aboutsummaryrefslogtreecommitdiff
path: root/theories/Init/Logic.v
diff options
context:
space:
mode:
authorherbelin2003-03-29 16:47:26 +0000
committerherbelin2003-03-29 16:47:26 +0000
commit7bdfef00a00a6c7403166bcaadc9cdfcd0e92451 (patch)
treec8e57c7de1998e89ed48289f8fb015fd7fa022f9 /theories/Init/Logic.v
parentb2f779cf923cab0d5c8990678fd9568250e014c8 (diff)
eq fusionne avec eqT et devient par défaut sur Type,
idem pour ex et exT, ex2 et exT2, all et allT git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@3812 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Init/Logic.v')
-rwxr-xr-xtheories/Init/Logic.v32
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v
index 7636204ab9..ab78af4699 100755
--- a/theories/Init/Logic.v
+++ b/theories/Init/Logic.v
@@ -99,13 +99,13 @@ Section First_order_quantifiers.
construction [(all A P)], or simply [(All P)], is provided as an
abbreviation of [(x:A)(P x)] *)
- Inductive ex [A:Set;P:A->Prop] : Prop
+ Inductive ex [A:Type;P:A->Prop] : Prop
:= ex_intro : (x:A)(P x)->(ex A P).
- Inductive ex2 [A:Set;P,Q:A->Prop] : Prop
+ Inductive ex2 [A:Type;P,Q:A->Prop] : Prop
:= ex_intro2 : (x:A)(P x)->(Q x)->(ex2 A P Q).
- Definition all := [A:Set][P:A->Prop](x:A)(P x).
+ Definition all := [A:Type][P:A->Prop](x:A)(P x).
End First_order_quantifiers.
@@ -117,7 +117,7 @@ Section Equality.
The others properties (symmetry, transitivity, replacement of
equals) are proved below *)
- Inductive eq [A:Set;x:A] : A->Prop
+ Inductive eq [A:Type;x:A] : A->Prop
:= refl_equal : (eq A x x).
End Equality.
@@ -134,7 +134,7 @@ Section Logic_lemmas.
Qed.
Section equality.
- Variable A,B : Set.
+ Variable A,B : Type.
Variable f : A->B.
Variable x,y,z : A.
@@ -158,7 +158,7 @@ Section Logic_lemmas.
Theorem sym_not_eq : (not (eq ? x y)) -> (not (eq ? y x)).
Proof.
- Red; Intros h1 h2; Apply h1; Elim h2; Trivial.
+ Red; Intros h1 h2; Apply h1; Case h2; Trivial.
Qed.
Definition sym_equal := sym_eq.
@@ -168,7 +168,7 @@ Section Logic_lemmas.
End equality.
(* Is now a primitive principle
- Theorem eq_rect: (A:Set)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y).
+ Theorem eq_rect: (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y).
Proof.
Intros.
Cut (identity A x y).
@@ -177,33 +177,33 @@ Section Logic_lemmas.
Qed.
*)
- Definition eq_ind_r : (A:Set)(x:A)(P:A->Prop)(P x)->(y:A)(eq ? y x)->(P y).
- Intros A x P H y H0; Case sym_eq with 1:= H0; Trivial.
+ Definition eq_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eq ? y x)->(P y).
+ Intros A x P H y H0; Elim sym_eq with 1:= H0; Trivial.
Defined.
- Definition eq_rec_r : (A:Set)(x:A)(P:A->Set)(P x)->(y:A)(eq ? y x)->(P y).
- Intros A x P H y H0; Case sym_eq with 1:= H0; Trivial.
+ Definition eq_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eq ? y x)->(P y).
+ Intros A x P H y H0; Elim sym_eq with 1:= H0; Trivial.
Defined.
- Definition eq_rect_r : (A:Set)(x:A)(P:A->Type)(P x)->(y:A)(eq ? y x)->(P y).
+ Definition eq_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? y x)->(P y).
Intros A x P H y H0; Elim sym_eq with 1:= H0; Trivial.
Defined.
End Logic_lemmas.
-Theorem f_equal2 : (A1,A2,B:Set)(f:A1->A2->B)(x1,y1:A1)(x2,y2:A2)
+Theorem f_equal2 : (A1,A2,B:Type)(f:A1->A2->B)(x1,y1:A1)(x2,y2:A2)
(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? (f x1 x2) (f y1 y2)).
Proof.
Induction 1; Induction 1; Trivial.
Qed.
-Theorem f_equal3 : (A1,A2,A3,B:Set)(f:A1->A2->A3->B)(x1,y1:A1)(x2,y2:A2)
+Theorem f_equal3 : (A1,A2,A3,B:Type)(f:A1->A2->A3->B)(x1,y1:A1)(x2,y2:A2)
(x3,y3:A3)(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3)
-> (eq ? (f x1 x2 x3) (f y1 y2 y3)).
Proof.
Induction 1; Induction 1; Induction 1; Trivial.
Qed.
-Theorem f_equal4 : (A1,A2,A3,A4,B:Set)(f:A1->A2->A3->A4->B)
+Theorem f_equal4 : (A1,A2,A3,A4,B:Type)(f:A1->A2->A3->A4->B)
(x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4)
(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4)
-> (eq ? (f x1 x2 x3 x4) (f y1 y2 y3 y4)).
@@ -211,7 +211,7 @@ Proof.
Induction 1; Induction 1; Induction 1; Induction 1; Trivial.
Qed.
-Theorem f_equal5 : (A1,A2,A3,A4,A5,B:Set)(f:A1->A2->A3->A4->A5->B)
+Theorem f_equal5 : (A1,A2,A3,A4,A5,B:Type)(f:A1->A2->A3->A4->A5->B)
(x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4)(x5,y5:A5)
(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) -> (eq ? x5 y5)
-> (eq ? (f x1 x2 x3 x4 x5) (f y1 y2 y3 y4 y5)).