diff options
| author | Frédéric Besson | 2018-08-24 23:10:55 +0200 |
|---|---|---|
| committer | Frédéric Besson | 2018-10-09 12:20:39 +0200 |
| commit | 7f445d1027cbcedf91f446bc86afea36840728ba (patch) | |
| tree | 9bd390614a3bbed2cd6c8a47b808242ef706ec5b /test-suite/micromega/example.v | |
| parent | 59de2827b63b5bc475452bef385a2149a10a631c (diff) | |
Refactoring of Micromega code using a Simplex linear solver
- Simplex based linear prover
Unset Simplex to get Fourier elimination
For lia and nia, do not enumerate but generate cutting planes.
- Better non-linear support
Factorisation of the non-linear pre-processing
Careful handling of equation x=e, x is only eliminated if x is used linearly
- More opaque interfaces
(Linear solvers Simplex and Mfourier are independent)
- Set Dump Arith "file" so that lia,nia calls generate Coq goals
in filexxx.v. Used to collect benchmarks and regressions.
- Rationalise the test-suite
example.v only tests psatz Z
example_nia.v only tests lia, nia
In both files, the tests are in essence the same.
In particular, if a test is solved by psatz but not by nia,
we finish the goal by an explicit Abort.
There are additional tests in example_nia.v which require specific
integer reasoning out of scope of psatz.
Diffstat (limited to 'test-suite/micromega/example.v')
| -rw-r--r-- | test-suite/micromega/example.v | 151 |
1 files changed, 113 insertions, 38 deletions
diff --git a/test-suite/micromega/example.v b/test-suite/micromega/example.v index 25e4a09fa0..d70bb809c6 100644 --- a/test-suite/micromega/example.v +++ b/test-suite/micromega/example.v @@ -12,25 +12,48 @@ Open Scope Z_scope. Require Import ZMicromega. Require Import VarMap. -(* false in Q : x=1/2 and n=1 *) - Lemma not_so_easy : forall x n : Z, 2*x + 1 <= 2 *n -> x <= n-1. Proof. intros. - lia. + psatz Z 2. Qed. + (* From Laurent Théry *) -Lemma some_pol : forall x, 4 * x ^ 2 + 3 * x + 2 >= 0. +Goal forall (x y : Z), x = 0 -> x * y = 0. +Proof. + intros. + psatz Z 2. +Qed. + +Goal forall (x y : Z), x = 0 -> x * y = 0. +Proof. + intros. + psatz Z 2. +Qed. + +Goal forall (x y : Z), 2*x = 0 -> x * y = 0. Proof. intros. psatz Z 2. Qed. +Goal forall (x y: Z), - x*x >= 0 -> x * y = 0. +Proof. + intros. + psatz Z 4. +Qed. + +Lemma some_pol : forall x, 4 * x ^ 2 + 3 * x + 2 >= 0. +Proof. + intros. + psatz Z 2. +Qed. + Lemma Zdiscr: forall a b c x, a * x ^ 2 + b * x + c = 0 -> b ^ 2 - 4 * a * c >= 0. Proof. @@ -42,11 +65,9 @@ Lemma plus_minus : forall x y, 0 = x + y -> 0 = x -y -> 0 = x /\ 0 = y. Proof. intros. - lia. + psatz Z 1. Qed. - - Lemma mplus_minus : forall x y, x + y >= 0 -> x -y >= 0 -> x^2 - y^2 >= 0. Proof. @@ -95,7 +116,7 @@ Proof. generalize (H8 _ _ _ (conj H5 H4)). generalize (H10 _ _ _ (conj H5 H4)). generalize rho_ge. - psatz Z 2. + zify; intuition subst ; psatz Z 2. Qed. (* Rule of signs *) @@ -118,18 +139,12 @@ Proof. intros; psatz Z 2. Qed. -Lemma sign_zer_pos: forall x y, +Lemma sign_zero_pos: forall x y, x = 0 -> y > 0 -> x*y = 0. Proof. intros; psatz Z 2. Qed. -Lemma sign_zero_zero: forall x y, - x = 0 -> y = 0 -> x*y = 0. -Proof. - intros; psatz Z 2. -Qed. - Lemma sign_zero_neg: forall x y, x = 0 -> y < 0 -> x*y = 0. Proof. @@ -157,12 +172,6 @@ Qed. (* Other (simple) examples *) -Lemma binomial : forall x y, (x+y)^2 = x^2 + 2*x*y + y^2. -Proof. - intros. - lia. -Qed. - Lemma product : forall x y, x >= 0 -> y >= 0 -> x * y >= 0. Proof. intros. @@ -170,13 +179,6 @@ Proof. Qed. -Lemma product_strict : forall x y, x > 0 -> y > 0 -> x * y > 0. -Proof. - intros. - psatz Z 2. -Qed. - - Lemma pow_2_pos : forall x, x ^ 2 + 1 = 0 -> False. Proof. intros ; psatz Z 2. @@ -229,8 +231,6 @@ Proof. intros; psatz Z 3. Qed. - - Lemma hol_light7 : forall x y z, 0<= x /\ 0 <= y /\ 0 <= z /\ x + y + z <= 3 -> x * y + x * z + y * z >= 3 * x * y * z. @@ -251,6 +251,7 @@ Proof. intros; psatz Z 2. Qed. + Lemma hol_light10 : forall x y, x >= 1 /\ y >= 1 -> x * y >= x + y - 1. Proof. @@ -275,6 +276,7 @@ Proof. unfold e ; intros ; psatz Z 2. Qed. + Lemma hol_light14 : forall x y z, 2 <= x /\ x <= 4 /\ 2 <= y /\ y <= 4 /\ 2 <= z /\ z <= 4 -> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z). @@ -300,6 +302,7 @@ Proof. intros ; psatz Z 3. Qed. + Lemma hol_light18 : forall x y, 0 <= x /\ 0 <= y -> x * y * (x + y) ^ 2 <= (x ^ 2 + y ^ 2) ^ 2. Proof. @@ -310,18 +313,12 @@ Qed. (* Some examples over integers and natural numbers. *) (* ------------------------------------------------------------------------- *) -Lemma hol_light19 : forall m n, 2 * m + n = (n + m) + m. -Proof. - intros ; lia. -Qed. - Lemma hol_light22 : forall n, n >= 0 -> n <= n * n. Proof. intros. psatz Z 2. Qed. - Lemma hol_light24 : forall x1 y1 x2 y2, x1 >= 0 -> x2 >= 0 -> y1 >= 0 -> y2 >= 0 -> ((x1 + y1) ^2 + x1 + 1 = (x2 + y2) ^ 2 + x2 + 1) -> (x1 + y1 = x2 + y2). @@ -336,11 +333,89 @@ Proof. psatz Z 1. Qed. - - Lemma motzkin : forall x y, (x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0. Proof. intros. generalize (motzkin' x y). psatz Z 8. Qed. + +(** Other tests *) + +Goal forall x y z n, + y >= z /\ y = n \/ ~ y >= z /\ z = n -> + x >= y /\ + (x >= z /\ (x >= n /\ x = x \/ ~ x >= n /\ x = n) \/ + ~ x >= z /\ (x >= n /\ z = x \/ ~ x >= n /\ z = n)) \/ + ~ x >= y /\ + (y >= z /\ (x >= n /\ y = x \/ ~ x >= n /\ y = n) \/ + ~ y >= z /\ (x >= n /\ z = x \/ ~ x >= n /\ z = n)). +Proof. + intros. + psatz Z 2. +Qed. + +(** Incompeteness: require manual case split *) +Goal forall (z0 z z1 z2 z3 z5 :Z) +(H8 : 0 <= z2) +(H5 : z5 > 0) +(H0 : z0 > 0) +(H9 : z2 < z0) +(H1 : z0 * z5 > 0) +(H10 : 0 <= z1 * z0 + z0 * z5 - 1 - z0 * z5 * z) +(H11 : z1 * z0 + z0 * z5 - 1 - z0 * z5 * z < z0 * z5) +(H6 : 0 <= z0 * z1 + z2 - z0 + 1 + z0 * z5 - 1 - z0 * z5 * z3) +(H7 : z0 * z1 + z2 - z0 + 1 + z0 * z5 - 1 - z0 * z5 * z3 < z0 * z5) +(C : z > z3), False. +Proof. + intros. + assert (z1 - z5 * z3 - 1 < 0) by psatz Z 3. + psatz Z 3. +Qed. + +Goal forall + (d sz x n : Z) + (GE : sz * x - sz * d >=1 ) + (R : sz + d * sz - sz * x >= 1), + False. +Proof. + intros. + assert (x - d >= 1) by psatz Z 3. + psatz Z 3. +Qed. + + +Goal forall x6 x8 x9 x10 x11 x12 x13 x14, + x6 >= 0 -> + -x6 + x8 + x9 + -x10 >= 1 -> + x8 >= 0 -> + x11 >= 0 -> + -x11 + x12 + x13 + -x14 >= 1 -> + x6 + -4*x8 + -2*x9 + 3*x10 + x11 + -4*x12 + -2*x13 + 3*x14 >= -5 -> + x10 >= 0 -> + x14 >= 0 -> + x12 >= 0 -> + x8 + -x10 + x12 + -x14 >= 1 -> + False. +Proof. + intros. + psatz Z 1. +Qed. + +Goal forall x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12, +x2 + -1*x4 >= 0 -> +-2*x2 + x4 >= -1 -> +x1 + x3 + x4 + -1*x7 + -1*x11 >= 1 -> +-1*x2 + x8 + x10 >= 0 -> +-2*x3 + -2*x4 + x5 + 2*x6 + x9 >= -1 -> +-2*x1 + 3*x3 + x4 + -1*x7 + -1*x11 >= 0 -> +-2*x1 + x3 + x4 + -1*x8 + -1*x10 + 2*x12 >= 0 -> +-2*x2 + x3 + x4 + -1*x7 + -1*x11 + 2*x12 >= 0 -> +-2*x2 + x3 + 3*x4 + -1*x8 + -1*x10 >= 0 -> +2*x2 + -1*x3 + -1*x4 + x5 + 2*x6 + -2*x8 + x9 + -2*x10 >= 0 -> +x1 + -2*x3 + x7 + x11 + -2*x12 >= 0 -> + False. +Proof. + intros. + psatz Z 1. +Qed. |
