diff options
| author | herbelin | 2003-11-29 17:28:49 +0000 |
|---|---|---|
| committer | herbelin | 2003-11-29 17:28:49 +0000 |
| commit | 9a6e3fe764dc2543dfa94de20fe5eec42d6be705 (patch) | |
| tree | 77c0021911e3696a8c98e35a51840800db4be2a9 /theories/IntMap/Addec.v | |
| parent | 9058fb97426307536f56c3e7447be2f70798e081 (diff) | |
Remplacement des fichiers .v ancienne syntaxe de theories, contrib et states par les fichiers nouvelle syntaxe
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5027 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/IntMap/Addec.v')
| -rw-r--r-- | theories/IntMap/Addec.v | 248 |
1 files changed, 131 insertions, 117 deletions
diff --git a/theories/IntMap/Addec.v b/theories/IntMap/Addec.v index f0ec7b37d2..5ad2ea852b 100644 --- a/theories/IntMap/Addec.v +++ b/theories/IntMap/Addec.v @@ -9,171 +9,185 @@ (** Equality on adresses *) -Require Bool. -Require Sumbool. -Require ZArith. -Require Addr. - -Fixpoint ad_eq_1 [p1,p2:positive] : bool := - Cases p1 p2 of - xH xH => true - | (xO p'1) (xO p'2) => (ad_eq_1 p'1 p'2) - | (xI p'1) (xI p'2) => (ad_eq_1 p'1 p'2) - | _ _ => false +Require Import Bool. +Require Import Sumbool. +Require Import ZArith. +Require Import Addr. + +Fixpoint ad_eq_1 (p1 p2:positive) {struct p2} : bool := + match p1, p2 with + | xH, xH => true + | xO p'1, xO p'2 => ad_eq_1 p'1 p'2 + | xI p'1, xI p'2 => ad_eq_1 p'1 p'2 + | _, _ => false end. -Definition ad_eq := [a,a':ad] - Cases a a' of - ad_z ad_z => true - | (ad_x p) (ad_x p') => (ad_eq_1 p p') - | _ _ => false +Definition ad_eq (a a':ad) := + match a, a' with + | ad_z, ad_z => true + | ad_x p, ad_x p' => ad_eq_1 p p' + | _, _ => false end. -Lemma ad_eq_correct : (a:ad) (ad_eq a a)=true. +Lemma ad_eq_correct : forall a:ad, ad_eq a a = true. Proof. - NewDestruct a; Trivial. - NewInduction p; Trivial. + destruct a; trivial. + induction p; trivial. Qed. -Lemma ad_eq_complete : (a,a':ad) (ad_eq a a')=true -> a=a'. -Proof. - NewDestruct a. NewDestruct a'; Trivial. NewDestruct p. - Discriminate 1. - Discriminate 1. - Discriminate 1. - NewDestruct a'. Intros. Discriminate H. - Unfold ad_eq. Intros. Cut p=p0. Intros. Rewrite H0. Reflexivity. - Generalize Dependent p0. - NewInduction p as [p IHp|p IHp|]. NewDestruct p0; Intro H. - Rewrite (IHp p0). Reflexivity. - Exact H. - Discriminate H. - Discriminate H. - NewDestruct p0; Intro H. Discriminate H. - Rewrite (IHp p0 H). Reflexivity. - Discriminate H. - NewDestruct p0; Intro H. Discriminate H. - Discriminate H. - Trivial. +Lemma ad_eq_complete : forall a a':ad, ad_eq a a' = true -> a = a'. +Proof. + destruct a. destruct a'; trivial. destruct p. + discriminate 1. + discriminate 1. + discriminate 1. + destruct a'. intros. discriminate H. + unfold ad_eq in |- *. intros. cut (p = p0). intros. rewrite H0. reflexivity. + generalize dependent p0. + induction p as [p IHp| p IHp| ]. destruct p0; intro H. + rewrite (IHp p0). reflexivity. + exact H. + discriminate H. + discriminate H. + destruct p0; intro H. discriminate H. + rewrite (IHp p0 H). reflexivity. + discriminate H. + destruct p0 as [p| p| ]; intro H. discriminate H. + discriminate H. + trivial. Qed. -Lemma ad_eq_comm : (a,a':ad) (ad_eq a a')=(ad_eq a' a). -Proof. - Intros. Cut (b,b':bool)(ad_eq a a')=b->(ad_eq a' a)=b'->b=b'. - Intros. Apply H. Reflexivity. - Reflexivity. - NewDestruct b. Intros. Cut a=a'. - Intro. Rewrite H1 in H0. Rewrite (ad_eq_correct a') in H0. Exact H0. - Apply ad_eq_complete. Exact H. - NewDestruct b'. Intros. Cut a'=a. - Intro. Rewrite H1 in H. Rewrite H1 in H0. Rewrite <- H. Exact H0. - Apply ad_eq_complete. Exact H0. - Trivial. +Lemma ad_eq_comm : forall a a':ad, ad_eq a a' = ad_eq a' a. +Proof. + intros. cut (forall b b':bool, ad_eq a a' = b -> ad_eq a' a = b' -> b = b'). + intros. apply H. reflexivity. + reflexivity. + destruct b. intros. cut (a = a'). + intro. rewrite H1 in H0. rewrite (ad_eq_correct a') in H0. exact H0. + apply ad_eq_complete. exact H. + destruct b'. intros. cut (a' = a). + intro. rewrite H1 in H. rewrite H1 in H0. rewrite <- H. exact H0. + apply ad_eq_complete. exact H0. + trivial. Qed. -Lemma ad_xor_eq_true : (a,a':ad) (ad_xor a a')=ad_z -> (ad_eq a a')=true. +Lemma ad_xor_eq_true : + forall a a':ad, ad_xor a a' = ad_z -> ad_eq a a' = true. Proof. - Intros. Rewrite (ad_xor_eq a a' H). Apply ad_eq_correct. + intros. rewrite (ad_xor_eq a a' H). apply ad_eq_correct. Qed. Lemma ad_xor_eq_false : - (a,a':ad) (p:positive) (ad_xor a a')=(ad_x p) -> (ad_eq a a')=false. + forall (a a':ad) (p:positive), ad_xor a a' = ad_x p -> ad_eq a a' = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0. - Rewrite (ad_eq_complete a a' H0) in H. Rewrite (ad_xor_nilpotent a') in H. Discriminate H. - Trivial. + intros. elim (sumbool_of_bool (ad_eq a a')). intro H0. + rewrite (ad_eq_complete a a' H0) in H. rewrite (ad_xor_nilpotent a') in H. discriminate H. + trivial. Qed. -Lemma ad_bit_0_1_not_double : (a:ad) (ad_bit_0 a)=true -> - (a0:ad) (ad_eq (ad_double a0) a)=false. +Lemma ad_bit_0_1_not_double : + forall a:ad, + ad_bit_0 a = true -> forall a0:ad, ad_eq (ad_double a0) a = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0. - Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_bit_0 a0) in H. Discriminate H. - Trivial. + intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0. + rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_bit_0 a0) in H. discriminate H. + trivial. Qed. -Lemma ad_not_div_2_not_double : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false -> - (ad_eq a (ad_double a0))=false. +Lemma ad_not_div_2_not_double : + forall a a0:ad, + ad_eq (ad_div_2 a) a0 = false -> ad_eq a (ad_double a0) = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0. - Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_div_2 a0) in H. - Rewrite (ad_eq_correct a0) in H. Discriminate H. - Intro. Rewrite ad_eq_comm. Assumption. + intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0. + rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_div_2 a0) in H. + rewrite (ad_eq_correct a0) in H. discriminate H. + intro. rewrite ad_eq_comm. assumption. Qed. -Lemma ad_bit_0_0_not_double_plus_un : (a:ad) (ad_bit_0 a)=false -> - (a0:ad) (ad_eq (ad_double_plus_un a0) a)=false. +Lemma ad_bit_0_0_not_double_plus_un : + forall a:ad, + ad_bit_0 a = false -> forall a0:ad, ad_eq (ad_double_plus_un a0) a = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). Intro H0. - Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_bit_0 a0) in H. - Discriminate H. - Trivial. + intros. elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). intro H0. + rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_bit_0 a0) in H. + discriminate H. + trivial. Qed. -Lemma ad_not_div_2_not_double_plus_un : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false -> - (ad_eq (ad_double_plus_un a0) a)=false. +Lemma ad_not_div_2_not_double_plus_un : + forall a a0:ad, + ad_eq (ad_div_2 a) a0 = false -> ad_eq (ad_double_plus_un a0) a = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). Intro H0. - Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_div_2 a0) in H. - Rewrite (ad_eq_correct a0) in H. Discriminate H. - Intro H0. Rewrite ad_eq_comm. Assumption. + intros. elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). intro H0. + rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_div_2 a0) in H. + rewrite (ad_eq_correct a0) in H. discriminate H. + intro H0. rewrite ad_eq_comm. assumption. Qed. Lemma ad_bit_0_neq : - (a,a':ad) (ad_bit_0 a)=false -> (ad_bit_0 a')=true -> (ad_eq a a')=false. + forall a a':ad, + ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_eq a a' = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H1. Rewrite (ad_eq_complete ? ? H1) in H. - Rewrite H in H0. Discriminate H0. - Trivial. + intros. elim (sumbool_of_bool (ad_eq a a')). intro H1. rewrite (ad_eq_complete _ _ H1) in H. + rewrite H in H0. discriminate H0. + trivial. Qed. Lemma ad_div_eq : - (a,a':ad) (ad_eq a a')=true -> (ad_eq (ad_div_2 a) (ad_div_2 a'))=true. + forall a a':ad, ad_eq a a' = true -> ad_eq (ad_div_2 a) (ad_div_2 a') = true. Proof. - Intros. Cut a=a'. Intros. Rewrite H0. Apply ad_eq_correct. - Apply ad_eq_complete. Exact H. + intros. cut (a = a'). intros. rewrite H0. apply ad_eq_correct. + apply ad_eq_complete. exact H. Qed. -Lemma ad_div_neq : (a,a':ad) (ad_eq (ad_div_2 a) (ad_div_2 a'))=false -> - (ad_eq a a')=false. +Lemma ad_div_neq : + forall a a':ad, + ad_eq (ad_div_2 a) (ad_div_2 a') = false -> ad_eq a a' = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0. - Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_eq_correct (ad_div_2 a')) in H. Discriminate H. - Trivial. + intros. elim (sumbool_of_bool (ad_eq a a')). intro H0. + rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_eq_correct (ad_div_2 a')) in H. discriminate H. + trivial. Qed. -Lemma ad_div_bit_eq : (a,a':ad) (ad_bit_0 a)=(ad_bit_0 a') -> - (ad_div_2 a)=(ad_div_2 a') -> a=a'. +Lemma ad_div_bit_eq : + forall a a':ad, + ad_bit_0 a = ad_bit_0 a' -> ad_div_2 a = ad_div_2 a' -> a = a'. Proof. - Intros. Apply ad_faithful. Unfold eqf. NewDestruct n. - Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Assumption. - Rewrite <- ad_div_2_correct. Rewrite <- ad_div_2_correct. - Rewrite H0. Reflexivity. + intros. apply ad_faithful. unfold eqf in |- *. destruct n. + rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. assumption. + rewrite <- ad_div_2_correct. rewrite <- ad_div_2_correct. + rewrite H0. reflexivity. Qed. -Lemma ad_div_bit_neq : (a,a':ad) (ad_eq a a')=false -> (ad_bit_0 a)=(ad_bit_0 a') -> - (ad_eq (ad_div_2 a) (ad_div_2 a'))=false. +Lemma ad_div_bit_neq : + forall a a':ad, + ad_eq a a' = false -> + ad_bit_0 a = ad_bit_0 a' -> ad_eq (ad_div_2 a) (ad_div_2 a') = false. Proof. - Intros. Elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). Intro H1. - Rewrite (ad_div_bit_eq ? ? H0 (ad_eq_complete ? ? H1)) in H. - Rewrite (ad_eq_correct a') in H. Discriminate H. - Trivial. + intros. elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). intro H1. + rewrite (ad_div_bit_eq _ _ H0 (ad_eq_complete _ _ H1)) in H. + rewrite (ad_eq_correct a') in H. discriminate H. + trivial. Qed. -Lemma ad_neq : (a,a':ad) (ad_eq a a')=false -> - (ad_bit_0 a)=(negb (ad_bit_0 a')) \/ (ad_eq (ad_div_2 a) (ad_div_2 a'))=false. +Lemma ad_neq : + forall a a':ad, + ad_eq a a' = false -> + ad_bit_0 a = negb (ad_bit_0 a') \/ + ad_eq (ad_div_2 a) (ad_div_2 a') = false. Proof. - Intros. Cut (ad_bit_0 a)=(ad_bit_0 a')\/(ad_bit_0 a)=(negb (ad_bit_0 a')). - Intros. Elim H0. Intro. Right . Apply ad_div_bit_neq. Assumption. - Assumption. - Intro. Left . Assumption. - Case (ad_bit_0 a); Case (ad_bit_0 a'); Auto. + intros. cut (ad_bit_0 a = ad_bit_0 a' \/ ad_bit_0 a = negb (ad_bit_0 a')). + intros. elim H0. intro. right. apply ad_div_bit_neq. assumption. + assumption. + intro. left. assumption. + case (ad_bit_0 a); case (ad_bit_0 a'); auto. Qed. -Lemma ad_double_or_double_plus_un : (a:ad) - {a0:ad | a=(ad_double a0)}+{a1:ad | a=(ad_double_plus_un a1)}. +Lemma ad_double_or_double_plus_un : + forall a:ad, + {a0 : ad | a = ad_double a0} + {a1 : ad | a = ad_double_plus_un a1}. Proof. - Intro. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Right . Split with (ad_div_2 a). - Rewrite (ad_div_2_double_plus_un a H). Reflexivity. - Intro H. Left . Split with (ad_div_2 a). Rewrite (ad_div_2_double a H). Reflexivity. -Qed. + intro. elim (sumbool_of_bool (ad_bit_0 a)). intro H. right. split with (ad_div_2 a). + rewrite (ad_div_2_double_plus_un a H). reflexivity. + intro H. left. split with (ad_div_2 a). rewrite (ad_div_2_double a H). reflexivity. +Qed.
\ No newline at end of file |
