aboutsummaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
authorEnrico Tassi2018-07-25 10:53:36 +0200
committerEnrico Tassi2018-07-25 10:53:36 +0200
commit9b6ce4f1848c546d0d361aa1089fa2907ca4c9ad (patch)
tree67c7fd1c8314e37f212140773e3f58012ff18a77 /plugins
parent0c7e72c05e3f828dcd03543000acbfbcf361ab23 (diff)
parenta39c1d311641b3276444c6e9dc83014daf525e3a (diff)
Merge PR #8139: Replace all the CoInductives with Variants in the SSR plugin
Diffstat (limited to 'plugins')
-rw-r--r--plugins/ssr/ssrbool.v16
-rw-r--r--plugins/ssr/ssreflect.v6
-rw-r--r--plugins/ssr/ssrfun.v4
3 files changed, 13 insertions, 13 deletions
diff --git a/plugins/ssr/ssrbool.v b/plugins/ssr/ssrbool.v
index 7d05b64384..0865f75ec5 100644
--- a/plugins/ssr/ssrbool.v
+++ b/plugins/ssr/ssrbool.v
@@ -61,8 +61,8 @@ Require Import ssreflect ssrfun.
(* classically P <-> we can assume P when proving is_true b. *)
(* := forall b : bool, (P -> b) -> b. *)
(* This is equivalent to ~ (~ P) when P : Prop. *)
-(* implies P Q == wrapper coinductive type that coerces to P -> Q *)
-(* and can be used as a P -> Q view unambigously. *)
+(* implies P Q == wrapper variant type that coerces to P -> Q and *)
+(* can be used as a P -> Q view unambigously. *)
(* Useful to avoid spurious insertion of <-> views *)
(* when Q is a conjunction of foralls, as in Lemma *)
(* all_and2 below; conversely, avoids confusion in *)
@@ -456,7 +456,7 @@ Section BoolIf.
Variables (A B : Type) (x : A) (f : A -> B) (b : bool) (vT vF : A).
-CoInductive if_spec (not_b : Prop) : bool -> A -> Set :=
+Variant if_spec (not_b : Prop) : bool -> A -> Set :=
| IfSpecTrue of b : if_spec not_b true vT
| IfSpecFalse of not_b : if_spec not_b false vF.
@@ -585,7 +585,7 @@ Lemma rwP2 : reflect Q b -> (P <-> Q).
Proof. by move=> Qb; split=> ?; [apply: appP | apply: elimT; case: Qb]. Qed.
(* Predicate family to reflect excluded middle in bool. *)
-CoInductive alt_spec : bool -> Type :=
+Variant alt_spec : bool -> Type :=
| AltTrue of P : alt_spec true
| AltFalse of ~~ b : alt_spec false.
@@ -603,7 +603,7 @@ Hint View for apply// equivPif|3 xorPif|3 equivPifn|3 xorPifn|3.
(* Allow the direct application of a reflection lemma to a boolean assertion. *)
Coercion elimT : reflect >-> Funclass.
-CoInductive implies P Q := Implies of P -> Q.
+Variant implies P Q := Implies of P -> Q.
Lemma impliesP P Q : implies P Q -> P -> Q. Proof. by case. Qed.
Lemma impliesPn (P Q : Prop) : implies P Q -> ~ Q -> ~ P.
Proof. by case=> iP ? /iP. Qed.
@@ -1119,7 +1119,7 @@ Proof. by move=> *; apply/orP; left. Qed.
Lemma subrelUr r1 r2 : subrel r2 (relU r1 r2).
Proof. by move=> *; apply/orP; right. Qed.
-CoInductive mem_pred := Mem of pred T.
+Variant mem_pred := Mem of pred T.
Definition isMem pT topred mem := mem = (fun p : pT => Mem [eta topred p]).
@@ -1329,7 +1329,7 @@ End simpl_mem.
(* Qualifiers and keyed predicates. *)
-CoInductive qualifier (q : nat) T := Qualifier of predPredType T.
+Variant qualifier (q : nat) T := Qualifier of predPredType T.
Coercion has_quality n T (q : qualifier n T) : pred_class :=
fun x => let: Qualifier _ p := q in p x.
@@ -1376,7 +1376,7 @@ Notation "[ 'qualify' 'an' x : T | P ]" := (Qualifier 2 (fun x : T => P%B))
Section KeyPred.
Variable T : Type.
-CoInductive pred_key (p : predPredType T) := DefaultPredKey.
+Variant pred_key (p : predPredType T) := DefaultPredKey.
Variable p : predPredType T.
Structure keyed_pred (k : pred_key p) :=
diff --git a/plugins/ssr/ssreflect.v b/plugins/ssr/ssreflect.v
index b0a9441385..b4144aa45e 100644
--- a/plugins/ssr/ssreflect.v
+++ b/plugins/ssr/ssreflect.v
@@ -184,7 +184,7 @@ Inductive external_view : Type := tactic_view of Type.
Module TheCanonical.
-CoInductive put vT sT (v1 v2 : vT) (s : sT) := Put.
+Variant put vT sT (v1 v2 : vT) (s : sT) := Put.
Definition get vT sT v s (p : @put vT sT v v s) := let: Put _ _ _ := p in s.
@@ -275,10 +275,10 @@ Notation "{ 'type' 'of' c 'for' s }" := (dependentReturnType c s)
(* We also define a simpler version ("phant" / "Phant") of phantom for the *)
(* common case where p_type is Type. *)
-CoInductive phantom T (p : T) := Phantom.
+Variant phantom T (p : T) := Phantom.
Arguments phantom : clear implicits.
Arguments Phantom : clear implicits.
-CoInductive phant (p : Type) := Phant.
+Variant phant (p : Type) := Phant.
(* Internal tagging used by the implementation of the ssreflect elim. *)
diff --git a/plugins/ssr/ssrfun.v b/plugins/ssr/ssrfun.v
index ac2c78249b..b2d5143e36 100644
--- a/plugins/ssr/ssrfun.v
+++ b/plugins/ssr/ssrfun.v
@@ -326,7 +326,7 @@ Section SimplFun.
Variables aT rT : Type.
-CoInductive simpl_fun := SimplFun of aT -> rT.
+Variant simpl_fun := SimplFun of aT -> rT.
Definition fun_of_simpl f := fun x => let: SimplFun lam := f in lam x.
@@ -684,7 +684,7 @@ Section Bijections.
Variables (A B : Type) (f : B -> A).
-CoInductive bijective : Prop := Bijective g of cancel f g & cancel g f.
+Variant bijective : Prop := Bijective g of cancel f g & cancel g f.
Hypothesis bijf : bijective.