diff options
| author | Michael Soegtrop | 2019-05-10 13:58:31 +0200 |
|---|---|---|
| committer | Michael Soegtrop | 2019-05-10 13:58:31 +0200 |
| commit | 73f921f9634b9ccb587b2f85869d88eb12983d0f (patch) | |
| tree | d8e17412e42f9085fbaf000484f83ea98c6e65ea /plugins | |
| parent | c659b96eaa7bb5e401786546bb293a31e5f3c3d4 (diff) | |
| parent | 281e6657c7fe5033a13c7a2fd2b6cc6f51cb6911 (diff) | |
Merge PR #9854: Improve field_simplify on fractions with constant denominator
Reviewed-by: MSoegtropIMC
Ack-by: Zimmi48
Reviewed-by: amahboubi
Reviewed-by: vbgl
Diffstat (limited to 'plugins')
| -rw-r--r-- | plugins/setoid_ring/Field_theory.v | 41 |
1 files changed, 35 insertions, 6 deletions
diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v index 813c521ab0..ad2ee821b3 100644 --- a/plugins/setoid_ring/Field_theory.v +++ b/plugins/setoid_ring/Field_theory.v @@ -1235,12 +1235,19 @@ Notation ring_correct := (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th). (* simplify a field expression into a fraction *) -(* TODO: simplify when den is constant... *) Definition display_linear l num den := - NPphi_dev l num / NPphi_dev l den. + let lnum := NPphi_dev l num in + match den with + | Pc c => if ceqb c cI then lnum else lnum / NPphi_dev l den + | _ => lnum / NPphi_dev l den + end. Definition display_pow_linear l num den := - NPphi_pow l num / NPphi_pow l den. + let lnum := NPphi_pow l num in + match den with + | Pc c => if ceqb c cI then lnum else lnum / NPphi_pow l den + | _ => lnum / NPphi_pow l den + end. Theorem Field_rw_correct n lpe l : Ninterp_PElist l lpe -> @@ -1252,7 +1259,18 @@ Theorem Field_rw_correct n lpe l : Proof. intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. rewrite (Fnorm_FEeval_PEeval _ _ H). - unfold display_linear; apply rdiv_ext; + unfold display_linear. + destruct (Nnorm _ _ _) as [c | | ] eqn: HN; + try ( apply rdiv_ext; + eapply ring_rw_correct; eauto). + destruct (ceqb_spec c cI). + set (nnum := NPphi_dev _ _). + apply eq_trans with (nnum / NPphi_dev l (Pc c)). + apply rdiv_ext; + eapply ring_rw_correct; eauto. + rewrite Pphi_dev_ok; try eassumption. + now simpl; rewrite H0, phi_1, <- rdiv1. + apply rdiv_ext; eapply ring_rw_correct; eauto. Qed. @@ -1266,8 +1284,19 @@ Theorem Field_rw_pow_correct n lpe l : Proof. intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. rewrite (Fnorm_FEeval_PEeval _ _ H). - unfold display_pow_linear; apply rdiv_ext; - eapply ring_rw_pow_correct;eauto. + unfold display_pow_linear. + destruct (Nnorm _ _ _) as [c | | ] eqn: HN; + try ( apply rdiv_ext; + eapply ring_rw_pow_correct; eauto). + destruct (ceqb_spec c cI). + set (nnum := NPphi_pow _ _). + apply eq_trans with (nnum / NPphi_pow l (Pc c)). + apply rdiv_ext; + eapply ring_rw_pow_correct; eauto. + rewrite Pphi_pow_ok; try eassumption. + now simpl; rewrite H0, phi_1, <- rdiv1. + apply rdiv_ext; + eapply ring_rw_pow_correct; eauto. Qed. Theorem Field_correct n l lpe fe1 fe2 : |
