aboutsummaryrefslogtreecommitdiff
path: root/theories/Bool/BoolOrder.v
diff options
context:
space:
mode:
authorAnton Trunov2020-05-12 18:29:28 +0300
committerAnton Trunov2020-05-12 18:29:28 +0300
commit5784bb98aaa3e4eab4cd3e9871afb4b40d82f62c (patch)
treebbe30c8c8aaffbd387e886bae4c017db9c525b90 /theories/Bool/BoolOrder.v
parentefb78e3c413bcc66d470ba4046c56bae0a61f56f (diff)
parent1019cb48c80260d7df27096826e8594ec242dc5a (diff)
Merge PR #12162: Fixing #12161: rename Bool.leb into Bool.le
Ack-by: Zimmi48 Reviewed-by: anton-trunov
Diffstat (limited to 'theories/Bool/BoolOrder.v')
-rw-r--r--theories/Bool/BoolOrder.v42
1 files changed, 19 insertions, 23 deletions
diff --git a/theories/Bool/BoolOrder.v b/theories/Bool/BoolOrder.v
index 61aab607a9..aaa7321bfc 100644
--- a/theories/Bool/BoolOrder.v
+++ b/theories/Bool/BoolOrder.v
@@ -14,69 +14,65 @@
Require Export Bool.
Require Import Orders.
-
-Local Notation le := Bool.leb.
-Local Notation lt := Bool.ltb.
-Local Notation compare := Bool.compareb.
-Local Notation compare_spec := Bool.compareb_spec.
+Import BoolNotations.
(** * Order [le] *)
-Lemma le_refl : forall b, le b b.
+Lemma le_refl : forall b, b <= b.
Proof. destr_bool. Qed.
Lemma le_trans : forall b1 b2 b3,
- le b1 b2 -> le b2 b3 -> le b1 b3.
+ b1 <= b2 -> b2 <= b3 -> b1 <= b3.
Proof. destr_bool. Qed.
-Lemma le_true : forall b, le b true.
+Lemma le_true : forall b, b <= true.
Proof. destr_bool. Qed.
-Lemma false_le : forall b, le false b.
+Lemma false_le : forall b, false <= b.
Proof. intros; constructor. Qed.
-Instance le_compat : Proper (eq ==> eq ==> iff) le.
+Instance le_compat : Proper (eq ==> eq ==> iff) Bool.le.
Proof. intuition. Qed.
(** * Strict order [lt] *)
-Lemma lt_irrefl : forall b, ~ lt b b.
+Lemma lt_irrefl : forall b, ~ b < b.
Proof. destr_bool; auto. Qed.
Lemma lt_trans : forall b1 b2 b3,
- lt b1 b2 -> lt b2 b3 -> lt b1 b3.
+ b1 < b2 -> b2 < b3 -> b1 < b3.
Proof. destr_bool; auto. Qed.
-Instance lt_compat : Proper (eq ==> eq ==> iff) lt.
+Instance lt_compat : Proper (eq ==> eq ==> iff) Bool.lt.
Proof. intuition. Qed.
-Lemma lt_trichotomy : forall b1 b2, { lt b1 b2 } + { b1 = b2 } + { lt b2 b1 }.
+Lemma lt_trichotomy : forall b1 b2, { b1 < b2 } + { b1 = b2 } + { b2 < b1 }.
Proof. destr_bool; auto. Qed.
-Lemma lt_total : forall b1 b2, lt b1 b2 \/ b1 = b2 \/ lt b2 b1.
+Lemma lt_total : forall b1 b2, b1 < b2 \/ b1 = b2 \/ b2 < b1.
Proof. destr_bool; auto. Qed.
-Lemma lt_le_incl : forall b1 b2, lt b1 b2 -> le b1 b2.
+Lemma lt_le_incl : forall b1 b2, b1 < b2 -> b1 <= b2.
Proof. destr_bool; auto. Qed.
-Lemma le_lteq_dec : forall b1 b2, le b1 b2 -> { lt b1 b2 } + { b1 = b2 }.
+Lemma le_lteq_dec : forall b1 b2, b1 <= b2 -> { b1 < b2 } + { b1 = b2 }.
Proof. destr_bool; auto. Qed.
-Lemma le_lteq : forall b1 b2, le b1 b2 <-> lt b1 b2 \/ b1 = b2.
+Lemma le_lteq : forall b1 b2, b1 <= b2 <-> b1 < b2 \/ b1 = b2.
Proof. destr_bool; intuition. Qed.
(** * Order structures *)
(* Class structure *)
-Instance le_preorder : PreOrder le.
+Instance le_preorder : PreOrder Bool.le.
Proof.
split.
- intros b; apply le_refl.
- intros b1 b2 b3; apply le_trans.
Qed.
-Instance lt_strorder : StrictOrder lt.
+Instance lt_strorder : StrictOrder Bool.lt.
Proof.
split.
- intros b; apply lt_irrefl.
@@ -88,13 +84,13 @@ Module BoolOrd <: UsualDecidableTypeFull <: OrderedTypeFull <: TotalOrder.
Definition t := bool.
Definition eq := @eq bool.
Definition eq_equiv := @eq_equivalence bool.
- Definition lt := lt.
+ Definition lt := Bool.lt.
Definition lt_strorder := lt_strorder.
Definition lt_compat := lt_compat.
- Definition le := le.
+ Definition le := Bool.le.
Definition le_lteq := le_lteq.
Definition lt_total := lt_total.
- Definition compare := compare.
+ Definition compare := Bool.compare.
Definition compare_spec := compare_spec.
Definition eq_dec := bool_dec.
Definition eq_refl := @eq_Reflexive bool.