aboutsummaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
authorletouzey2011-05-05 15:12:42 +0000
committerletouzey2011-05-05 15:12:42 +0000
commit57dfd75f85278fab4d5691299d3b34d0595f97ca (patch)
tree5e06b6c65c62ce7ea9760302bf20149e3b22b869 /plugins
parent7b64e1d3b368bca3c8b4ebe2ccacdf6d79eef815 (diff)
Setoid_ring: some cleanups related with BinPos and BinNat
In particular, positive_eq and N_eq and Neq_bool are now Pos.eqb and N.eqb git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14104 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins')
-rw-r--r--plugins/setoid_ring/ArithRing.v4
-rw-r--r--plugins/setoid_ring/Field_theory.v76
-rw-r--r--plugins/setoid_ring/InitialRing.v69
-rw-r--r--plugins/setoid_ring/NArithRing.v2
4 files changed, 51 insertions, 100 deletions
diff --git a/plugins/setoid_ring/ArithRing.v b/plugins/setoid_ring/ArithRing.v
index 0d4b86b62f..06822ae164 100644
--- a/plugins/setoid_ring/ArithRing.v
+++ b/plugins/setoid_ring/ArithRing.v
@@ -21,12 +21,12 @@ Lemma natSRth : semi_ring_theory O (S O) plus mult (@eq nat).
Lemma nat_morph_N :
semi_morph 0 1 plus mult (eq (A:=nat))
- 0%N 1%N Nplus Nmult Neq_bool nat_of_N.
+ 0%N 1%N N.add N.mul N.eqb nat_of_N.
Proof.
constructor;trivial.
exact nat_of_Nplus.
exact nat_of_Nmult.
- intros x y H;rewrite (Neq_bool_ok _ _ H);trivial.
+ intros x y H. apply N.eqb_eq in H. now subst.
Qed.
Ltac natcst t :=
diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v
index 29d7ee333c..31372a0018 100644
--- a/plugins/setoid_ring/Field_theory.v
+++ b/plugins/setoid_ring/Field_theory.v
@@ -390,52 +390,26 @@ Qed.
***************************************************************************)
-Fixpoint positive_eq (p1 p2 : positive) {struct p1} : bool :=
- match p1, p2 with
- xH, xH => true
- | xO p3, xO p4 => positive_eq p3 p4
- | xI p3, xI p4 => positive_eq p3 p4
- | _, _ => false
- end.
-
-Theorem positive_eq_correct:
- forall p1 p2, if positive_eq p1 p2 then p1 = p2 else p1 <> p2.
-intros p1; elim p1;
- (try (intros p2; case p2; simpl; auto; intros; discriminate)).
-intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4.
-generalize (rec p4); case (positive_eq p3 p4); auto.
-intros H1; apply f_equal with ( f := xI ); auto.
-intros H1 H2; case H1; injection H2; auto.
-intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4.
-generalize (rec p4); case (positive_eq p3 p4); auto.
-intros H1; apply f_equal with ( f := xO ); auto.
-intros H1 H2; case H1; injection H2; auto.
-Qed.
-
-Definition N_eq n1 n2 :=
- match n1, n2 with
- | N0, N0 => true
- | Npos p1, Npos p2 => positive_eq p1 p2
- | _, _ => false
- end.
+Lemma Peqb_spec x y : Bool.reflect (x=y) (Pos.eqb x y).
+Proof.
+ apply Bool.iff_reflect. symmetry. apply Pos.eqb_eq.
+Qed.
-Lemma N_eq_correct : forall n1 n2, if N_eq n1 n2 then n1 = n2 else n1 <> n2.
+Lemma Neqb_spec x y : Bool.reflect (x=y) (N.eqb x y).
Proof.
- intros [ |p1] [ |p2];simpl;trivial;try(intro H;discriminate H;fail).
- assert (H:=positive_eq_correct p1 p2);destruct (positive_eq p1 p2);
- [rewrite H;trivial | intro H1;injection H1;subst;apply H;trivial].
+ apply Bool.iff_reflect. symmetry. apply N.eqb_eq.
Qed.
(* equality test *)
Fixpoint PExpr_eq (e1 e2 : PExpr C) {struct e1} : bool :=
match e1, e2 with
PEc c1, PEc c2 => ceqb c1 c2
- | PEX p1, PEX p2 => positive_eq p1 p2
+ | PEX p1, PEX p2 => Pos.eqb p1 p2
| PEadd e3 e5, PEadd e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEsub e3 e5, PEsub e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEmul e3 e5, PEmul e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEopp e3, PEopp e4 => PExpr_eq e3 e4
- | PEpow e3 n3, PEpow e4 n4 => if N_eq n3 n4 then PExpr_eq e3 e4 else false
+ | PEpow e3 n3, PEpow e4 n4 => if N.eqb n3 n4 then PExpr_eq e3 e4 else false
| _, _ => false
end.
@@ -460,8 +434,7 @@ intros l e1; elim e1.
intros c1; intros e2; elim e2; simpl; (try (intros; discriminate)).
intros c2; apply (morph_eq CRmorph).
intros p1; intros e2; elim e2; simpl; (try (intros; discriminate)).
-intros p2; generalize (positive_eq_correct p1 p2); case (positive_eq p1 p2);
- (try (intros; discriminate)); intros H; rewrite H; auto.
+intros p2; case Peqb_spec; intros; now subst.
intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
@@ -478,9 +451,8 @@ intros e3 rec e2; (case e2; simpl; (try (intros; discriminate))).
intros e4; generalize (rec e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); auto.
intros e3 rec n3 e2;(case e2;simpl;(try (intros;discriminate))).
-intros e4 n4;generalize (N_eq_correct n3 n4);destruct (N_eq n3 n4);
-intros;try discriminate.
-repeat rewrite pow_th.(rpow_pow_N);rewrite H;rewrite (rec _ H0);auto.
+intros e4 n4; case Neqb_spec; try discriminate; intros EQ H; subst.
+repeat rewrite pow_th.(rpow_pow_N). rewrite (rec _ H);auto.
Qed.
(* add *)
@@ -507,7 +479,7 @@ Definition NPEpow x n :=
match n with
| N0 => PEc cI
| Npos p =>
- if positive_eq p xH then x else
+ if Pos.eqb p xH then x else
match x with
| PEc c =>
if ceqb c cI then PEc cI else if ceqb c cO then PEc cO else PEc (pow_pos cmul c p)
@@ -520,10 +492,10 @@ Theorem NPEpow_correct : forall l e n,
Proof.
destruct n;simpl.
rewrite pow_th.(rpow_pow_N);simpl;auto.
- generalize (positive_eq_correct p xH).
- destruct (positive_eq p 1);intros.
- rewrite H;rewrite pow_th.(rpow_pow_N). trivial.
- clear H;destruct e;simpl;auto.
+ fold (p =? 1)%positive.
+ case Peqb_spec; intros H; (rewrite H || clear H).
+ now rewrite pow_th.(rpow_pow_N).
+ destruct e;simpl;auto.
repeat apply ceqb_rect;simpl;intros;rewrite pow_th.(rpow_pow_N);simpl.
symmetry;induction p;simpl;trivial; ring [IHp H CRmorph.(morph1)].
symmetry; induction p;simpl;trivial;ring [IHp CRmorph.(morph0)].
@@ -539,7 +511,7 @@ Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C :=
| _, PEc c =>
if ceqb c cI then x else if ceqb c cO then PEc cO else PEmul x y
| PEpow e1 n1, PEpow e2 n2 =>
- if N_eq n1 n2 then NPEpow (NPEmul e1 e2) n1 else PEmul x y
+ if N.eqb n1 n2 then NPEpow (NPEmul e1 e2) n1 else PEmul x y
| _, _ => PEmul x y
end.
@@ -554,10 +526,10 @@ induction e1;destruct e2; simpl in |- *;try reflexivity;
try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try reflexivity;
try ring [(morph0 CRmorph) (morph1 CRmorph)].
apply (morph_mul CRmorph).
-assert (H:=N_eq_correct n n0);destruct (N_eq n n0).
+case Neqb_spec; intros H; try rewrite <- H; clear H.
rewrite NPEpow_correct. simpl.
repeat rewrite pow_th.(rpow_pow_N).
-rewrite IHe1;rewrite <- H;destruct n;simpl;try ring.
+rewrite IHe1; destruct n;simpl;try ring.
apply pow_pos_mul.
simpl;auto.
Qed.
@@ -783,6 +755,7 @@ Proof.
repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:refine (refl_equal _).
rewrite (Pcompare_Eq_eq _ _ H0).
rewrite H by trivial. ring [ (morph1 CRmorph)].
+ fold (p2 - p1 =? 1)%positive.
fold (NPEpow e2 (Npos (p2 - p1))).
rewrite NPEpow_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N);simpl.
@@ -1840,12 +1813,9 @@ Qed.
Lemma gen_phiN_complete : forall x y,
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
- Neq_bool x y = true.
-intros.
- replace y with x.
- unfold Neq_bool in |- *.
- rewrite Ncompare_refl in |- *; trivial.
- apply gen_phiN_inj; trivial.
+ N.eqb x y = true.
+Proof.
+intros. now apply N.eqb_eq, gen_phiN_inj.
Qed.
End AlmostField.
diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v
index 86fada82ac..56935bb792 100644
--- a/plugins/setoid_ring/InitialRing.v
+++ b/plugins/setoid_ring/InitialRing.v
@@ -13,7 +13,7 @@ Require Import BinNat.
Require Import Setoid.
Require Import Ring_theory.
Require Import Ring_polynom.
-Require Import Ndiv_def Zdiv_def.
+Require Import Zdiv_def.
Import List.
Set Implicit Arguments.
@@ -237,47 +237,28 @@ End ZMORPHISM.
Lemma Nsth : Setoid_Theory N (@eq N).
Proof (Eqsth N).
-Lemma Nseqe : sring_eq_ext Nplus Nmult (@eq N).
-Proof (Eq_s_ext Nplus Nmult).
+Lemma Nseqe : sring_eq_ext N.add N.mul (@eq N).
+Proof (Eq_s_ext N.add N.mul).
-Lemma Nth : semi_ring_theory N0 (Npos xH) Nplus Nmult (@eq N).
+Lemma Nth : semi_ring_theory 0%N 1%N N.add N.mul (@eq N).
Proof.
- constructor. exact Nplus_0_l. exact Nplus_comm. exact Nplus_assoc.
- exact Nmult_1_l. exact Nmult_0_l. exact Nmult_comm. exact Nmult_assoc.
- exact Nmult_plus_distr_r.
+ constructor. exact N.add_0_l. exact N.add_comm. exact N.add_assoc.
+ exact N.mul_1_l. exact N.mul_0_l. exact N.mul_comm. exact N.mul_assoc.
+ exact N.mul_add_distr_r.
Qed.
-Definition Nsub := SRsub Nplus.
+Definition Nsub := SRsub N.add.
Definition Nopp := (@SRopp N).
-Lemma Neqe : ring_eq_ext Nplus Nmult Nopp (@eq N).
+Lemma Neqe : ring_eq_ext N.add N.mul Nopp (@eq N).
Proof (SReqe_Reqe Nseqe).
Lemma Nath :
- almost_ring_theory N0 (Npos xH) Nplus Nmult Nsub Nopp (@eq N).
+ almost_ring_theory 0%N 1%N N.add N.mul Nsub Nopp (@eq N).
Proof (SRth_ARth Nsth Nth).
-Definition Neq_bool (x y:N) :=
- match Ncompare x y with
- | Eq => true
- | _ => false
- end.
-
-Lemma Neq_bool_ok : forall x y, Neq_bool x y = true -> x = y.
- Proof.
- intros x y;unfold Neq_bool.
- assert (H:=Ncompare_Eq_eq x y);
- destruct (Ncompare x y);intros;try discriminate.
- rewrite H;trivial.
- Qed.
-
-Lemma Neq_bool_complete : forall x y, Neq_bool x y = true -> x = y.
- Proof.
- intros x y;unfold Neq_bool.
- assert (H:=Ncompare_Eq_eq x y);
- destruct (Ncompare x y);intros;try discriminate.
- rewrite H;trivial.
- Qed.
+Lemma Neqb_ok : forall x y, N.eqb x y = true -> x = y.
+Proof. exact (fun x y => proj1 (N.eqb_eq x y)). Qed.
(**Same as above : definition of two,extensionaly equal, generic morphisms *)
(**from N to any semi-ring*)
@@ -317,8 +298,8 @@ Section NMORPHISM.
Lemma same_genN : forall x, [x] == gen_phiN1 x.
Proof.
- destruct x;simpl. rrefl.
- rewrite (same_gen Rsth Reqe ARth);rrefl.
+ destruct x;simpl. reflexivity.
+ now rewrite (same_gen Rsth Reqe ARth).
Qed.
Lemma gen_phiN_add : forall x y, [x + y] == [x] + [y].
@@ -340,11 +321,11 @@ Section NMORPHISM.
(*gen_phiN satisfies morphism specifications*)
Lemma gen_phiN_morph : ring_morph 0 1 radd rmul rsub ropp req
- N0 (Npos xH) Nplus Nmult Nsub Nopp Neq_bool gen_phiN.
+ 0%N 1%N N.add N.mul Nsub Nopp N.eqb gen_phiN.
Proof.
- constructor;intros;simpl; try rrefl.
- apply gen_phiN_add. apply gen_phiN_sub. apply gen_phiN_mult.
- rewrite (Neq_bool_ok x y);trivial. rrefl.
+ constructor; simpl; try reflexivity.
+ apply gen_phiN_add. apply gen_phiN_sub. apply gen_phiN_mult.
+ intros x y EQ. apply N.eqb_eq in EQ. now subst.
Qed.
End NMORPHISM.
@@ -393,7 +374,7 @@ Fixpoint Nw_is0 (w : Nword) : bool :=
Fixpoint Nweq_bool (w1 w2 : Nword) {struct w1} : bool :=
match w1, w2 with
| n1::w1', n2::w2' =>
- if Neq_bool n1 n2 then Nweq_bool w1' w2' else false
+ if N.eqb n1 n2 then Nweq_bool w1' w2' else false
| nil, _ => Nw_is0 w2
| _, nil => Nw_is0 w1
end.
@@ -477,10 +458,10 @@ induction w1; intros.
simpl in H.
rewrite gen_phiNword_cons in |- *.
- case_eq (Neq_bool a n); intros.
+ case_eq (N.eqb a n); intros H0.
rewrite H0 in H.
- rewrite <- (Neq_bool_ok _ _ H0) in |- *.
- rewrite (IHw1 _ H) in |- *.
+ apply N.eqb_eq in H0. rewrite <- H0.
+ rewrite (IHw1 _ H).
reflexivity.
rewrite H0 in H; discriminate H.
@@ -632,10 +613,10 @@ Qed.
Variable nphi : N -> R.
- Lemma Ntriv_div_th : div_theory req Nplus Nmult nphi Ndiv_eucl.
+ Lemma Ntriv_div_th : div_theory req N.add N.mul nphi N.div_eucl.
constructor.
- intros; generalize (Ndiv_eucl_correct a b); case Ndiv_eucl; intros; subst.
- rewrite Nmult_comm; rsimpl.
+ intros; generalize (N.div_eucl_spec a b); case N.div_eucl; intros; subst.
+ rewrite N.mul_comm; rsimpl.
Qed.
End GEN_DIV.
diff --git a/plugins/setoid_ring/NArithRing.v b/plugins/setoid_ring/NArithRing.v
index 1c338bc054..fafd16ab21 100644
--- a/plugins/setoid_ring/NArithRing.v
+++ b/plugins/setoid_ring/NArithRing.v
@@ -18,4 +18,4 @@ Ltac Ncst t :=
| _ => constr:NotConstant
end.
-Add Ring Nr : Nth (decidable Neq_bool_ok, constants [Ncst]).
+Add Ring Nr : Nth (decidable Neqb_ok, constants [Ncst]).