aboutsummaryrefslogtreecommitdiff
path: root/test-suite/failure
diff options
context:
space:
mode:
authorglondu2009-09-17 15:58:14 +0000
committerglondu2009-09-17 15:58:14 +0000
commit61ccbc81a2f3b4662ed4a2bad9d07d2003dda3a2 (patch)
tree961cc88c714aa91a0276ea9fbf8bc53b2b9d5c28 /test-suite/failure
parent6d3fbdf36c6a47b49c2a4b16f498972c93c07574 (diff)
Delete trailing whitespaces in all *.{v,ml*} files
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'test-suite/failure')
-rw-r--r--test-suite/failure/Case5.v2
-rw-r--r--test-suite/failure/Case9.v2
-rw-r--r--test-suite/failure/guard.v2
-rw-r--r--test-suite/failure/inductive3.v2
-rw-r--r--test-suite/failure/proofirrelevance.v2
-rw-r--r--test-suite/failure/rewrite_in_hyp2.v2
-rw-r--r--test-suite/failure/subtyping.v6
-rw-r--r--test-suite/failure/subtyping2.v8
-rw-r--r--test-suite/failure/univ_include.v4
-rw-r--r--test-suite/failure/universes-buraliforti-redef.v8
-rw-r--r--test-suite/failure/universes-buraliforti.v8
-rw-r--r--test-suite/failure/universes3.v2
12 files changed, 24 insertions, 24 deletions
diff --git a/test-suite/failure/Case5.v b/test-suite/failure/Case5.v
index 29996fd451..494443f1c9 100644
--- a/test-suite/failure/Case5.v
+++ b/test-suite/failure/Case5.v
@@ -1,7 +1,7 @@
Inductive MS : Set :=
| X : MS -> MS
| Y : MS -> MS.
-
+
Type (fun p : MS => match p return nat with
| X x => 0
end).
diff --git a/test-suite/failure/Case9.v b/test-suite/failure/Case9.v
index a3b99f6314..d63c49403b 100644
--- a/test-suite/failure/Case9.v
+++ b/test-suite/failure/Case9.v
@@ -1,7 +1,7 @@
Parameter compare : forall n m : nat, {n < m} + {n = m} + {n > m}.
Type
match compare 0 0 return nat with
-
+
(* k<i *) | left _ _ (left _ _ _) => 0
(* k=i *) | left _ _ _ => 0
(* k>i *) | right _ _ _ => 0
diff --git a/test-suite/failure/guard.v b/test-suite/failure/guard.v
index 7e07a90585..75e5113860 100644
--- a/test-suite/failure/guard.v
+++ b/test-suite/failure/guard.v
@@ -18,4 +18,4 @@ Definition f :=
let h := f in (* h = Rel 4 *)
fix F (n:nat) : nat :=
h F S n. (* here Rel 4 = g *)
-
+
diff --git a/test-suite/failure/inductive3.v b/test-suite/failure/inductive3.v
index e5a4e1b66c..cf035edf79 100644
--- a/test-suite/failure/inductive3.v
+++ b/test-suite/failure/inductive3.v
@@ -1,4 +1,4 @@
-(* Check that the nested inductive types positivity check avoids recursively
+(* Check that the nested inductive types positivity check avoids recursively
non uniform parameters (at least if these parameters break positivity) *)
Inductive t (A:Type) : Type := c : t (A -> A) -> t A.
diff --git a/test-suite/failure/proofirrelevance.v b/test-suite/failure/proofirrelevance.v
index eedf2612b3..93e159e8bd 100644
--- a/test-suite/failure/proofirrelevance.v
+++ b/test-suite/failure/proofirrelevance.v
@@ -1,5 +1,5 @@
(* This was working in version 8.1beta (bug in the Sort-polymorphism
- of inductive types), but this is inconsistent with classical logic
+ of inductive types), but this is inconsistent with classical logic
in Prop *)
Inductive bool_in_prop : Type := hide : bool -> bool_in_prop
diff --git a/test-suite/failure/rewrite_in_hyp2.v b/test-suite/failure/rewrite_in_hyp2.v
index a32037a21a..1533966efe 100644
--- a/test-suite/failure/rewrite_in_hyp2.v
+++ b/test-suite/failure/rewrite_in_hyp2.v
@@ -1,4 +1,4 @@
-(* Until revision 10221, rewriting in hypotheses of the form
+(* Until revision 10221, rewriting in hypotheses of the form
"(fun x => phi(x)) t" with "t" not rewritable used to behave as a
beta-normalization tactic instead of raising the expected message
"nothing to rewrite" *)
diff --git a/test-suite/failure/subtyping.v b/test-suite/failure/subtyping.v
index 35fd20369f..127da85133 100644
--- a/test-suite/failure/subtyping.v
+++ b/test-suite/failure/subtyping.v
@@ -4,17 +4,17 @@ Module Type T.
Parameter A : Type.
- Inductive L : Prop :=
+ Inductive L : Prop :=
| L0
| L1 : (A -> Prop) -> L.
End T.
-Module TT : T.
+Module TT : T.
Parameter A : Type.
- Inductive L : Type :=
+ Inductive L : Type :=
| L0
| L1 : (A -> Prop) -> L.
diff --git a/test-suite/failure/subtyping2.v b/test-suite/failure/subtyping2.v
index 0a75ae4565..addd3b459f 100644
--- a/test-suite/failure/subtyping2.v
+++ b/test-suite/failure/subtyping2.v
@@ -61,7 +61,7 @@ End Inverse_Image.
Section Burali_Forti_Paradox.
- Definition morphism (A : Type) (R : A -> A -> Prop)
+ Definition morphism (A : Type) (R : A -> A -> Prop)
(B : Type) (S : B -> B -> Prop) (f : A -> B) :=
forall x y : A, R x y -> S (f x) (f y).
@@ -69,7 +69,7 @@ Section Burali_Forti_Paradox.
assumes there exists an universal system of notations, i.e:
- A type A0
- An injection i0 from relations on any type into A0
- - The proof that i0 is injective modulo morphism
+ - The proof that i0 is injective modulo morphism
*)
Variable A0 : Type. (* Type_i *)
Variable i0 : forall X : Type, (X -> X -> Prop) -> A0. (* X: Type_j *)
@@ -82,7 +82,7 @@ Section Burali_Forti_Paradox.
(* Embedding of x in y: x and y are images of 2 well founded relations
R1 and R2, the ordinal of R2 being strictly greater than that of R1.
*)
- Record emb (x y : A0) : Prop :=
+ Record emb (x y : A0) : Prop :=
{X1 : Type;
R1 : X1 -> X1 -> Prop;
eqx : x = i0 X1 R1;
@@ -166,7 +166,7 @@ Defined.
End Subsets.
- Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
+ Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
sub b := Build_sub _ (witness _ x) (emb_trans _ _ _ (emb_wit _ x) H).
(* F is a morphism: a < b => F(a) < F(b)
diff --git a/test-suite/failure/univ_include.v b/test-suite/failure/univ_include.v
index 4be70d888c..56f04f9d60 100644
--- a/test-suite/failure/univ_include.v
+++ b/test-suite/failure/univ_include.v
@@ -1,9 +1,9 @@
Definition T := Type.
Definition U := Type.
-Module Type MT.
+Module Type MT.
Parameter t : T.
-End MT.
+End MT.
Module Type MU.
Parameter t : U.
diff --git a/test-suite/failure/universes-buraliforti-redef.v b/test-suite/failure/universes-buraliforti-redef.v
index 049f97f221..034b7f0947 100644
--- a/test-suite/failure/universes-buraliforti-redef.v
+++ b/test-suite/failure/universes-buraliforti-redef.v
@@ -64,7 +64,7 @@ End Inverse_Image.
Section Burali_Forti_Paradox.
- Definition morphism (A : Type) (R : A -> A -> Prop)
+ Definition morphism (A : Type) (R : A -> A -> Prop)
(B : Type) (S : B -> B -> Prop) (f : A -> B) :=
forall x y : A, R x y -> S (f x) (f y).
@@ -72,7 +72,7 @@ Section Burali_Forti_Paradox.
assumes there exists an universal system of notations, i.e:
- A type A0
- An injection i0 from relations on any type into A0
- - The proof that i0 is injective modulo morphism
+ - The proof that i0 is injective modulo morphism
*)
Variable A0 : Type. (* Type_i *)
Variable i0 : forall X : Type, (X -> X -> Prop) -> A0. (* X: Type_j *)
@@ -85,7 +85,7 @@ Section Burali_Forti_Paradox.
(* Embedding of x in y: x and y are images of 2 well founded relations
R1 and R2, the ordinal of R2 being strictly greater than that of R1.
*)
- Record emb (x y : A0) : Prop :=
+ Record emb (x y : A0) : Prop :=
{X1 : Type;
R1 : X1 -> X1 -> Prop;
eqx : x = i0 X1 R1;
@@ -168,7 +168,7 @@ Defined.
End Subsets.
- Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
+ Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
sub b := Build_sub _ (witness _ x) (emb_trans _ _ _ (emb_wit _ x) H).
(* F is a morphism: a < b => F(a) < F(b)
diff --git a/test-suite/failure/universes-buraliforti.v b/test-suite/failure/universes-buraliforti.v
index d18d211951..1f96ab34a2 100644
--- a/test-suite/failure/universes-buraliforti.v
+++ b/test-suite/failure/universes-buraliforti.v
@@ -47,7 +47,7 @@ End Inverse_Image.
Section Burali_Forti_Paradox.
- Definition morphism (A : Type) (R : A -> A -> Prop)
+ Definition morphism (A : Type) (R : A -> A -> Prop)
(B : Type) (S : B -> B -> Prop) (f : A -> B) :=
forall x y : A, R x y -> S (f x) (f y).
@@ -55,7 +55,7 @@ Section Burali_Forti_Paradox.
assumes there exists an universal system of notations, i.e:
- A type A0
- An injection i0 from relations on any type into A0
- - The proof that i0 is injective modulo morphism
+ - The proof that i0 is injective modulo morphism
*)
Variable A0 : Type. (* Type_i *)
Variable i0 : forall X : Type, (X -> X -> Prop) -> A0. (* X: Type_j *)
@@ -68,7 +68,7 @@ Section Burali_Forti_Paradox.
(* Embedding of x in y: x and y are images of 2 well founded relations
R1 and R2, the ordinal of R2 being strictly greater than that of R1.
*)
- Record emb (x y : A0) : Prop :=
+ Record emb (x y : A0) : Prop :=
{X1 : Type;
R1 : X1 -> X1 -> Prop;
eqx : x = i0 X1 R1;
@@ -152,7 +152,7 @@ Defined.
End Subsets.
- Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
+ Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
sub b := Build_sub _ (witness _ x) (emb_trans _ _ _ (emb_wit _ x) H).
(* F is a morphism: a < b => F(a) < F(b)
diff --git a/test-suite/failure/universes3.v b/test-suite/failure/universes3.v
index 427cec1907..8fb414d5ae 100644
--- a/test-suite/failure/universes3.v
+++ b/test-suite/failure/universes3.v
@@ -15,7 +15,7 @@ Inductive I (B:Type (*6*)) := C : B -> impl Prop (I B).
where Type(7) is the auxiliary level used to infer the type of I
*)
-(* We cannot enforce Type1 < Type(6) while we already have
+(* We cannot enforce Type1 < Type(6) while we already have
Type(6) <= Type(7) < Type3 < Type1 *)
Definition J := I Type1.