diff options
| author | letouzey | 2008-12-17 15:31:54 +0000 |
|---|---|---|
| committer | letouzey | 2008-12-17 15:31:54 +0000 |
| commit | 211030a7a870bdf3bc36b0923379e2d1bf6c729a (patch) | |
| tree | 9953a1d775fe3161d43ca32e7073d10ae10349e1 /theories/FSets/FSetBridge.v | |
| parent | 275151328893782671c1c6949c93b65f6d65fefa (diff) | |
FSet/OrderedType now includes an eq_dec, and hence become an extension of DecidableType
After lots of hesitations, OrderedType now requires this "eq_dec" field, which
is redundant (can be deduced from "compare"), but allows the subtyping relation
DecidableType <= OrderedType, and hence WS <= S : ordered sets are now truly
extensions of weak sets. Of course this change introduces a last-minute
incompatibility, but:
- There is a clear gain in term of functionnality / simplicity.
- FSets 8.2 already needs some adaptations when compared with 8.1, so it's
the right time to push such incompatible changes.
- Transition shouldn't be too hard: the old OrderedType still exists under
the name MiniOrderedType, and functor MOT_to_OT allows to convert from
one to the other.
Beware, for a FSetInterface.WS (resp. S) to be coercible to a DecidableType
(resp. OrderedType), an eq_dec on sets is now required in these interfaces
and in the implementations. In pratice, it is really easy to build from
equal and equal_1 and equal_2.
Some name changes : in FSetFacts, old WFacts now correspond to WFacts_fun,
while WFacts now expects only one argument (WFacts M := WFacts_fun M.E M).
Idem with WDecide, WProperties and WEqProperties.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11693 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/FSets/FSetBridge.v')
| -rw-r--r-- | theories/FSets/FSetBridge.v | 11 |
1 files changed, 5 insertions, 6 deletions
diff --git a/theories/FSets/FSetBridge.v b/theories/FSets/FSetBridge.v index 0fb41931c4..e0e8582111 100644 --- a/theories/FSets/FSetBridge.v +++ b/theories/FSets/FSetBridge.v @@ -20,11 +20,8 @@ Set Firstorder Depth 2. (** * From non-dependent signature [S] to dependent signature [Sdep]. *) -Module DepOfNodep (M: S) <: Sdep with Module E := M.E. - Import M. +Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. - Module ME := OrderedTypeFacts E. - Definition empty : {s : t | Empty s}. Proof. exists empty; auto with set. @@ -50,7 +47,7 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E. Proof. intros; exists (add x s); auto. unfold Add in |- *; intuition. - elim (ME.eq_dec x y); auto. + elim (E.eq_dec x y); auto. intros; right. eapply add_3; eauto. Qed. @@ -68,7 +65,7 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E. intros; exists (remove x s); intuition. absurd (In x (remove x s)); auto with set. apply In_1 with y; auto. - elim (ME.eq_dec x y); intros; auto. + elim (E.eq_dec x y); intros; auto. absurd (In x (remove x s)); auto with set. apply In_1 with y; auto. eauto with set. @@ -396,6 +393,8 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. intros; discriminate H. Qed. + Definition eq_dec := equal. + Definition equal (s s' : t) : bool := if equal s s' then true else false. |
