aboutsummaryrefslogtreecommitdiff
path: root/theories/IntMap/Addr.v
diff options
context:
space:
mode:
authorcoq2001-04-20 16:00:43 +0000
committercoq2001-04-20 16:00:43 +0000
commitd857c99c6c985eb36ce8a4b2667dc0b5ccca115c (patch)
tree2ea53c80dd3319b24c38b15cb5be5a582c9b302a /theories/IntMap/Addr.v
parent4837b599b4f158decc91f615a25e3a636c6ced5d (diff)
Library doc adjustments (until page 140)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@1655 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/IntMap/Addr.v')
-rw-r--r--theories/IntMap/Addr.v29
1 files changed, 19 insertions, 10 deletions
diff --git a/theories/IntMap/Addr.v b/theories/IntMap/Addr.v
index debaed16cf..026b0ef16d 100644
--- a/theories/IntMap/Addr.v
+++ b/theories/IntMap/Addr.v
@@ -7,7 +7,7 @@
(***********************************************************************)
(*i $Id$ i*)
-(*s Representation of adresses by [positive] the type of binary numbers *)
+(*s Representation of adresses by the [positive] type of binary numbers *)
Require Bool.
Require ZArith.
@@ -200,7 +200,8 @@ Proof.
Case p; Trivial.
Qed.
-Lemma ad_xor_sem_3 : (p:positive) (a':ad) (ad_bit (ad_xor (ad_x (xO p)) a') O)=(ad_bit a' O).
+Lemma ad_xor_sem_3
+ : (p:positive) (a':ad) (ad_bit (ad_xor (ad_x (xO p)) a') O)=(ad_bit a' O).
Proof.
Intros. Case a'. Trivial.
Simpl. Intro.
@@ -219,7 +220,8 @@ Proof.
Case (p_xor p p1); Trivial.
Qed.
-Lemma ad_xor_sem_5 : (a,a':ad) (ad_bit (ad_xor a a') O)=(adf_xor (ad_bit a) (ad_bit a') O).
+Lemma ad_xor_sem_5
+ : (a,a':ad) (ad_bit (ad_xor a a') O)=(adf_xor (ad_bit a) (ad_bit a') O).
Proof.
Induction a. Intro. Change (ad_bit a' O)=(xorb false (ad_bit a' O)). Rewrite false_xorb. Trivial.
Intro. Case p. Exact ad_xor_sem_4.
@@ -258,7 +260,8 @@ Proof.
Unfold adf_xor. Unfold 2 ad_bit. Unfold ad_bit_1. Rewrite false_xorb. Simpl. Case p; Trivial.
Qed.
-Lemma ad_xor_semantics : (a,a':ad) (eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a'))).
+Lemma ad_xor_semantics
+ : (a,a':ad) (eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a'))).
Proof.
Unfold eqf. Intros. Generalize a a'. Elim n. Exact ad_xor_sem_5.
Exact ad_xor_sem_6.
@@ -303,7 +306,8 @@ Proof.
Unfold eqf. Intros. Unfold adf_xor. Rewrite H. Rewrite H0. Reflexivity.
Qed.
-Lemma ad_xor_assoc : (a,a',a'':ad) (ad_xor (ad_xor a a') a'')=(ad_xor a (ad_xor a' a'')).
+Lemma ad_xor_assoc
+ : (a,a',a'':ad) (ad_xor (ad_xor a a') a'')=(ad_xor a (ad_xor a' a'')).
Proof.
Intros. Apply ad_faithful.
Apply eqf_trans with f':=(adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')).
@@ -354,7 +358,8 @@ Proof.
Intros. Rewrite <- (ad_double_div_2 a0). Rewrite H. Apply ad_double_div_2.
Qed.
-Lemma ad_double_plus_un_inj : (a0,a1:ad) (ad_double_plus_un a0)=(ad_double_plus_un a1) -> a0=a1.
+Lemma ad_double_plus_un_inj
+ : (a0,a1:ad) (ad_double_plus_un a0)=(ad_double_plus_un a1) -> a0=a1.
Proof.
Intros. Rewrite <- (ad_double_plus_un_div_2 a0). Rewrite H. Apply ad_double_plus_un_div_2.
Qed.
@@ -383,7 +388,8 @@ Proof.
Intro. Discriminate H.
Qed.
-Lemma ad_div_2_double_plus_un : (a:ad) (ad_bit_0 a)=true -> (ad_double_plus_un (ad_div_2 a))=a.
+Lemma ad_div_2_double_plus_un
+ : (a:ad) (ad_bit_0 a)=true -> (ad_double_plus_un (ad_div_2 a))=a.
Proof.
Induction a. Intro. Discriminate H.
Induction p. Intros. Reflexivity.
@@ -403,13 +409,15 @@ Proof.
Induction p; Trivial.
Qed.
-Lemma ad_xor_bit_0 : (a,a':ad) (ad_bit_0 (ad_xor a a'))=(xorb (ad_bit_0 a) (ad_bit_0 a')).
+Lemma ad_xor_bit_0
+ : (a,a':ad) (ad_bit_0 (ad_xor a a'))=(xorb (ad_bit_0 a) (ad_bit_0 a')).
Proof.
Intros. Rewrite <- ad_bit_0_correct. Rewrite (ad_xor_semantics a a' O).
Unfold adf_xor. Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Reflexivity.
Qed.
-Lemma ad_xor_div_2 : (a,a':ad) (ad_div_2 (ad_xor a a'))=(ad_xor (ad_div_2 a) (ad_div_2 a')).
+Lemma ad_xor_div_2
+ : (a,a':ad) (ad_div_2 (ad_xor a a'))=(ad_xor (ad_div_2 a) (ad_div_2 a')).
Proof.
Intros. Apply ad_faithful. Unfold eqf. Intro.
Rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n).
@@ -426,7 +434,8 @@ Proof.
Rewrite xorb_assoc. Rewrite xorb_nilpotent. Rewrite xorb_false. Reflexivity.
Qed.
-Lemma ad_neg_bit_0_1 : (a,a':ad) (ad_xor a a')=(ad_x xH) -> (ad_bit_0 a)=(negb (ad_bit_0 a')).
+Lemma ad_neg_bit_0_1
+ : (a,a':ad) (ad_xor a a')=(ad_x xH) -> (ad_bit_0 a)=(negb (ad_bit_0 a')).
Proof.
Intros. Apply ad_neg_bit_0. Rewrite H. Reflexivity.
Qed.