aboutsummaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
authorMatej Kosik2016-08-30 11:47:35 +0200
committerMatej Kosik2016-08-30 11:47:35 +0200
commit4f21c45748816c9e0cd4f93fa6f6d167e9757f81 (patch)
treef22bde63a6522883782ada4c40fa6b5c1ff1cc4c /plugins
parent2ff6d31c7a6011b26dfa7f0b2bb593b356833058 (diff)
CLEANUP: switching from "right-to-left" to "left-to-right" function composition operator.
Short story: This pull-request: (1) removes the definition of the "right-to-left" function composition operator (2) adds the definition of the "left-to-right" function composition operator (3) rewrites the code relying on "right-to-left" function composition to rely on "left-to-right" function composition operator instead. Long story: In mathematics, function composition is traditionally denoted with ∘ operator. Ocaml standard library does not provide analogous operator under any name. Batteries Included provides provides two alternatives: _ % _ and _ %> _ The first operator one corresponds to the classical ∘ operator routinely used in mathematics. I.e.: (f4 % f3 % f2 % f1) x ≜ (f4 ∘ f3 ∘ f2 ∘ f1) x We can call it "right-to-left" composition because: - the function we write as first (f4) will be called as last - and the function write as last (f1) will be called as first. The meaning of the second operator is this: (f1 %> f2 %> f3 %> f4) x ≜ (f4 ∘ f3 ∘ f2 ∘ f1) x We can call it "left-to-right" composition because: - the function we write as first (f1) will be called first - and the function we write as last (f4) will be called last That is, the functions are written in the same order in which we write and read them. I think that it makes sense to prefer the "left-to-right" variant because it enables us to write functions in the same order in which they will be actually called and it thus better fits our culture (we read/write from left to right).
Diffstat (limited to 'plugins')
-rw-r--r--plugins/funind/functional_principles_proofs.ml22
-rw-r--r--plugins/funind/merge.ml4
2 files changed, 13 insertions, 13 deletions
diff --git a/plugins/funind/functional_principles_proofs.ml b/plugins/funind/functional_principles_proofs.ml
index 04c2c51e7e..527f4f0b12 100644
--- a/plugins/funind/functional_principles_proofs.ml
+++ b/plugins/funind/functional_principles_proofs.ml
@@ -940,8 +940,8 @@ let generalize_non_dep hyp g =
((* observe_tac "thin" *) (thin to_revert))
g
-let id_of_decl = Nameops.out_name % RelDecl.get_name
-let var_of_decl = mkVar % id_of_decl
+let id_of_decl = RelDecl.get_name %> Nameops.out_name
+let var_of_decl = id_of_decl %> mkVar
let revert idl =
tclTHEN
(Proofview.V82.of_tactic (generalize (List.map mkVar idl)))
@@ -1121,11 +1121,11 @@ let prove_princ_for_struct (evd:Evd.evar_map ref) interactive_proof fun_num fnam
)
in
observe (str "full_params := " ++
- prlist_with_sep spc (Ppconstr.pr_id % Nameops.out_name % RelDecl.get_name)
+ prlist_with_sep spc (RelDecl.get_name %> Nameops.out_name %> Ppconstr.pr_id)
full_params
);
observe (str "princ_params := " ++
- prlist_with_sep spc (Ppconstr.pr_id % Nameops.out_name % RelDecl.get_name)
+ prlist_with_sep spc (RelDecl.get_name %> Nameops.out_name %> Ppconstr.pr_id)
princ_params
);
observe (str "fbody_with_full_params := " ++
@@ -1279,7 +1279,7 @@ let prove_princ_for_struct (evd:Evd.evar_map ref) interactive_proof fun_num fnam
(do_replace evd
full_params
(fix_info.idx + List.length princ_params)
- (args_id@(List.map (Nameops.out_name % RelDecl.get_name) princ_params))
+ (args_id@(List.map (RelDecl.get_name %> Nameops.out_name) princ_params))
(all_funs.(fix_info.num_in_block))
fix_info.num_in_block
all_funs
@@ -1558,7 +1558,7 @@ let prove_principle_for_gen
| _ -> assert false
in
(* observe (str "rec_arg_id := " ++ pr_lconstr (mkVar rec_arg_id)); *)
- let subst_constrs = List.map (mkVar % Nameops.out_name % get_name) (pre_rec_arg@princ_info.params) in
+ let subst_constrs = List.map (get_name %> Nameops.out_name %> mkVar) (pre_rec_arg@princ_info.params) in
let relation = substl subst_constrs relation in
let input_type = substl subst_constrs rec_arg_type in
let wf_thm_id = Nameops.out_name (fresh_id (Name (Id.of_string "wf_R"))) in
@@ -1586,7 +1586,7 @@ let prove_principle_for_gen
)
g
in
- let args_ids = List.map (Nameops.out_name % get_name) princ_info.args in
+ let args_ids = List.map (get_name %> Nameops.out_name) princ_info.args in
let lemma =
match !tcc_lemma_ref with
| None -> error "No tcc proof !!"
@@ -1633,7 +1633,7 @@ let prove_principle_for_gen
[
observe_tac "start_tac" start_tac;
h_intros
- (List.rev_map (Nameops.out_name % get_name)
+ (List.rev_map (get_name %> Nameops.out_name)
(princ_info.args@princ_info.branches@princ_info.predicates@princ_info.params)
);
(* observe_tac "" *) Proofview.V82.of_tactic (assert_by
@@ -1671,7 +1671,7 @@ let prove_principle_for_gen
in
let acc_inv = lazy (mkApp(Lazy.force acc_inv, [|mkVar acc_rec_arg_id|])) in
let predicates_names =
- List.map (Nameops.out_name % get_name) princ_info.predicates
+ List.map (get_name %> Nameops.out_name) princ_info.predicates
in
let pte_info =
{ proving_tac =
@@ -1687,7 +1687,7 @@ let prove_principle_for_gen
is_mes acc_inv fix_id
(!tcc_list@(List.map
- (Nameops.out_name % get_name)
+ (get_name %> Nameops.out_name)
(princ_info.args@princ_info.params)
)@ ([acc_rec_arg_id])) eqs
)
@@ -1716,7 +1716,7 @@ let prove_principle_for_gen
(* observe_tac "instanciate_hyps_with_args" *)
(instanciate_hyps_with_args
make_proof
- (List.map (Nameops.out_name % get_name) princ_info.branches)
+ (List.map (get_name %> Nameops.out_name) princ_info.branches)
(List.rev args_ids)
)
gl'
diff --git a/plugins/funind/merge.ml b/plugins/funind/merge.ml
index f8aa21e954..14550a9fc7 100644
--- a/plugins/funind/merge.ml
+++ b/plugins/funind/merge.ml
@@ -59,8 +59,8 @@ let understand = Pretyping.understand (Global.env()) Evd.empty
let id_of_name = function
Anonymous -> Id.of_string "H"
| Name id -> id;;
-let name_of_string = Name.mk_name % Id.of_string
-let string_of_name = Id.to_string % id_of_name
+let name_of_string = Id.of_string %> Name.mk_name
+let string_of_name = id_of_name %> Id.to_string
(** [isVarf f x] returns [true] if term [x] is of the form [(Var f)]. *)
let isVarf f x =