diff options
| author | Pierre-Marie Pédrot | 2016-09-23 18:56:18 +0200 |
|---|---|---|
| committer | Pierre-Marie Pédrot | 2016-09-23 18:56:18 +0200 |
| commit | a52d06ea16cff00faa7d2f63ad5c1ca0b58e64b4 (patch) | |
| tree | 40440d7daed82bd24180b36ef224f245ddca42f5 /test-suite | |
| parent | 30a908becf31d91592a1f7934cfa3df2d67d1834 (diff) | |
| parent | a321074cdd2f9375662c7c9f17be5c045328bd82 (diff) | |
Merge branch 'v8.6'
Diffstat (limited to 'test-suite')
| -rw-r--r-- | test-suite/bugs/closed/5078.v | 5 | ||||
| -rw-r--r-- | test-suite/bugs/closed/5095.v | 5 | ||||
| -rw-r--r-- | test-suite/success/contradiction.v | 32 | ||||
| -rw-r--r-- | test-suite/success/eqdecide.v | 12 |
4 files changed, 54 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/5078.v b/test-suite/bugs/closed/5078.v new file mode 100644 index 0000000000..ca73cbcc18 --- /dev/null +++ b/test-suite/bugs/closed/5078.v @@ -0,0 +1,5 @@ +(* Test coercion from ident to evaluable reference *) +Tactic Notation "unfold_hyp" hyp(H) := cbv delta [H]. +Goal True -> Type. + intro H''. + Fail unfold_hyp H''. diff --git a/test-suite/bugs/closed/5095.v b/test-suite/bugs/closed/5095.v new file mode 100644 index 0000000000..b6f38e3e84 --- /dev/null +++ b/test-suite/bugs/closed/5095.v @@ -0,0 +1,5 @@ +(* Checking let-in abstraction *) +Goal let x := Set in let y := x in True. + intros x y. + (* There used to have a too strict dependency test there *) + set (s := Set) in (value of x). diff --git a/test-suite/success/contradiction.v b/test-suite/success/contradiction.v new file mode 100644 index 0000000000..92a7c6ccbc --- /dev/null +++ b/test-suite/success/contradiction.v @@ -0,0 +1,32 @@ +(* Some tests for contradiction *) + +Lemma L1 : forall A B : Prop, A -> ~A -> B. +Proof. +intros; contradiction. +Qed. + +Lemma L2 : forall A B : Prop, ~A -> A -> B. +Proof. +intros; contradiction. +Qed. + +Lemma L3 : forall A : Prop, ~True -> A. +Proof. +intros; contradiction. +Qed. + +Lemma L4 : forall A : Prop, forall x : nat, ~x=x -> A. +Proof. +intros; contradiction. +Qed. + +Lemma L5 : forall A : Prop, forall x y : nat, ~x=y -> x=y -> A. +Proof. +intros; contradiction. +Qed. + +Lemma L6 : forall A : Prop, forall x y : nat, x=y -> ~x=y -> A. +Proof. +intros; contradiction. +Qed. + diff --git a/test-suite/success/eqdecide.v b/test-suite/success/eqdecide.v index 1f6af0dc44..724e2998ef 100644 --- a/test-suite/success/eqdecide.v +++ b/test-suite/success/eqdecide.v @@ -14,6 +14,18 @@ Lemma lem1 : forall x y : T, {x = y} + {x <> y}. decide equality. Qed. +Lemma lem1' : forall x y : T, x = y \/ x <> y. + decide equality. +Qed. + +Lemma lem1'' : forall x y : T, {x <> y} + {x = y}. + decide equality. +Qed. + +Lemma lem1''' : forall x y : T, x <> y \/ x = y. + decide equality. +Qed. + Lemma lem2 : forall x y : T, {x = y} + {x <> y}. intros x y. decide equality. |
