aboutsummaryrefslogtreecommitdiff
path: root/theories/IntMap/Adalloc.v
diff options
context:
space:
mode:
authorcoq2001-04-23 15:07:44 +0000
committercoq2001-04-23 15:07:44 +0000
commita3837fa9dd60b7b8528e2e31c98682528c694dcd (patch)
tree9b51b3054b6844a2f346d23a199828ba49ea8097 /theories/IntMap/Adalloc.v
parent5993237b592c726d6777608623a7cc063b1dabb9 (diff)
Minor layout adjustments for Library doc
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@1672 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/IntMap/Adalloc.v')
-rw-r--r--theories/IntMap/Adalloc.v15
1 files changed, 10 insertions, 5 deletions
diff --git a/theories/IntMap/Adalloc.v b/theories/IntMap/Adalloc.v
index 63c2f2ad4b..ab7f19a07f 100644
--- a/theories/IntMap/Adalloc.v
+++ b/theories/IntMap/Adalloc.v
@@ -93,28 +93,32 @@ Section AdAlloc.
Rewrite (le_antisym ? ? (nat_le_complete ? ? H) (nat_le_complete ? ? H0)). Reflexivity.
Qed.
- Lemma ad_le_trans : (a,b,c:ad) (ad_le a b)=true -> (ad_le b c)=true -> (ad_le a c)=true.
+ Lemma ad_le_trans : (a,b,c:ad) (ad_le a b)=true -> (ad_le b c)=true ->
+ (ad_le a c)=true.
Proof.
Unfold ad_le. Intros. Apply nat_le_correct. Apply le_trans with m:=(nat_of_ad b).
Apply nat_le_complete. Assumption.
Apply nat_le_complete. Assumption.
Qed.
- Lemma ad_le_lt_trans : (a,b,c:ad) (ad_le a b)=true -> (ad_le c b)=false -> (ad_le c a)=false.
+ Lemma ad_le_lt_trans : (a,b,c:ad) (ad_le a b)=true -> (ad_le c b)=false ->
+ (ad_le c a)=false.
Proof.
Unfold ad_le. Intros. Apply nat_le_correct_conv. Apply le_lt_trans with m:=(nat_of_ad b).
Apply nat_le_complete. Assumption.
Apply nat_le_complete_conv. Assumption.
Qed.
- Lemma ad_lt_le_trans : (a,b,c:ad) (ad_le b a)=false -> (ad_le b c)=true -> (ad_le c a)=false.
+ Lemma ad_lt_le_trans : (a,b,c:ad) (ad_le b a)=false -> (ad_le b c)=true ->
+ (ad_le c a)=false.
Proof.
Unfold ad_le. Intros. Apply nat_le_correct_conv. Apply lt_le_trans with m:=(nat_of_ad b).
Apply nat_le_complete_conv. Assumption.
Apply nat_le_complete. Assumption.
Qed.
- Lemma ad_lt_trans : (a,b,c:ad) (ad_le b a)=false -> (ad_le c b)=false -> (ad_le c a)=false.
+ Lemma ad_lt_trans : (a,b,c:ad) (ad_le b a)=false -> (ad_le c b)=false ->
+ (ad_le c a)=false.
Proof.
Unfold ad_le. Intros. Apply nat_le_correct_conv. Apply lt_trans with m:=(nat_of_ad b).
Apply nat_le_complete_conv. Assumption.
@@ -277,7 +281,8 @@ Section AdAlloc.
Exact convert_xI.
Qed.
- Lemma ad_le_double_mono : (a,b:ad) (ad_le a b)=true -> (ad_le (ad_double a) (ad_double b))=true.
+ Lemma ad_le_double_mono : (a,b:ad) (ad_le a b)=true ->
+ (ad_le (ad_double a) (ad_double b))=true.
Proof.
Unfold ad_le. Intros. Rewrite nat_of_ad_double. Rewrite nat_of_ad_double. Apply nat_le_correct.
Simpl. Apply le_plus_plus. Apply nat_le_complete. Assumption.