m'' m''' -> + MapDisjoint _ _ m' m''' -> MapDisjoint _ _ m m''. Proof. - Unfold MapSubset MapDisjoint. Intros. Exact (H1 ? (H ? H2) (H0 ? H3)). + unfold MapSubset, MapDisjoint in |- *. intros. exact (H1 _ (H _ H2) (H0 _ H3)). Qed. - Lemma MapSubset_Disjoint_l : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (MapSubset ? ? m m') -> (MapDisjoint ? ? m' m'') -> - (MapDisjoint ? ? m m''). + Lemma MapSubset_Disjoint_l : + forall (m:Map A) (m':Map B) (m'':Map C), + MapSubset _ _ m m' -> MapDisjoint _ _ m' m'' -> MapDisjoint _ _ m m''. Proof. - Unfold MapSubset MapDisjoint. Intros. Exact (H0 ? (H ? H1) H2). + unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ (H _ H1) H2). Qed. - Lemma MapSubset_Disjoint_r : (m:(Map A)) (m'':(Map C)) (m''':(Map D)) - (MapSubset ? ? m'' m''') -> (MapDisjoint ? ? m m''') -> - (MapDisjoint ? ? m m''). + Lemma MapSubset_Disjoint_r : + forall (m:Map A) (m'':Map C) (m''':Map D), + MapSubset _ _ m'' m''' -> + MapDisjoint _ _ m m''' -> MapDisjoint _ _ m m''. Proof. - Unfold MapSubset MapDisjoint. Intros. Exact (H0 ? H1 (H ? H2)). + unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ H1 (H _ H2)). Qed. -End MapDisjointExtra. +End MapDisjointExtra.
\ No newline at end of file |
