diff options
| author | Matthieu Sozeau | 2014-10-15 13:53:42 +0200 |
|---|---|---|
| committer | Matthieu Sozeau | 2014-10-15 13:53:42 +0200 |
| commit | 9d66b52dee17dcbdb45522fe3fcfa1fcdae65862 (patch) | |
| tree | 21a0d9ab87b3f6436f5d3ef552b208d6b0920ee9 /test-suite/bugs/opened | |
| parent | 5467fc3ee8249d5e1978cba5006db98cdfc27384 (diff) | |
Bug 3692 is fixed.
Diffstat (limited to 'test-suite/bugs/opened')
| -rw-r--r-- | test-suite/bugs/opened/3692.v | 26 |
1 files changed, 0 insertions, 26 deletions
diff --git a/test-suite/bugs/opened/3692.v b/test-suite/bugs/opened/3692.v deleted file mode 100644 index 1a9e38b794..0000000000 --- a/test-suite/bugs/opened/3692.v +++ /dev/null @@ -1,26 +0,0 @@ -Reserved Notation "x -> y" (at level 99, right associativity, y at level 200). -Reserved Notation "x = y" (at level 70, no associativity). -Reserved Notation "x * y" (at level 40, left associativity). -Delimit Scope core_scope with core. -Open Scope core_scope. -Notation "A -> B" := (forall (_ : A), B) : type_scope. -Global Set Primitive Projections. -Global Set Implicit Arguments. -Record prod (A B : Type) := pair { fst : A ; snd : B }. -Notation "x * y" := (prod x y) : type_scope. -Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope. -Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a where "x = y" := (@paths _ x y) : type_scope. -Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := forall x : A, r (s x) = x. -Class IsEquiv {A B : Type} (f : A -> B) := { equiv_inv : B -> A ; eisretr : Sect equiv_inv f }. -Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'"). -Generalizable Variables X A B f g n. -Axiom path_prod' : forall {A B : Type} {x x' : A} {y y' : B}, (x = x') -> (y = y') -> ((x,y) = (x',y')). -Definition functor_prod {A A' B B' : Type} (f:A->A') (g:B->B') -: A * B -> A' * B'. - exact (fun z => (f (fst z), g (snd z))). -Defined. -Fail Definition isequiv_functor_prod `{IsEquiv A A' f} `{IsEquiv B B' g} -: IsEquiv (functor_prod f g) - := @Build_IsEquiv - _ _ (functor_prod f g) (functor_prod f^-1 g^-1) - (fun z => path_prod' (@eisretr _ _ f _ (fst z)) (@eisretr _ _ g _ (snd z))). |
