diff options
| author | herbelin | 2003-03-29 16:47:26 +0000 |
|---|---|---|
| committer | herbelin | 2003-03-29 16:47:26 +0000 |
| commit | 7bdfef00a00a6c7403166bcaadc9cdfcd0e92451 (patch) | |
| tree | c8e57c7de1998e89ed48289f8fb015fd7fa022f9 /theories/Init/Logic.v | |
| parent | b2f779cf923cab0d5c8990678fd9568250e014c8 (diff) | |
eq fusionne avec eqT et devient par défaut sur Type,
idem pour ex et exT, ex2 et exT2, all et allT
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@3812 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Init/Logic.v')
| -rwxr-xr-x | theories/Init/Logic.v | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v index 7636204ab9..ab78af4699 100755 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -99,13 +99,13 @@ Section First_order_quantifiers. construction [(all A P)], or simply [(All P)], is provided as an abbreviation of [(x:A)(P x)] *) - Inductive ex [A:Set;P:A->Prop] : Prop + Inductive ex [A:Type;P:A->Prop] : Prop := ex_intro : (x:A)(P x)->(ex A P). - Inductive ex2 [A:Set;P,Q:A->Prop] : Prop + Inductive ex2 [A:Type;P,Q:A->Prop] : Prop := ex_intro2 : (x:A)(P x)->(Q x)->(ex2 A P Q). - Definition all := [A:Set][P:A->Prop](x:A)(P x). + Definition all := [A:Type][P:A->Prop](x:A)(P x). End First_order_quantifiers. @@ -117,7 +117,7 @@ Section Equality. The others properties (symmetry, transitivity, replacement of equals) are proved below *) - Inductive eq [A:Set;x:A] : A->Prop + Inductive eq [A:Type;x:A] : A->Prop := refl_equal : (eq A x x). End Equality. @@ -134,7 +134,7 @@ Section Logic_lemmas. Qed. Section equality. - Variable A,B : Set. + Variable A,B : Type. Variable f : A->B. Variable x,y,z : A. @@ -158,7 +158,7 @@ Section Logic_lemmas. Theorem sym_not_eq : (not (eq ? x y)) -> (not (eq ? y x)). Proof. - Red; Intros h1 h2; Apply h1; Elim h2; Trivial. + Red; Intros h1 h2; Apply h1; Case h2; Trivial. Qed. Definition sym_equal := sym_eq. @@ -168,7 +168,7 @@ Section Logic_lemmas. End equality. (* Is now a primitive principle - Theorem eq_rect: (A:Set)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y). + Theorem eq_rect: (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y). Proof. Intros. Cut (identity A x y). @@ -177,33 +177,33 @@ Section Logic_lemmas. Qed. *) - Definition eq_ind_r : (A:Set)(x:A)(P:A->Prop)(P x)->(y:A)(eq ? y x)->(P y). - Intros A x P H y H0; Case sym_eq with 1:= H0; Trivial. + Definition eq_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eq ? y x)->(P y). + Intros A x P H y H0; Elim sym_eq with 1:= H0; Trivial. Defined. - Definition eq_rec_r : (A:Set)(x:A)(P:A->Set)(P x)->(y:A)(eq ? y x)->(P y). - Intros A x P H y H0; Case sym_eq with 1:= H0; Trivial. + Definition eq_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eq ? y x)->(P y). + Intros A x P H y H0; Elim sym_eq with 1:= H0; Trivial. Defined. - Definition eq_rect_r : (A:Set)(x:A)(P:A->Type)(P x)->(y:A)(eq ? y x)->(P y). + Definition eq_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? y x)->(P y). Intros A x P H y H0; Elim sym_eq with 1:= H0; Trivial. Defined. End Logic_lemmas. -Theorem f_equal2 : (A1,A2,B:Set)(f:A1->A2->B)(x1,y1:A1)(x2,y2:A2) +Theorem f_equal2 : (A1,A2,B:Type)(f:A1->A2->B)(x1,y1:A1)(x2,y2:A2) (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? (f x1 x2) (f y1 y2)). Proof. Induction 1; Induction 1; Trivial. Qed. -Theorem f_equal3 : (A1,A2,A3,B:Set)(f:A1->A2->A3->B)(x1,y1:A1)(x2,y2:A2) +Theorem f_equal3 : (A1,A2,A3,B:Type)(f:A1->A2->A3->B)(x1,y1:A1)(x2,y2:A2) (x3,y3:A3)(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? (f x1 x2 x3) (f y1 y2 y3)). Proof. Induction 1; Induction 1; Induction 1; Trivial. Qed. -Theorem f_equal4 : (A1,A2,A3,A4,B:Set)(f:A1->A2->A3->A4->B) +Theorem f_equal4 : (A1,A2,A3,A4,B:Type)(f:A1->A2->A3->A4->B) (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4) (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) -> (eq ? (f x1 x2 x3 x4) (f y1 y2 y3 y4)). @@ -211,7 +211,7 @@ Proof. Induction 1; Induction 1; Induction 1; Induction 1; Trivial. Qed. -Theorem f_equal5 : (A1,A2,A3,A4,A5,B:Set)(f:A1->A2->A3->A4->A5->B) +Theorem f_equal5 : (A1,A2,A3,A4,A5,B:Type)(f:A1->A2->A3->A4->A5->B) (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4)(x5,y5:A5) (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) -> (eq ? x5 y5) -> (eq ? (f x1 x2 x3 x4 x5) (f y1 y2 y3 y4 y5)). |
