diff options
| author | Maxime Dénès | 2019-05-10 12:32:07 +0200 |
|---|---|---|
| committer | Maxime Dénès | 2019-05-13 11:40:24 +0200 |
| commit | cf9f4e566b87d2875f757bb7d54ee4421988e315 (patch) | |
| tree | d6264d1a107537c9c80f6f1a991f235112c5d086 /test-suite/bugs/opened | |
| parent | fe75c2ab9400a83b18fa73e95d4c24a79f88c97d (diff) | |
Make detyping robust w.r.t. indexed anonymous variables
I don't think there's a reason to treat such variables more severely
than unbound variables. This anomaly is often raised by debug printers
(e.g. when studying complex scenarios using `Set Unification Debug`),
and so makes debugging less convenient.
Fixes #3754, fixes #10026.
Diffstat (limited to 'test-suite/bugs/opened')
| -rw-r--r-- | test-suite/bugs/opened/bug_3754.v | 285 |
1 files changed, 0 insertions, 285 deletions
diff --git a/test-suite/bugs/opened/bug_3754.v b/test-suite/bugs/opened/bug_3754.v deleted file mode 100644 index 18820b1a4c..0000000000 --- a/test-suite/bugs/opened/bug_3754.v +++ /dev/null @@ -1,285 +0,0 @@ -Unset Strict Universe Declaration. -Require Import TestSuite.admit. -(* File reduced by coq-bug-finder from original input, then from 9113 lines to 279 lines *) -(* coqc version trunk (October 2014) compiled on Oct 19 2014 18:56:9 with OCaml 3.12.1 - coqtop version trunk (October 2014) *) - -Notation Type0 := Set. - -Notation idmap := (fun x => x). - -Notation "( x ; y )" := (existT _ x y) : fibration_scope. -Open Scope fibration_scope. - -Notation pr1 := projT1. - -Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope. - -Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := - fun x => g (f x). - -Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope. -Open Scope function_scope. - -Inductive paths {A : Type} (a : A) : A -> Type := - idpath : paths a a. - -Arguments idpath {A a} , [A] a. - -Notation "x = y :> A" := (@paths A x y) : type_scope. -Notation "x = y" := (x = y :>_) : type_scope. -Definition inverse {A : Type} {x y : A} (p : x = y) : y = x. -admit. -Defined. - -Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := - match p, q with idpath, idpath => idpath end. - -Notation "1" := idpath : path_scope. - -Notation "p @ q" := (concat p q) (at level 20) : path_scope. - -Notation "p ^" := (inverse p) (at level 3, format "p '^'") : path_scope. - -Notation "p @' q" := (concat p q) (at level 21, left associativity, - format "'[v' p '/' '@'' q ']'") : long_path_scope. -Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y. -exact (match p with idpath => u end). -Defined. - -Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope. -Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y. -exact (match p with idpath => idpath end). -Defined. - -Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) - := forall x:A, f x = g x. - -Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope. - -Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := - forall x : A, r (s x) = x. - -Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { - equiv_inv : B -> A ; - eisretr : Sect equiv_inv f; - eissect : Sect f equiv_inv; - eisadj : forall x : A, eisretr (f x) = ap f (eissect x) -}. - -Arguments eisretr {A B} f {_} _. - -Record Equiv A B := BuildEquiv { - equiv_fun : A -> B ; - equiv_isequiv : IsEquiv equiv_fun -}. - -Coercion equiv_fun : Equiv >-> Funclass. - -Global Existing Instance equiv_isequiv. - -Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope. - -Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : equiv_scope. - -Class Contr_internal (A : Type) := BuildContr { - center : A ; - contr : (forall y : A, center = y) -}. - -Inductive trunc_index : Type := -| minus_two : trunc_index -| trunc_S : trunc_index -> trunc_index. - -Notation "n .+1" := (trunc_S n) (at level 2, left associativity, format "n .+1") : trunc_scope. -Local Open Scope trunc_scope. -Notation "-2" := minus_two (at level 0) : trunc_scope. -Notation "-1" := (-2.+1) (at level 0) : trunc_scope. - -Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type := - match n with - | -2 => Contr_internal A - | n'.+1 => forall (x y : A), IsTrunc_internal n' (x = y) - end. - -Class IsTrunc (n : trunc_index) (A : Type) : Type := - Trunc_is_trunc : IsTrunc_internal n A. -Notation IsHProp := (IsTrunc -1). - -Monomorphic Axiom dummy_funext_type : Type0. -Monomorphic Class Funext := { dummy_funext_value : dummy_funext_type }. - -Local Open Scope path_scope. - -Definition concat_p1 {A : Type} {x y : A} (p : x = y) : - p @ 1 = p - := - match p with idpath => 1 end. - -Definition concat_1p {A : Type} {x y : A} (p : x = y) : - 1 @ p = p - := - match p with idpath => 1 end. - -Definition concat_p_pp {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) : - p @ (q @ r) = (p @ q) @ r := - match r with idpath => - match q with idpath => - match p with idpath => 1 - end end end. - -Definition concat_pp_p {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) : - (p @ q) @ r = p @ (q @ r) := - match r with idpath => - match q with idpath => - match p with idpath => 1 - end end end. - -Definition moveL_Mp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : - r^ @ q = p -> q = r @ p. -admit. -Defined. - -Ltac with_rassoc tac := - repeat rewrite concat_pp_p; - tac; - - repeat rewrite concat_p_pp. - -Ltac rewrite_moveL_Mp_p := with_rassoc ltac:(apply moveL_Mp). - -Definition ap_p_pp {A B : Type} (f : A -> B) {w : B} {x y z : A} - (r : w = f x) (p : x = y) (q : y = z) : - r @ (ap f (p @ q)) = (r @ ap f p) @ (ap f q). -admit. -Defined. - -Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) : - ap (g o f) p = ap g (ap f p) - := - match p with idpath => 1 end. - -Definition concat_Ap {A B : Type} {f g : A -> B} (p : forall x, f x = g x) {x y : A} (q : x = y) : - (ap f q) @ (p y) = (p x) @ (ap g q) - := - match q with - | idpath => concat_1p _ @ ((concat_p1 _) ^) - end. - -Definition transportD2 {A : Type} (B C : A -> Type) (D : forall a:A, B a -> C a -> Type) - {x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z) - : D x2 (p # y) (p # z) - := - match p with idpath => w end. -Local Open Scope equiv_scope. - -Definition transport_arrow_toconst {A : Type} {B : A -> Type} {C : Type} - {x1 x2 : A} (p : x1 = x2) (f : B x1 -> C) (y : B x2) - : (transport (fun x => B x -> C) p f) y = f (p^ # y). -admit. -Defined. - -Definition transport_arrow_fromconst {A B : Type} {C : A -> Type} - {x1 x2 : A} (p : x1 = x2) (f : B -> C x1) (y : B) - : (transport (fun x => B -> C x) p f) y = p # (f y). -admit. -Defined. - -Definition ap_transport_arrow_toconst {A : Type} {B : A -> Type} {C : Type} - {x1 x2 : A} (p : x1 = x2) (f : B x1 -> C) {y1 y2 : B x2} (q : y1 = y2) - : ap (transport (fun x => B x -> C) p f) q - @ transport_arrow_toconst p f y2 - = transport_arrow_toconst p f y1 - @ ap (fun y => f (p^ # y)) q. -admit. -Defined. - -Class Univalence. -Definition path_universe {A B : Type} (f : A -> B) {feq : IsEquiv f} : (A = B). -admit. -Defined. -Definition transport_path_universe - {A B : Type} (f : A -> B) {feq : IsEquiv f} (z : A) - : transport (fun X:Type => X) (path_universe f) z = f z. -admit. -Defined. -Definition transport_path_universe_V `{Funext} - {A B : Type} (f : A -> B) {feq : IsEquiv f} (z : B) - : transport (fun X:Type => X) (path_universe f)^ z = f^-1 z. -admit. -Defined. - -Ltac simpl_do_clear tac term := - let H := fresh in - assert (H := term); - simpl in H |- *; - tac H; - clear H. - -Tactic Notation "simpl" "rewrite" constr(term) := simpl_do_clear ltac:(fun H => rewrite H) term. - -Global Instance Univalence_implies_Funext `{Univalence} : Funext. -Admitted. - -Section Factorization. - - Context {class1 class2 : forall (X Y : Type@{i}), (X -> Y) -> Type@{i}} - `{forall (X Y : Type@{i}) (g:X->Y), IsHProp (class1 _ _ g)} - `{forall (X Y : Type@{i}) (g:X->Y), IsHProp (class2 _ _ g)} - {A B : Type@{i}} {f : A -> B}. - - Record Factorization := - { intermediate : Type ; - factor1 : A -> intermediate ; - factor2 : intermediate -> B ; - fact_factors : factor2 o factor1 == f ; - inclass1 : class1 _ _ factor1 ; - inclass2 : class2 _ _ factor2 - }. - - Record PathFactorization {fact fact' : Factorization} := - { path_intermediate : intermediate fact <~> intermediate fact' ; - path_factor1 : path_intermediate o factor1 fact == factor1 fact' ; - path_factor2 : factor2 fact == factor2 fact' o path_intermediate ; - path_fact_factors : forall a, path_factor2 (factor1 fact a) - @ ap (factor2 fact') (path_factor1 a) - @ fact_factors fact' a - = fact_factors fact a - }. - Context `{Univalence} {fact fact' : Factorization} - (pf : @PathFactorization fact fact'). - - Let II := path_intermediate pf. - Let ff1 := path_factor1 pf. - Let ff2 := path_factor2 pf. -Local Definition II' : intermediate fact = intermediate fact'. -admit. -Defined. - - Local Definition fff' (a : A) - : (transportD2 (fun X => A -> X) (fun X => X -> B) - (fun X g h => {_ : forall a : A, h (g a) = f a & - {_ : class1 A X g & class2 X B h}}) - II' (factor1 fact) (factor2 fact) - (fact_factors fact; (inclass1 fact; inclass2 fact))).1 a = - ap (transport (fun X => X -> B) II' (factor2 fact)) - (transport_arrow_fromconst II' (factor1 fact) a - @ transport_path_universe II (factor1 fact a) - @ ff1 a) - @ transport_arrow_toconst II' (factor2 fact) (factor1 fact' a) - @ ap (factor2 fact) (transport_path_universe_V II (factor1 fact' a)) - @ ff2 (II^-1 (factor1 fact' a)) - @ ap (factor2 fact') (eisretr II (factor1 fact' a)) - @ fact_factors fact' a. - Proof. - - Open Scope long_path_scope. - - rewrite (ap_transport_arrow_toconst (B := idmap) (C := B)). - - simpl rewrite (@ap_compose _ _ _ (transport idmap (path_universe II)^) - (factor2 fact)). - rewrite <- ap_p_pp; rewrite_moveL_Mp_p. - Set Debug Tactic Unification. - Fail rewrite (concat_Ap ff2). - Abort. |
