aboutsummaryrefslogtreecommitdiff
path: root/theories/Init
diff options
context:
space:
mode:
authorPierre-Marie Pédrot2019-02-04 15:00:13 +0100
committerPierre-Marie Pédrot2019-02-04 15:00:13 +0100
commit79c87ab3ec6e41bbc5fe2cc43edcb4b934b81e46 (patch)
tree18ce7b34d9865b5c4446f1ff6505e6682c80650c /theories/Init
parent127f1fe146264a87d7a8cb04ab8ea34201b5c93a (diff)
parentf53a011ac83fa820faba970109485780715e153f (diff)
Merge PR #9386: Pass some files to strict focusing mode.
Reviewed-by: Zimmi48 Reviewed-by: herbelin Reviewed-by: ppedrot
Diffstat (limited to 'theories/Init')
-rw-r--r--theories/Init/Logic.v9
-rw-r--r--theories/Init/Specif.v5
-rw-r--r--theories/Init/Tactics.v8
3 files changed, 16 insertions, 6 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v
index 1db0a8e1b5..b607be4f94 100644
--- a/theories/Init/Logic.v
+++ b/theories/Init/Logic.v
@@ -383,6 +383,11 @@ Section Logic_lemmas.
Register eq_trans as core.eq.trans.
+ Theorem eq_trans_r : x = y -> z = y -> x = z.
+ Proof.
+ destruct 2; trivial.
+ Defined.
+
Theorem f_equal : x = y -> f x = f y.
Proof.
destruct 1; trivial.
@@ -695,8 +700,8 @@ Proof.
- intros (x,(Hx,Huni)); split.
+ exists x; assumption.
+ intros x' x'' Hx' Hx''; transitivity x.
- symmetry; auto.
- auto.
+ * symmetry; auto.
+ * auto.
Qed.
Lemma forall_exists_unique_domain_coincide :
diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v
index cfba2bae69..e5d63c547d 100644
--- a/theories/Init/Specif.v
+++ b/theories/Init/Specif.v
@@ -765,8 +765,9 @@ Section Dependent_choice_lemmas.
intros H x0.
set (f:=fix f n := match n with O => x0 | S n' => proj1_sig (H (f n')) end).
exists f.
- split. reflexivity.
- induction n; simpl; apply proj2_sig.
+ split.
+ - reflexivity.
+ - induction n; simpl; apply proj2_sig.
Defined.
End Dependent_choice_lemmas.
diff --git a/theories/Init/Tactics.v b/theories/Init/Tactics.v
index 8df533e743..af4632161e 100644
--- a/theories/Init/Tactics.v
+++ b/theories/Init/Tactics.v
@@ -202,13 +202,17 @@ Set Implicit Arguments.
Lemma decide_left : forall (C:Prop) (decide:{C}+{~C}),
C -> forall P:{C}+{~C}->Prop, (forall H:C, P (left _ H)) -> P decide.
Proof.
-intros; destruct decide. apply H0. contradiction.
+ intros; destruct decide.
+ - apply H0.
+ - contradiction.
Qed.
Lemma decide_right : forall (C:Prop) (decide:{C}+{~C}),
~C -> forall P:{C}+{~C}->Prop, (forall H:~C, P (right _ H)) -> P decide.
Proof.
-intros; destruct decide. contradiction. apply H0.
+ intros; destruct decide.
+ - contradiction.
+ - apply H0.
Qed.
Tactic Notation "decide" constr(lemma) "with" constr(H) :=