aboutsummaryrefslogtreecommitdiff
path: root/test-suite/micromega/example.v
diff options
context:
space:
mode:
authorglondu2009-09-17 15:58:14 +0000
committerglondu2009-09-17 15:58:14 +0000
commit61ccbc81a2f3b4662ed4a2bad9d07d2003dda3a2 (patch)
tree961cc88c714aa91a0276ea9fbf8bc53b2b9d5c28 /test-suite/micromega/example.v
parent6d3fbdf36c6a47b49c2a4b16f498972c93c07574 (diff)
Delete trailing whitespaces in all *.{v,ml*} files
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite/micromega/example.v')
-rw-r--r--test-suite/micromega/example.v22
1 files changed, 11 insertions, 11 deletions
diff --git a/test-suite/micromega/example.v b/test-suite/micromega/example.v
index 5cb1039533..f424f0fcca 100644
--- a/test-suite/micromega/example.v
+++ b/test-suite/micromega/example.v
@@ -19,7 +19,7 @@ Lemma not_so_easy : forall x n : Z,
2*x + 1 <= 2 *n -> x <= n-1.
Proof.
intros.
- lia.
+ lia.
Qed.
@@ -27,19 +27,19 @@ Qed.
Lemma some_pol : forall x, 4 * x ^ 2 + 3 * x + 2 >= 0.
Proof.
- intros.
+ intros.
psatz Z 2.
Qed.
-Lemma Zdiscr: forall a b c x,
+Lemma Zdiscr: forall a b c x,
a * x ^ 2 + b * x + c = 0 -> b ^ 2 - 4 * a * c >= 0.
Proof.
intros ; psatz Z 4.
Qed.
-Lemma plus_minus : forall x y,
+Lemma plus_minus : forall x y,
0 = x + y -> 0 = x -y -> 0 = x /\ 0 = y.
Proof.
intros.
@@ -48,20 +48,20 @@ Qed.
-Lemma mplus_minus : forall x y,
+Lemma mplus_minus : forall x y,
x + y >= 0 -> x -y >= 0 -> x^2 - y^2 >= 0.
Proof.
intros; psatz Z 2.
Qed.
-Lemma pol3: forall x y, 0 <= x + y ->
+Lemma pol3: forall x y, 0 <= x + y ->
x^3 + 3*x^2*y + 3*x* y^2 + y^3 >= 0.
Proof.
intros; psatz Z 4.
Qed.
-(* Motivating example from: Expressiveness + Automation + Soundness:
+(* Motivating example from: Expressiveness + Automation + Soundness:
Towards COmbining SMT Solvers and Interactive Proof Assistants *)
Parameter rho : Z.
Parameter rho_ge : rho >= 0.
@@ -76,7 +76,7 @@ Definition rbound2 (C:Z -> Z -> Z) : Prop :=
Lemma bounded_drift : forall s t p q C D, s <= t /\ correct p t /\ correct q t /\
- rbound1 C /\ rbound2 C /\ rbound1 D /\ rbound2 D ->
+ rbound1 C /\ rbound2 C /\ rbound1 D /\ rbound2 D ->
Zabs (C p t - D q t) <= Zabs (C p s - D q s) + 2 * rho * (t- s).
Proof.
intros.
@@ -194,8 +194,8 @@ Qed.
(* from hol_light/Examples/sos.ml *)
Lemma hol_light1 : forall a1 a2 b1 b2,
- a1 >= 0 -> a2 >= 0 ->
- (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) ->
+ a1 >= 0 -> a2 >= 0 ->
+ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) ->
(a1 * b1 + a2 * b2 = 0) -> a1 * a2 - b1 * b2 >= 0.
Proof.
intros ; psatz Z 4.
@@ -323,7 +323,7 @@ Proof.
Qed.
-Lemma hol_light24 : forall x1 y1 x2 y2, x1 >= 0 -> x2 >= 0 -> y1 >= 0 -> y2 >= 0 ->
+Lemma hol_light24 : forall x1 y1 x2 y2, x1 >= 0 -> x2 >= 0 -> y1 >= 0 -> y2 >= 0 ->
((x1 + y1) ^2 + x1 + 1 = (x2 + y2) ^ 2 + x2 + 1)
-> (x1 + y1 = x2 + y2).
Proof.