diff options
| author | letouzey | 2012-07-05 16:56:37 +0000 |
|---|---|---|
| committer | letouzey | 2012-07-05 16:56:37 +0000 |
| commit | ffb64d16132dd80f72ecb619ef87e3eee1fa8bda (patch) | |
| tree | 5368562b42af1aeef7e19b4bd897c9fc5655769b /test-suite | |
| parent | a46ccd71539257bb55dcddd9ae8510856a5c9a16 (diff) | |
Kills the useless tactic annotations "in |- *"
Most of these heavyweight annotations were introduced a long time ago
by the automatic 7.x -> 8.0 translator
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15518 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite')
| -rw-r--r-- | test-suite/failure/Uminus.v | 4 | ||||
| -rw-r--r-- | test-suite/failure/pattern.v | 2 | ||||
| -rw-r--r-- | test-suite/failure/subtyping2.v | 20 | ||||
| -rw-r--r-- | test-suite/failure/universes-buraliforti-redef.v | 20 | ||||
| -rw-r--r-- | test-suite/failure/universes-buraliforti.v | 20 | ||||
| -rw-r--r-- | test-suite/misc/berardi_test.v | 12 | ||||
| -rw-r--r-- | test-suite/modules/PO.v | 4 | ||||
| -rw-r--r-- | test-suite/modules/Przyklad.v | 14 | ||||
| -rw-r--r-- | test-suite/success/Funind.v | 22 | ||||
| -rw-r--r-- | test-suite/success/Reg.v | 8 | ||||
| -rw-r--r-- | test-suite/success/Try.v | 2 | ||||
| -rw-r--r-- | test-suite/success/change.v | 6 | ||||
| -rw-r--r-- | test-suite/success/fix.v | 4 | ||||
| -rw-r--r-- | test-suite/success/induct.v | 12 | ||||
| -rw-r--r-- | test-suite/success/ltac.v | 8 | ||||
| -rw-r--r-- | test-suite/success/remember.v | 2 | ||||
| -rw-r--r-- | test-suite/success/setoid_test.v | 20 | ||||
| -rw-r--r-- | test-suite/success/univers.v | 4 |
18 files changed, 92 insertions, 92 deletions
diff --git a/test-suite/failure/Uminus.v b/test-suite/failure/Uminus.v index 6866f19ae4..3c3bf3753c 100644 --- a/test-suite/failure/Uminus.v +++ b/test-suite/failure/Uminus.v @@ -31,7 +31,7 @@ Lemma Omega : forall i:U -> prop, induct i -> up (i WF). Proof. intros i y. apply y. -unfold le, WF, induct in |- *. +unfold le, WF, induct. intros x H0. apply y. exact H0. @@ -39,7 +39,7 @@ Qed. Lemma lemma1 : induct (fun u => down (I u)). Proof. -unfold induct in |- *. +unfold induct. intros x p. intro q. apply (q (fun u => down (I u)) p). diff --git a/test-suite/failure/pattern.v b/test-suite/failure/pattern.v index 129c380ed9..a24beaa2eb 100644 --- a/test-suite/failure/pattern.v +++ b/test-suite/failure/pattern.v @@ -6,4 +6,4 @@ Variable P : forall m : nat, m = n -> Prop. Goal forall p : n = n, P n p. intro. -pattern n, p in |- *. +pattern n, p. diff --git a/test-suite/failure/subtyping2.v b/test-suite/failure/subtyping2.v index addd3b459f..48fc2fffa8 100644 --- a/test-suite/failure/subtyping2.v +++ b/test-suite/failure/subtyping2.v @@ -54,7 +54,7 @@ Section Inverse_Image. Qed. Lemma WF_inverse_image : WF B R -> WF A Rof. - red in |- *; intros; apply ACC_inverse_image; auto. + red; intros; apply ACC_inverse_image; auto. Qed. End Inverse_Image. @@ -104,7 +104,7 @@ generalize eqx0; clear eqx0. elim eqy using eq_ind_r; intro. case (inj _ _ _ _ eqx0); intros. exists X1 R1 X3 R3 (fun x : X1 => f0 (x0 (f x))) maj0; trivial. -red in |- *; auto. +red; auto. Defined. @@ -122,7 +122,7 @@ apply sym_eq; assumption. intros. apply H1 with (y := f (x1 maj)) (f := fun x : X1 => f (x1 (f0 x))); - try red in |- *; auto. + try red; auto. Defined. (* The embedding relation is well founded *) @@ -158,7 +158,7 @@ Section Subsets. exists sub (Rof _ _ emb witness) A0 emb witness a; trivial. exact WF_emb. -red in |- *; trivial. +red; trivial. exact emb_wit. Defined. @@ -174,7 +174,7 @@ End Subsets. - the upper bound is a, which is in F(b) since a < b *) Lemma F_morphism : morphism A0 emb A0 emb F. -red in |- *; intros. +red; intros. exists (sub x) (Rof _ _ emb (witness x)) @@ -185,10 +185,10 @@ exists apply WF_inverse_image. exact WF_emb. -unfold morphism, Rof, fsub in |- *; simpl in |- *; intros. +unfold morphism, Rof, fsub; simpl; intros. trivial. -unfold Rof, fsub in |- *; simpl in |- *; intros. +unfold Rof, fsub; simpl; intros. apply emb_wit. Defined. @@ -230,10 +230,10 @@ intros. change match i0' X1 R1, i0' X2 R2 with | i0 x1 r1, i0 x2 r2 => exists f : _, morphism x1 r1 x2 r2 f - end in |- *. -case H; simpl in |- *. + end. +case H; simpl. exists (fun x : X1 => x). -red in |- *; trivial. +red; trivial. Defined. (* The following command raises 'Error: Universe Inconsistency'. diff --git a/test-suite/failure/universes-buraliforti-redef.v b/test-suite/failure/universes-buraliforti-redef.v index 034b7f0947..a8b5b975be 100644 --- a/test-suite/failure/universes-buraliforti-redef.v +++ b/test-suite/failure/universes-buraliforti-redef.v @@ -54,7 +54,7 @@ Section Inverse_Image. Qed. Lemma WF_inverse_image : WF B R -> WF A Rof. - red in |- *; intros; apply ACC_inverse_image; auto. + red; intros; apply ACC_inverse_image; auto. Qed. End Inverse_Image. @@ -106,7 +106,7 @@ generalize eqx0; clear eqx0. elim eqy using eq_ind_r; intro. case (inj _ _ _ _ eqx0); intros. exists X1 R1 X4 R4 (fun x : X1 => f0 (x0 (f x))) maj0; trivial. -red in |- *; auto. +red; auto. Defined. @@ -124,7 +124,7 @@ apply sym_eq; assumption. intros. apply H1 with (y := f (x1 maj)) (f := fun x : X1 => f (x1 (f0 x))); - try red in |- *; auto. + try red; auto. Defined. (* The embedding relation is well founded *) @@ -160,7 +160,7 @@ Section Subsets. exists sub (Rof _ _ emb witness) A0 emb witness a; trivial. exact WF_emb. -red in |- *; trivial. +red; trivial. exact emb_wit. Defined. @@ -176,7 +176,7 @@ End Subsets. - the upper bound is a, which is in F(b) since a < b *) Lemma F_morphism : morphism A0 emb A0 emb F. -red in |- *; intros. +red; intros. exists (sub x) (Rof _ _ emb (witness x)) @@ -187,10 +187,10 @@ exists apply WF_inverse_image. exact WF_emb. -unfold morphism, Rof, fsub in |- *; simpl in |- *; intros. +unfold morphism, Rof, fsub; simpl; intros. trivial. -unfold Rof, fsub in |- *; simpl in |- *; intros. +unfold Rof, fsub; simpl; intros. apply emb_wit. Defined. @@ -231,10 +231,10 @@ intros. change match i0 X1 R1, i0 X2 R2 with | i1 x1 r1, i1 x2 r2 => exists f : _, morphism x1 r1 x2 r2 f - end in |- *. -case H; simpl in |- *. + end. +case H; simpl. exists (fun x : X1 => x). -red in |- *; trivial. +red; trivial. Defined. (* The following command raises 'Error: Universe Inconsistency'. diff --git a/test-suite/failure/universes-buraliforti.v b/test-suite/failure/universes-buraliforti.v index 1f96ab34a2..7b62a0c56f 100644 --- a/test-suite/failure/universes-buraliforti.v +++ b/test-suite/failure/universes-buraliforti.v @@ -37,7 +37,7 @@ Section Inverse_Image. Qed. Lemma WF_inverse_image : WF B R -> WF A Rof. - red in |- *; intros; apply ACC_inverse_image; auto. + red; intros; apply ACC_inverse_image; auto. Qed. End Inverse_Image. @@ -90,7 +90,7 @@ generalize eqx0; clear eqx0. elim eqy using eq_ind_r; intro. case (inj _ _ _ _ eqx0); intros. exists X1 R1 X3 R3 (fun x : X1 => f0 (x0 (f x))) maj0; trivial. -red in |- *; auto. +red; auto. Defined. @@ -108,7 +108,7 @@ apply sym_eq; assumption. intros. apply H1 with (y := f (x1 maj)) (f := fun x : X1 => f (x1 (f0 x))); - try red in |- *; auto. + try red; auto. Defined. (* The embedding relation is well founded *) @@ -144,7 +144,7 @@ Section Subsets. exists sub (Rof _ _ emb witness) A0 emb witness a; trivial. exact WF_emb. -red in |- *; trivial. +red; trivial. exact emb_wit. Defined. @@ -160,7 +160,7 @@ End Subsets. - the upper bound is a, which is in F(b) since a < b *) Lemma F_morphism : morphism A0 emb A0 emb F. -red in |- *; intros. +red; intros. exists (sub x) (Rof _ _ emb (witness x)) @@ -171,10 +171,10 @@ exists apply WF_inverse_image. exact WF_emb. -unfold morphism, Rof, fsub in |- *; simpl in |- *; intros. +unfold morphism, Rof, fsub; simpl; intros. trivial. -unfold Rof, fsub in |- *; simpl in |- *; intros. +unfold Rof, fsub; simpl; intros. apply emb_wit. Defined. @@ -222,10 +222,10 @@ intros. change match i0 X1 R1, i0 X2 R2 with | i0 x1 r1, i0 x2 r2 => exists f : _, morphism x1 r1 x2 r2 f - end in |- *. -case H; simpl in |- *. + end. +case H; simpl. exists (fun x : X1 => x). -red in |- *; trivial. +red; trivial. Defined. (* The following command raises 'Error: Universe Inconsistency'. diff --git a/test-suite/misc/berardi_test.v b/test-suite/misc/berardi_test.v index 2b38868743..58e339b4c2 100644 --- a/test-suite/misc/berardi_test.v +++ b/test-suite/misc/berardi_test.v @@ -45,7 +45,7 @@ Lemma AC_IF : (B -> Q e1) -> (~ B -> Q e2) -> Q (IFProp B e1 e2). Proof. intros P B e1 e2 Q p1 p2. -unfold IFProp in |- *. +unfold IFProp. case (EM B); assumption. Qed. @@ -76,7 +76,7 @@ Record retract_cond : Prop := Lemma AC : forall r:retract_cond, retract -> forall a:A, j2 r (i2 r a) = a. Proof. intros r. -case r; simpl in |- *. +case r; simpl. trivial. Qed. @@ -113,7 +113,7 @@ Lemma retract_pow_U_U : retract (pow U) U. Proof. exists g f. intro a. -unfold f, g in |- *; simpl in |- *. +unfold f, g; simpl. apply AC. exists (fun x:pow U => x) (fun x:pow U => x). trivial. @@ -130,8 +130,8 @@ Definition R : U := g (fun u:U => Not_b (u U u)). Lemma not_has_fixpoint : R R = Not_b (R R). Proof. -unfold R at 1 in |- *. -unfold g in |- *. +unfold R at 1. +unfold g. rewrite AC with (r := L1 U U) (a := fun u:U => Not_b (u U u)). trivial. exists (fun x:pow U => x) (fun x:pow U => x); trivial. @@ -141,7 +141,7 @@ Qed. Theorem classical_proof_irrelevence : T = F. Proof. generalize not_has_fixpoint. -unfold Not_b in |- *. +unfold Not_b. apply AC_IF. intros is_true is_false. elim is_true; elim is_false; trivial. diff --git a/test-suite/modules/PO.v b/test-suite/modules/PO.v index 71d331772a..6198f29a0d 100644 --- a/test-suite/modules/PO.v +++ b/test-suite/modules/PO.v @@ -27,13 +27,13 @@ Module Pair (X: PO) (Y: PO) <: PO. Qed. Lemma le_trans : forall p1 p2 p3 : T, le p1 p2 -> le p2 p3 -> le p1 p3. - unfold le in |- *; intuition; info eauto. + unfold le; intuition; info eauto. Qed. Lemma le_antis : forall p1 p2 : T, le p1 p2 -> le p2 p1 -> p1 = p2. destruct p1. destruct p2. - unfold le in |- *. + unfold le. intuition. cutrewrite (t = t1). cutrewrite (t0 = t2). diff --git a/test-suite/modules/Przyklad.v b/test-suite/modules/Przyklad.v index e3694b818d..341805a16b 100644 --- a/test-suite/modules/Przyklad.v +++ b/test-suite/modules/Przyklad.v @@ -66,7 +66,7 @@ Module FuncDict (E: ELEM). Lemma find_add_true : forall (s : T) (e : E.T), find e (add e s) = true. intros. - unfold find, add in |- *. + unfold find, add. elim (Reflexivity_provable _ _ (E.eq_dec e e)). intros. rewrite H. @@ -77,13 +77,13 @@ Module FuncDict (E: ELEM). Lemma find_add_false : forall (s : T) (e e' : E.T), e <> e' -> find e (add e' s) = find e s. intros. - unfold add, find in |- *. + unfold add, find. cut (exists x : _, E.eq_dec e' e = right _ x). intros. elim H0. intros. rewrite H1. - unfold ifte in |- *. + unfold ifte. reflexivity. apply Disequality_provable. @@ -123,7 +123,7 @@ Module Lemmas (G: SET) (E: ELEM). forall a : E.T, ESet.find a S1 = ESet.find a S2. intros. - unfold S1, S2 in |- *. + unfold S1, S2. elim (E.eq_dec a a1); elim (E.eq_dec a a2); intros H1 H2; try rewrite <- H1; try rewrite <- H2; repeat @@ -153,7 +153,7 @@ Module ListDict (E: ELEM). Lemma find_add_true : forall (s : T) (e : E.T), find e (add e s) = true. intros. - simpl in |- *. + simpl. elim (Reflexivity_provable _ _ (E.eq_dec e e)). intros. rewrite H. @@ -165,11 +165,11 @@ Module ListDict (E: ELEM). Lemma find_add_false : forall (s : T) (e e' : E.T), e <> e' -> find e (add e' s) = find e s. intros. - simpl in |- *. + simpl. elim (Disequality_provable _ _ _ H (E.eq_dec e e')). intros. rewrite H0. - simpl in |- *. + simpl. reflexivity. Qed. diff --git a/test-suite/success/Funind.v b/test-suite/success/Funind.v index b17adef678..ccce3bbe10 100644 --- a/test-suite/success/Funind.v +++ b/test-suite/success/Funind.v @@ -9,7 +9,7 @@ Functional Scheme iszero_ind := Induction for iszero Sort Prop. Lemma toto : forall n : nat, n = 0 -> iszero n = true. intros x eg. - functional induction iszero x; simpl in |- *. + functional induction iszero x; simpl. trivial. inversion eg. Qed. @@ -212,19 +212,19 @@ Function plus_x_not_five'' (n m : nat) {struct n} : nat := Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x. intros a b. - functional induction plus_x_not_five'' a b; intros hyp; simpl in |- *; auto. + functional induction plus_x_not_five'' a b; intros hyp; simpl; auto. Qed. Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true. intros n m. - functional induction nat_equal_bool n m; simpl in |- *; intros hyp; auto. + functional induction nat_equal_bool n m; simpl; intros hyp; auto. rewrite <- hyp in y; simpl in y;tauto. inversion hyp. Qed. Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m. intros n m. - functional induction nat_equal_bool n m; simpl in |- *; intros eg; auto. + functional induction nat_equal_bool n m; simpl; intros eg; auto. inversion eg. inversion eg. Qed. @@ -245,7 +245,7 @@ Qed. Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0. intros n. -unfold plus in |- *. +unfold plus. functional induction plus n 0; intros. auto with arith. apply le_n_S. @@ -266,7 +266,7 @@ Function mod2 (n : nat) : nat := Lemma princ_mod2 : forall n : nat, mod2 n <= n. intros n. - functional induction mod2 n; simpl in |- *; auto with arith. + functional induction mod2 n; simpl; auto with arith. Qed. Function isfour (n : nat) : bool := @@ -284,7 +284,7 @@ Function isononeorfour (n : nat) : bool := Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n). intros n. - functional induction isononeorfour n; intros istr; simpl in |- *; + functional induction isononeorfour n; intros istr; simpl; inversion istr. apply istrue0. destruct n. inversion istr. @@ -367,7 +367,7 @@ Function ftest2 (n m : nat) {struct n} : nat := Lemma test2' : forall n m : nat, ftest2 n m <= 2. intros n m. - functional induction ftest2 n m; simpl in |- *; intros; auto. + functional induction ftest2 n m; simpl; intros; auto. Qed. Function ftest3 (n m : nat) {struct n} : nat := @@ -387,7 +387,7 @@ auto. intros. auto. intros. -simpl in |- *. +simpl. auto. Qed. @@ -408,7 +408,7 @@ auto. intros. auto. intros. -simpl in |- *. +simpl. auto. Qed. @@ -451,7 +451,7 @@ Qed. Lemma essai6 : forall n m : nat, ftest6 n m <= 2. intros n m. - functional induction ftest6 n m; simpl in |- *; auto. + functional induction ftest6 n m; simpl; auto. Qed. (* Some tests with modules *) diff --git a/test-suite/success/Reg.v b/test-suite/success/Reg.v index 89b3032c02..c2d5cb2f47 100644 --- a/test-suite/success/Reg.v +++ b/test-suite/success/Reg.v @@ -39,7 +39,7 @@ Lemma essai7 : derivable_pt (fun x : R => (cos (/ sqrt x) * Rsqr (sin x + 1))%R) 1. reg. apply Rlt_0_1. -red in |- *; intro; rewrite sqrt_1 in H; assert (H0 := R1_neq_R0); elim H0; +red; intro; rewrite sqrt_1 in H; assert (H0 := R1_neq_R0); elim H0; assumption. Qed. @@ -127,7 +127,7 @@ Lemma essai23 : (fun x : R => (sin (sqrt (x - 1)) + exp (Rsqr (sqrt x + 3)))%R) 1. reg. left; apply Rlt_0_1. -right; unfold Rminus in |- *; rewrite Rplus_opp_r; reflexivity. +right; unfold Rminus; rewrite Rplus_opp_r; reflexivity. Qed. Lemma essai24 : @@ -135,8 +135,8 @@ Lemma essai24 : reg. replace (x * x + 2 * x + 2)%R with (Rsqr (x + 1) + 1)%R. apply Rplus_le_lt_0_compat; [ apply Rle_0_sqr | apply Rlt_0_1 ]. -unfold Rsqr in |- *; ring. -red in |- *; intro; cut (0 < x * x + 1)%R. +unfold Rsqr; ring. +red; intro; cut (0 < x * x + 1)%R. intro; rewrite H in H0; elim (Rlt_irrefl _ H0). apply Rplus_le_lt_0_compat; [ replace (x * x)%R with (Rsqr x); [ apply Rle_0_sqr | reflexivity ] diff --git a/test-suite/success/Try.v b/test-suite/success/Try.v index b356f277c3..361c787e25 100644 --- a/test-suite/success/Try.v +++ b/test-suite/success/Try.v @@ -2,7 +2,7 @@ non-existent names in Unfold [cf bug #263] *) Lemma lem1 : True. -try unfold i_dont_exist in |- *. +try unfold i_dont_exist. trivial. Qed. diff --git a/test-suite/success/change.v b/test-suite/success/change.v index c65cf3036c..7bed7ecb15 100644 --- a/test-suite/success/change.v +++ b/test-suite/success/change.v @@ -14,7 +14,7 @@ Abort. (* Check the combination of at, with and in (see bug #2146) *) Goal 3=3 -> 3=3. intro H. -change 3 at 2 with (1+2) in |- *. +change 3 at 2 with (1+2). change 3 at 2 with (1+2) in H |-. change 3 with (1+2) in H at 1 |- * at 1. (* Now check that there are no more 3's *) @@ -25,10 +25,10 @@ Qed. change 3 at 1 with (1+2) at 3. change 3 at 1 with (1+2) in *. change 3 at 1 with (1+2) in H at 2 |-. -change 3 at 1 with (1+2) in |- * at 3. +change 3 at 1 with (1+2) at 3. change 3 at 1 with (1+2) in H |- *. change 3 at 1 with (1+2) in H, H|-. -change 3 in |- * at 1. +change 3 at 1. *) (* Test that pretyping checks allowed elimination sorts *) diff --git a/test-suite/success/fix.v b/test-suite/success/fix.v index 23e3caf8a3..8623f71868 100644 --- a/test-suite/success/fix.v +++ b/test-suite/success/fix.v @@ -16,9 +16,9 @@ intros n m; generalize (nat_of_P_lt_Lt_compare_morphism n m); generalize (nat_of_P_gt_Gt_compare_morphism n m); generalize (Pcompare_Eq_eq n m); case (Pos.compare_cont n m Eq). intros H' H'0 H'1; right; right; auto. -intros H' H'0 H'1; left; unfold rlt in |- *. +intros H' H'0 H'1; left; unfold rlt. apply nat_of_P_lt_Lt_compare_complement_morphism; auto. -intros H' H'0 H'1; right; left; unfold rlt in |- *. +intros H' H'0 H'1; right; left; unfold rlt. apply nat_of_P_lt_Lt_compare_complement_morphism; auto. apply H'0; auto. Defined. diff --git a/test-suite/success/induct.v b/test-suite/success/induct.v index 01ebfc4f04..8ed941f864 100644 --- a/test-suite/success/induct.v +++ b/test-suite/success/induct.v @@ -46,21 +46,21 @@ Qed. Goal forall x, S x = S (S x). intros. -induction (S _) in |- * at -2. +induction (S _) at -2. now_show (0=1). Undo 2. -induction (S _) in |- * at 1 3. +induction (S _) at 1 3. now_show (0=1). Undo 2. -induction (S _) in |- * at 1. +induction (S _) at 1. now_show (0=S (S x)). Undo 2. -induction (S _) in |- * at 2. +induction (S _) at 2. now_show (S x=0). Undo 2. -induction (S _) in |- * at 3. +induction (S _) at 3. now_show (S x=1). Undo 2. -Fail induction (S _) in |- * at 4. +Fail induction (S _) at 4. Abort. diff --git a/test-suite/success/ltac.v b/test-suite/success/ltac.v index 0c8a181673..1edddcfd74 100644 --- a/test-suite/success/ltac.v +++ b/test-suite/success/ltac.v @@ -2,7 +2,7 @@ (* Submitted by Pierre Crégut *) (* Checks substitution of x *) -Ltac f x := unfold x in |- *; idtac. +Ltac f x := unfold x; idtac. Lemma lem1 : 0 + 0 = 0. f plus. @@ -86,7 +86,7 @@ assert t. exact H. intro H1. apply H. -symmetry in |- *. +symmetry . assumption. Qed. @@ -105,7 +105,7 @@ sym'. exact H. intro H1. apply H. -symmetry in |- *. +symmetry . assumption. Qed. @@ -193,7 +193,7 @@ Abort. (* Used to fail in V8.1 *) Tactic Notation "test" constr(t) integer(n) := - set (k := t) in |- * at n. + set (k := t) at n. Goal forall x : nat, x = 1 -> x + x + x = 3. intros x H. diff --git a/test-suite/success/remember.v b/test-suite/success/remember.v index 3241e1339b..5f8ed03d3f 100644 --- a/test-suite/success/remember.v +++ b/test-suite/success/remember.v @@ -4,5 +4,5 @@ Lemma A : forall (P: forall X, X -> Prop), P nat 0 -> P nat 0. intros. Fail remember nat as X. Fail remember nat as X in H. (* This line used to succeed in 8.3 *) -Fail remember nat as X in |- *. +Fail remember nat as X. Abort. diff --git a/test-suite/success/setoid_test.v b/test-suite/success/setoid_test.v index 19693d70c9..653b5bf9a5 100644 --- a/test-suite/success/setoid_test.v +++ b/test-suite/success/setoid_test.v @@ -18,10 +18,10 @@ Definition same (s t : set) : Prop := forall a : A, In a s <-> In a t. Lemma setoid_set : Setoid_Theory set same. -unfold same in |- *; split ; red. -red in |- *; auto. +unfold same; split ; red. +red; auto. -red in |- *. +red. intros. elim (H a); auto. @@ -33,19 +33,19 @@ Qed. Add Setoid set same setoid_set as setsetoid. Add Morphism In : In_ext. -unfold same in |- *; intros a s t H; elim (H a); auto. +unfold same; intros a s t H; elim (H a); auto. Qed. Lemma add_aux : forall s t : set, same s t -> forall a b : A, In a (Add b s) -> In a (Add b t). -unfold same in |- *; simple induction 2; intros. +unfold same; simple induction 2; intros. rewrite H1. -simpl in |- *; left; reflexivity. +simpl; left; reflexivity. elim (H a). intros. -simpl in |- *; right. +simpl; right. apply (H2 H1). Qed. @@ -74,15 +74,15 @@ setoid_replace (remove a (Add a Empty)) with Empty. auto. -unfold same in |- *. +unfold same. split. -simpl in |- *. +simpl. case (eq_dec a a). intros e ff; elim ff. intros; absurd (a = a); trivial. -simpl in |- *. +simpl. intro H; elim H. Qed. diff --git a/test-suite/success/univers.v b/test-suite/success/univers.v index 469cbeb74d..e00701fb68 100644 --- a/test-suite/success/univers.v +++ b/test-suite/success/univers.v @@ -16,7 +16,7 @@ auto. Qed. Lemma lem3 : forall P : Prop, P. -intro P; pattern P in |- *. +intro P; pattern P. apply lem2. Abort. @@ -34,7 +34,7 @@ Require Import Relations. Theorem dep_eq_trans : forall X : Type, transitive X (dep_eq X). Proof. - unfold transitive in |- *. + unfold transitive. intros X f g h H1 H2. inversion H1. Abort. |
