diff options
| author | letouzey | 2009-03-27 17:53:43 +0000 |
|---|---|---|
| committer | letouzey | 2009-03-27 17:53:43 +0000 |
| commit | 7f2c52bcf588abfcbf30530bae240244229304a4 (patch) | |
| tree | 6a74c2b13c24e66076177d51e188724c06ef0720 /plugins/syntax/numbers_syntax.ml | |
| parent | 999ac2c4c2bb6c7397c88ee1b6f39bdb43eaecb1 (diff) | |
Parsing files for numerals (+ ascii/string) moved into plugins
Idea: make coqtop more independant of the standard library.
In the future, we can imagine loading the syntax for numerals right
after their definition. For the moment, it is easier to stay lazy
and load the syntax plugins slightly before the definitions.
After this commit, the main (sole ?) references to theories/
from the core ml files are in Coqlib (but many parts of coqlib
are only used by plugins), and it mainly concerns Init
(+ Logic/JMeq and maybe a few others).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12024 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/syntax/numbers_syntax.ml')
| -rw-r--r-- | plugins/syntax/numbers_syntax.ml | 342 |
1 files changed, 342 insertions, 0 deletions
diff --git a/plugins/syntax/numbers_syntax.ml b/plugins/syntax/numbers_syntax.ml new file mode 100644 index 0000000000..94e4c103a9 --- /dev/null +++ b/plugins/syntax/numbers_syntax.ml @@ -0,0 +1,342 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id$ i*) + +(* digit-based syntax for int31, bigN bigZ and bigQ *) + +open Bigint +open Libnames +open Rawterm + +(*** Constants for locating the int31 and bigN ***) + + + +let make_dir l = Names.make_dirpath (List.map Names.id_of_string (List.rev l)) +let make_path dir id = Libnames.make_path (make_dir dir) (Names.id_of_string id) + +(* copied on g_zsyntax.ml, where it is said to be a temporary hack*) +(* takes a path an identifier in the form of a string list and a string, + returns a kernel_name *) +let make_kn dir id = Libnames.encode_kn (make_dir dir) (Names.id_of_string id) + + +(* int31 stuff *) +let int31_module = ["Coq"; "Numbers"; "Cyclic"; "Int31"; "Int31"] +let int31_path = make_path int31_module "int31" +let int31_id = make_kn int31_module +let int31_scope = "int31_scope" + +let int31_construct = ConstructRef ((int31_id "int31",0),1) + +let int31_0 = ConstructRef ((int31_id "digits",0),1) +let int31_1 = ConstructRef ((int31_id "digits",0),2) + + +(* bigN stuff*) +let zn2z_module = ["Coq"; "Numbers"; "Cyclic"; "DoubleCyclic"; "DoubleType"] +let zn2z_path = make_path zn2z_module "zn2z" +let zn2z_id = make_kn zn2z_module + +let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1) +let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2) + +let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ] +let bigN_path = make_path (bigN_module@["BigN"]) "t" +(* big ugly hack *) +let bigN_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigN_module)), + Names.mk_label "BigN")), + [], Names.id_of_string id) : Names.kernel_name) +let bigN_scope = "bigN_scope" + +(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *) +let n_inlined = of_string "7" +let bigN_constructor = + (* converts a bigint into an int the ugly way *) + let rec to_int i = + if equal i zero then + 0 + else + let (quo,rem) = div2_with_rest i in + if rem then + 2*(to_int quo)+1 + else + 2*(to_int quo) + in + fun i -> + ConstructRef ((bigN_id "t_",0), + if less_than i n_inlined then + (to_int i)+1 + else + (to_int n_inlined)+1 + ) + +(*bigZ stuff*) +let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ] +let bigZ_path = make_path (bigZ_module@["BigZ"]) "t" +(* big ugly hack bis *) +let bigZ_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigZ_module)), + Names.mk_label "BigZ")), + [], Names.id_of_string id) : Names.kernel_name) +let bigZ_scope = "bigZ_scope" + +let bigZ_pos = ConstructRef ((bigZ_id "t_",0),1) +let bigZ_neg = ConstructRef ((bigZ_id "t_",0),2) + + +(*bigQ stuff*) +let bigQ_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "BigQ"] +let qmake_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "QMake_base"] +let bigQ_path = make_path (bigQ_module@["BigQ"]) "t" +(* big ugly hack bis *) +let bigQ_id = make_kn qmake_module +let bigQ_scope = "bigQ_scope" + +let bigQ_z = ConstructRef ((bigQ_id "q_type",0),1) + + +(*** Definition of the Non_closed exception, used in the pretty printing ***) +exception Non_closed + +(*** Parsing for int31 in digital notation ***) + +(* parses a *non-negative* integer (from bigint.ml) into an int31 + wraps modulo 2^31 *) +let int31_of_pos_bigint dloc n = + let ref_construct = RRef (dloc, int31_construct) in + let ref_0 = RRef (dloc, int31_0) in + let ref_1 = RRef (dloc, int31_1) in + let rec args counter n = + if counter <= 0 then + [] + else + let (q,r) = div2_with_rest n in + (if r then ref_1 else ref_0)::(args (counter-1) q) + in + RApp (dloc, ref_construct, List.rev (args 31 n)) + +let error_negative dloc = + Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers.") + +let interp_int31 dloc n = + if is_pos_or_zero n then + int31_of_pos_bigint dloc n + else + error_negative dloc + +(* Pretty prints an int31 *) + +let bigint_of_int31 = + let rec args_parsing args cur = + match args with + | [] -> cur + | (RRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur) + | (RRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur)) + | _ -> raise Non_closed + in + function + | RApp (_, RRef (_, c), args) when c=int31_construct -> args_parsing args zero + | _ -> raise Non_closed + +let uninterp_int31 i = + try + Some (bigint_of_int31 i) + with Non_closed -> + None + +(* Actually declares the interpreter for int31 *) +let _ = Notation.declare_numeral_interpreter int31_scope + (int31_path, int31_module) + interp_int31 + ([RRef (Util.dummy_loc, int31_construct)], + uninterp_int31, + true) + + +(*** Parsing for bigN in digital notation ***) +(* the base for bigN (in Coq) that is 2^31 in our case *) +let base = pow two (of_string "31") + +(* base of the bigN of height N : *) +let rank n = pow base (pow two n) + +(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored + it is expected to be used only when the quotient would also need 2^n int31 to be + stored *) +let split_at n bi = + euclid bi (rank (sub_1 n)) + +(* search the height of the Coq bigint needed to represent the integer bi *) +let height bi = + let rec height_aux n = + if less_than bi (rank n) then + n + else + height_aux (add_1 n) + in + height_aux zero + + +(* n must be a non-negative integer (from bigint.ml) *) +let word_of_pos_bigint dloc hght n = + let ref_W0 = RRef (dloc, zn2z_W0) in + let ref_WW = RRef (dloc, zn2z_WW) in + let rec decomp hgt n = + if is_neg_or_zero hgt then + int31_of_pos_bigint dloc n + else if equal n zero then + RApp (dloc, ref_W0, [RHole (dloc, Evd.InternalHole)]) + else + let (h,l) = split_at hgt n in + RApp (dloc, ref_WW, [RHole (dloc, Evd.InternalHole); + decomp (sub_1 hgt) h; + decomp (sub_1 hgt) l]) + in + decomp hght n + +let bigN_of_pos_bigint dloc n = + let ref_constructor i = RRef (dloc, bigN_constructor i) in + let result h word = RApp (dloc, ref_constructor h, if less_than h n_inlined then + [word] + else + [Nat_syntax.nat_of_int dloc (sub h n_inlined); + word]) + in + let hght = height n in + result hght (word_of_pos_bigint dloc hght n) + +let bigN_error_negative dloc = + Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.") + +let interp_bigN dloc n = + if is_pos_or_zero n then + bigN_of_pos_bigint dloc n + else + bigN_error_negative dloc + + +(* Pretty prints a bigN *) + +let bigint_of_word = + let rec get_height rc = + match rc with + | RApp (_,RRef(_,c), [_;lft;rght]) when c = zn2z_WW -> + let hleft = get_height lft in + let hright = get_height rght in + add_1 + (if less_than hleft hright then + hright + else + hleft) + | _ -> zero + in + let rec transform hght rc = + match rc with + | RApp (_,RRef(_,c),_) when c = zn2z_W0-> zero + | RApp (_,RRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in + add (mult (rank new_hght) + (transform (new_hght) lft)) + (transform (new_hght) rght) + | _ -> bigint_of_int31 rc + in + fun rc -> + let hght = get_height rc in + transform hght rc + +let bigint_of_bigN rc = + match rc with + | RApp (_,_,[one_arg]) -> bigint_of_word one_arg + | RApp (_,_,[_;second_arg]) -> bigint_of_word second_arg + | _ -> raise Non_closed + +let uninterp_bigN rc = + try + Some (bigint_of_bigN rc) + with Non_closed -> + None + + +(* declare the list of constructors of bigN used in the declaration of the + numeral interpreter *) + +let bigN_list_of_constructors = + let rec build i = + if less_than i (add_1 n_inlined) then + RRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i)) + else + [] + in + build zero + +(* Actually declares the interpreter for bigN *) +let _ = Notation.declare_numeral_interpreter bigN_scope + (bigN_path, bigN_module) + interp_bigN + (bigN_list_of_constructors, + uninterp_bigN, + true) + + +(*** Parsing for bigZ in digital notation ***) +let interp_bigZ dloc n = + let ref_pos = RRef (dloc, bigZ_pos) in + let ref_neg = RRef (dloc, bigZ_neg) in + if is_pos_or_zero n then + RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n]) + else + RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)]) + +(* pretty printing functions for bigZ *) +let bigint_of_bigZ = function + | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg + | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_neg -> + let opp_val = bigint_of_bigN one_arg in + if equal opp_val zero then + raise Non_closed + else + neg opp_val + | _ -> raise Non_closed + + +let uninterp_bigZ rc = + try + Some (bigint_of_bigZ rc) + with Non_closed -> + None + +(* Actually declares the interpreter for bigN *) +let _ = Notation.declare_numeral_interpreter bigZ_scope + (bigZ_path, bigZ_module) + interp_bigZ + ([RRef (Util.dummy_loc, bigZ_pos); + RRef (Util.dummy_loc, bigZ_neg)], + uninterp_bigZ, + true) + +(*** Parsing for bigQ in digital notation ***) +let interp_bigQ dloc n = + let ref_z = RRef (dloc, bigQ_z) in + let ref_pos = RRef (dloc, bigZ_pos) in + let ref_neg = RRef (dloc, bigZ_neg) in + if is_pos_or_zero n then + RApp (dloc, ref_z, + [RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])]) + else + RApp (dloc, ref_z, + [RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])]) + +let uninterp_bigQ rc = None + + +(* Actually declares the interpreter for bigQ *) +let _ = Notation.declare_numeral_interpreter bigQ_scope + (bigQ_path, bigQ_module) + interp_bigQ + ([], uninterp_bigQ, + true) |
