aboutsummaryrefslogtreecommitdiff
path: root/plugins/ssr
diff options
context:
space:
mode:
authorThéo Zimmermann2020-02-18 19:47:40 +0100
committerThéo Zimmermann2020-02-18 19:47:40 +0100
commitf208f65ee8ddb40c9195b5c06475eabffeae0401 (patch)
tree3f6e5d9f1c1bffe3e4187131f87d3187a8d9ebe5 /plugins/ssr
parentaf3fd09e2f0cc2eac2bc8802a6818baf0c184563 (diff)
parent83052eff43d3eeff96462286b69249ef868bf5f0 (diff)
Merge PR #11529: [build] Consolidate stdlib's .v files under a single directory.
Reviewed-by: Zimmi48
Diffstat (limited to 'plugins/ssr')
-rw-r--r--plugins/ssr/ssrbool.v2035
-rw-r--r--plugins/ssr/ssrclasses.v32
-rw-r--r--plugins/ssr/ssreflect.v656
-rw-r--r--plugins/ssr/ssrfun.v812
-rw-r--r--plugins/ssr/ssrsetoid.v38
-rw-r--r--plugins/ssr/ssrunder.v75
6 files changed, 0 insertions, 3648 deletions
diff --git a/plugins/ssr/ssrbool.v b/plugins/ssr/ssrbool.v
deleted file mode 100644
index 475859fcc2..0000000000
--- a/plugins/ssr/ssrbool.v
+++ /dev/null
@@ -1,2035 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
-
-(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
-
-Require Bool.
-Require Import ssreflect ssrfun.
-
-(**
- A theory of boolean predicates and operators. A large part of this file is
- concerned with boolean reflection.
- Definitions and notations:
- is_true b == the coercion of b : bool to Prop (:= b = true).
- This is just input and displayed as `b''.
- reflect P b == the reflection inductive predicate, asserting
- that the logical proposition P : prop with the
- formula b : bool. Lemmas asserting reflect P b
- are often referred to as "views".
- iffP, appP, sameP, rwP :: lemmas for direct manipulation of reflection
- views: iffP is used to prove reflection from
- logical equivalence, appP to compose views, and
- sameP and rwP to perform boolean and setoid
- rewriting.
- elimT :: coercion reflect >-> Funclass, which allows the
- direct application of `reflect' views to
- boolean assertions.
- decidable P <-> P is effectively decidable (:= {P} + {~ P}.
- contra, contraL, ... :: contraposition lemmas.
- altP my_viewP :: natural alternative for reflection; given
- lemma myviewP: reflect my_Prop my_formula,
- have #[#myP | not_myP#]# := altP my_viewP.
- generates two subgoals, in which my_formula has
- been replaced by true and false, resp., with
- new assumptions myP : my_Prop and
- not_myP: ~~ my_formula.
- Caveat: my_formula must be an APPLICATION, not
- a variable, constant, let-in, etc. (due to the
- poor behaviour of dependent index matching).
- boolP my_formula :: boolean disjunction, equivalent to
- altP (idP my_formula) but circumventing the
- dependent index capture issue; destructing
- boolP my_formula generates two subgoals with
- assumptions my_formula and ~~ myformula. As
- with altP, my_formula must be an application.
- \unless C, P <-> we can assume property P when a something that
- holds under condition C (such as C itself).
- := forall G : Prop, (C -> G) -> (P -> G) -> G.
- This is just C \/ P or rather its impredicative
- encoding, whose usage better fits the above
- description: given a lemma UCP whose conclusion
- is \unless C, P we can assume P by writing:
- wlog hP: / P by apply/UCP; (prove C -> goal).
- or even apply: UCP id _ => hP if the goal is C.
- classically P <-> we can assume P when proving is_true b.
- := forall b : bool, (P -> b) -> b.
- This is equivalent to ~ (~ P) when P : Prop.
- implies P Q == wrapper variant type that coerces to P -> Q and
- can be used as a P -> Q view unambiguously.
- Useful to avoid spurious insertion of <-> views
- when Q is a conjunction of foralls, as in Lemma
- all_and2 below; conversely, avoids confusion in
- apply views for impredicative properties, such
- as \unless C, P. Also supports contrapositives.
- a && b == the boolean conjunction of a and b.
- a || b == the boolean disjunction of a and b.
- a ==> b == the boolean implication of b by a.
- ~~ a == the boolean negation of a.
- a (+) b == the boolean exclusive or (or sum) of a and b.
- #[# /\ P1 , P2 & P3 #]# == multiway logical conjunction, up to 5 terms.
- #[# \/ P1 , P2 | P3 #]# == multiway logical disjunction, up to 4 terms.
- #[#&& a, b, c & d#]# == iterated, right associative boolean conjunction
- with arbitrary arity.
- #[#|| a, b, c | d#]# == iterated, right associative boolean disjunction
- with arbitrary arity.
- #[#==> a, b, c => d#]# == iterated, right associative boolean implication
- with arbitrary arity.
- and3P, ... == specific reflection lemmas for iterated
- connectives.
- andTb, orbAC, ... == systematic names for boolean connective
- properties (see suffix conventions below).
- prop_congr == a tactic to move a boolean equality from
- its coerced form in Prop to the equality
- in bool.
- bool_congr == resolution tactic for blindly weeding out
- like terms from boolean equalities (can fail).
- This file provides a theory of boolean predicates and relations:
- pred T == the type of bool predicates (:= T -> bool).
- simpl_pred T == the type of simplifying bool predicates, based on
- the simpl_fun type from ssrfun.v.
- mem_pred T == a specialized form of simpl_pred for "collective"
- predicates (see below).
- rel T == the type of bool relations.
- := T -> pred T or T -> T -> bool.
- simpl_rel T == type of simplifying relations.
- := T -> simpl_pred T
- predType == the generic predicate interface, supported for
- for lists and sets.
- pred_sort == the predType >-> Type projection; pred_sort is
- itself a Coercion target class. Declaring a
- coercion to pred_sort is an alternative way of
- equiping a type with a predType structure, which
- interoperates better with coercion subtyping.
- This is used, e.g., for finite sets, so that finite
- groups inherit the membership operation by
- coercing to sets.
- {pred T} == a type convertible to pred T, but whose head
- constant is pred_sort. This type should be used
- for parameters that can be used as collective
- predicates (see below), as this will allow passing
- in directly collections that implement predType
- by coercion as described above, e.g., finite sets.
- := pred_sort (predPredType T)
- If P is a predicate the proposition "x satisfies P" can be written
- applicatively as (P x), or using an explicit connective as (x \in P); in
- the latter case we say that P is a "collective" predicate. We use A, B
- rather than P, Q for collective predicates:
- x \in A == x satisfies the (collective) predicate A.
- x \notin A == x doesn't satisfy the (collective) predicate A.
- The pred T type can be used as a generic predicate type for either kind,
- but the two kinds of predicates should not be confused. When a "generic"
- pred T value of one type needs to be passed as the other the following
- conversions should be used explicitly:
- SimplPred P == a (simplifying) applicative equivalent of P.
- mem A == an applicative equivalent of collective predicate A:
- mem A x simplifies to x \in A, as mem A has in
- fact type mem_pred T.
- --> In user notation collective predicates _only_ occur as arguments to mem:
- A only appears as (mem A). This is hidden by notation, e.g.,
- x \in A := in_mem x (mem A) here, enum A := enum_mem (mem A) in fintype.
- This makes it possible to unify the various ways in which A can be
- interpreted as a predicate, for both pattern matching and display.
- Alternatively one can use the syntax for explicit simplifying predicates
- and relations (in the following x is bound in E):
- #[#pred x | E#]# == simplifying (see ssrfun) predicate x => E.
- #[#pred x : T | E#]# == predicate x => E, with a cast on the argument.
- #[#pred : T | P#]# == constant predicate P on type T.
- #[#pred x | E1 & E2#]# == #[#pred x | E1 && E2#]#; an x : T cast is allowed.
- #[#pred x in A#]# == #[#pred x | x in A#]#.
- #[#pred x in A | E#]# == #[#pred x | x in A & E#]#.
- #[#pred x in A | E1 & E2#]# == #[#pred x in A | E1 && E2#]#.
- #[#predU A & B#]# == union of two collective predicates A and B.
- #[#predI A & B#]# == intersection of collective predicates A and B.
- #[#predD A & B#]# == difference of collective predicates A and B.
- #[#predC A#]# == complement of the collective predicate A.
- #[#preim f of A#]# == preimage under f of the collective predicate A.
- predU P Q, ..., preim f P == union, etc of applicative predicates.
- pred0 == the empty predicate.
- predT == the total (always true) predicate.
- if T : predArgType, then T coerces to predT.
- {: T} == T cast to predArgType (e.g., {: bool * nat}).
- In the following, x and y are bound in E:
- #[#rel x y | E#]# == simplifying relation x, y => E.
- #[#rel x y : T | E#]# == simplifying relation with arguments cast.
- #[#rel x y in A & B | E#]# == #[#rel x y | #[#&& x \in A, y \in B & E#]# #]#.
- #[#rel x y in A & B#]# == #[#rel x y | (x \in A) && (y \in B) #]#.
- #[#rel x y in A | E#]# == #[#rel x y in A & A | E#]#.
- #[#rel x y in A#]# == #[#rel x y in A & A#]#.
- relU R S == union of relations R and S.
- relpre f R == preimage of relation R under f.
- xpredU, ..., xrelpre == lambda terms implementing predU, ..., etc.
- Explicit values of type pred T (i.e., lamdba terms) should always be used
- applicatively, while values of collection types implementing the predType
- interface, such as sequences or sets should always be used as collective
- predicates. Defined constants and functions of type pred T or simpl_pred T
- as well as the explicit simpl_pred T values described below, can generally
- be used either way. Note however that x \in A will not auto-simplify when
- A is an explicit simpl_pred T value; the generic simplification rule inE
- must be used (when A : pred T, the unfold_in rule can be used). Constants
- of type pred T with an explicit simpl_pred value do not auto-simplify when
- used applicatively, but can still be expanded with inE. This behavior can
- be controlled as follows:
- Let A : collective_pred T := #[#pred x | ... #]#.
- The collective_pred T type is just an alias for pred T, but this cast
- stops rewrite inE from expanding the definition of A, thus treating A
- into an abstract collection (unfold_in or in_collective can be used to
- expand manually).
- Let A : applicative_pred T := #[#pred x | ... #]#.
- This cast causes inE to turn x \in A into the applicative A x form;
- A will then have to unfolded explicitly with the /A rule. This will
- also apply to any definition that reduces to A (e.g., Let B := A).
- Canonical A_app_pred := ApplicativePred A.
- This declaration, given after definition of A, similarly causes inE to
- turn x \in A into A x, but in addition allows the app_predE rule to
- turn A x back into x \in A; it can be used for any definition of type
- pred T, which makes it especially useful for ambivalent predicates
- as the relational transitive closure connect, that are used in both
- applicative and collective styles.
- Purely for aesthetics, we provide a subtype of collective predicates:
- qualifier q T == a pred T pretty-printing wrapper. An A : qualifier q T
- coerces to pred_sort and thus behaves as a collective
- predicate, but x \in A and x \notin A are displayed as:
- x \is A and x \isn't A when q = 0,
- x \is a A and x \isn't a A when q = 1,
- x \is an A and x \isn't an A when q = 2, respectively.
- #[#qualify x | P#]# := Qualifier 0 (fun x => P), constructor for the above.
- #[#qualify x : T | P#]#, #[#qualify a x | P#]#, #[#qualify an X | P#]#, etc.
- variants of the above with type constraints and different
- values of q.
- We provide an internal interface to support attaching properties (such as
- being multiplicative) to predicates:
- pred_key p == phantom type that will serve as a support for properties
- to be attached to p : {pred _}; instances should be
- created with Fact/Qed so as to be opaque.
- KeyedPred k_p == an instance of the interface structure that attaches
- (k_p : pred_key P) to P; the structure projection is a
- coercion to pred_sort.
- KeyedQualifier k_q == an instance of the interface structure that attaches
- (k_q : pred_key q) to (q : qualifier n T).
- DefaultPredKey p == a default value for pred_key p; the vernacular command
- Import DefaultKeying attaches this key to all predicates
- that are not explicitly keyed.
- Keys can be used to attach properties to predicates, qualifiers and
- generic nouns in a way that allows them to be used transparently. The key
- projection of a predicate property structure such as unsignedPred should
- be a pred_key, not a pred, and corresponding lemmas will have the form
- Lemma rpredN R S (oppS : @opprPred R S) (kS : keyed_pred oppS) :
- {mono -%%R: x / x \in kS}.
- Because x \in kS will be displayed as x \in S (or x \is S, etc), the
- canonical instance of opprPred will not normally be exposed (it will also
- be erased by /= simplification). In addition each predicate structure
- should have a DefaultPredKey Canonical instance that simply issues the
- property as a proof obligation (which can be caught by the Prop-irrelevant
- feature of the ssreflect plugin).
- Some properties of predicates and relations:
- A =i B <-> A and B are extensionally equivalent.
- {subset A <= B} <-> A is a (collective) subpredicate of B.
- subpred P Q <-> P is an (applicative) subpredicate or Q.
- subrel R S <-> R is a subrelation of S.
- In the following R is in rel T:
- reflexive R <-> R is reflexive.
- irreflexive R <-> R is irreflexive.
- symmetric R <-> R (in rel T) is symmetric (equation).
- pre_symmetric R <-> R is symmetric (implication).
- antisymmetric R <-> R is antisymmetric.
- total R <-> R is total.
- transitive R <-> R is transitive.
- left_transitive R <-> R is a congruence on its left hand side.
- right_transitive R <-> R is a congruence on its right hand side.
- equivalence_rel R <-> R is an equivalence relation.
- Localization of (Prop) predicates; if P1 is convertible to forall x, Qx,
- P2 to forall x y, Qxy and P3 to forall x y z, Qxyz :
- {for y, P1} <-> Qx{y / x}.
- {in A, P1} <-> forall x, x \in A -> Qx.
- {in A1 & A2, P2} <-> forall x y, x \in A1 -> y \in A2 -> Qxy.
- {in A &, P2} <-> forall x y, x \in A -> y \in A -> Qxy.
- {in A1 & A2 & A3, Q3} <-> forall x y z,
- x \in A1 -> y \in A2 -> z \in A3 -> Qxyz.
- {in A1 & A2 &, Q3} := {in A1 & A2 & A2, Q3}.
- {in A1 && A3, Q3} := {in A1 & A1 & A3, Q3}.
- {in A &&, Q3} := {in A & A & A, Q3}.
- {in A, bijective f} <-> f has a right inverse in A.
- {on C, P1} <-> forall x, (f x) \in C -> Qx
- when P1 is also convertible to Pf f, e.g.,
- {on C, involutive f}.
- {on C &, P2} == forall x y, f x \in C -> f y \in C -> Qxy
- when P2 is also convertible to Pf f, e.g.,
- {on C &, injective f}.
- {on C, P1' & g} == forall x, (f x) \in cd -> Qx
- when P1' is convertible to Pf f
- and P1' g is convertible to forall x, Qx, e.g.,
- {on C, cancel f & g}.
- {on C, bijective f} == f has a right inverse on C.
- This file extends the lemma name suffix conventions of ssrfun as follows:
- A -- associativity, as in andbA : associative andb.
- AC -- right commutativity.
- ACA -- self-interchange (inner commutativity), e.g.,
- orbACA : (a || b) || (c || d) = (a || c) || (b || d).
- b -- a boolean argument, as in andbb : idempotent andb.
- C -- commutativity, as in andbC : commutative andb,
- or predicate complement, as in predC.
- CA -- left commutativity.
- D -- predicate difference, as in predD.
- E -- elimination, as in negbFE : ~~ b = false -> b.
- F or f -- boolean false, as in andbF : b && false = false.
- I -- left/right injectivity, as in addbI : right_injective addb,
- or predicate intersection, as in predI.
- l -- a left-hand operation, as andb_orl : left_distributive andb orb.
- N or n -- boolean negation, as in andbN : a && (~~ a) = false.
- P -- a characteristic property, often a reflection lemma, as in
- andP : reflect (a /\ b) (a && b).
- r -- a right-hand operation, as orb_andr : rightt_distributive orb andb.
- T or t -- boolean truth, as in andbT: right_id true andb.
- U -- predicate union, as in predU.
- W -- weakening, as in in1W : (forall x, P) -> {in D, forall x, P}. **)
-
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Unset Printing Implicit Defensive.
-Set Warnings "-projection-no-head-constant".
-
-Notation reflect := Bool.reflect.
-Notation ReflectT := Bool.ReflectT.
-Notation ReflectF := Bool.ReflectF.
-
-Reserved Notation "~~ b" (at level 35, right associativity).
-Reserved Notation "b ==> c" (at level 55, right associativity).
-Reserved Notation "b1 (+) b2" (at level 50, left associativity).
-
-Reserved Notation "x \in A" (at level 70, no associativity,
- format "'[hv' x '/ ' \in A ']'").
-Reserved Notation "x \notin A" (at level 70, no associativity,
- format "'[hv' x '/ ' \notin A ']'").
-Reserved Notation "x \is A" (at level 70, no associativity,
- format "'[hv' x '/ ' \is A ']'").
-Reserved Notation "x \isn't A" (at level 70, no associativity,
- format "'[hv' x '/ ' \isn't A ']'").
-Reserved Notation "x \is 'a' A" (at level 70, no associativity,
- format "'[hv' x '/ ' \is 'a' A ']'").
-Reserved Notation "x \isn't 'a' A" (at level 70, no associativity,
- format "'[hv' x '/ ' \isn't 'a' A ']'").
-Reserved Notation "x \is 'an' A" (at level 70, no associativity,
- format "'[hv' x '/ ' \is 'an' A ']'").
-Reserved Notation "x \isn't 'an' A" (at level 70, no associativity,
- format "'[hv' x '/ ' \isn't 'an' A ']'").
-Reserved Notation "p1 =i p2" (at level 70, no associativity,
- format "'[hv' p1 '/ ' =i p2 ']'").
-Reserved Notation "{ 'subset' A <= B }" (at level 0, A, B at level 69,
- format "'[hv' { 'subset' A '/ ' <= B } ']'").
-
-Reserved Notation "{ : T }" (at level 0, format "{ : T }").
-Reserved Notation "{ 'pred' T }" (at level 0, format "{ 'pred' T }").
-Reserved Notation "[ 'predType' 'of' T ]" (at level 0,
- format "[ 'predType' 'of' T ]").
-
-Reserved Notation "[ 'pred' : T | E ]" (at level 0,
- format "'[hv' [ 'pred' : T | '/ ' E ] ']'").
-Reserved Notation "[ 'pred' x | E ]" (at level 0, x ident,
- format "'[hv' [ 'pred' x | '/ ' E ] ']'").
-Reserved Notation "[ 'pred' x : T | E ]" (at level 0, x ident,
- format "'[hv' [ 'pred' x : T | '/ ' E ] ']'").
-Reserved Notation "[ 'pred' x | E1 & E2 ]" (at level 0, x ident,
- format "'[hv' [ 'pred' x | '/ ' E1 & '/ ' E2 ] ']'").
-Reserved Notation "[ 'pred' x : T | E1 & E2 ]" (at level 0, x ident,
- format "'[hv' [ 'pred' x : T | '/ ' E1 & E2 ] ']'").
-Reserved Notation "[ 'pred' x 'in' A ]" (at level 0, x ident,
- format "'[hv' [ 'pred' x 'in' A ] ']'").
-Reserved Notation "[ 'pred' x 'in' A | E ]" (at level 0, x ident,
- format "'[hv' [ 'pred' x 'in' A | '/ ' E ] ']'").
-Reserved Notation "[ 'pred' x 'in' A | E1 & E2 ]" (at level 0, x ident,
- format "'[hv' [ 'pred' x 'in' A | '/ ' E1 & '/ ' E2 ] ']'").
-
-Reserved Notation "[ 'qualify' x | P ]" (at level 0, x at level 99,
- format "'[hv' [ 'qualify' x | '/ ' P ] ']'").
-Reserved Notation "[ 'qualify' x : T | P ]" (at level 0, x at level 99,
- format "'[hv' [ 'qualify' x : T | '/ ' P ] ']'").
-Reserved Notation "[ 'qualify' 'a' x | P ]" (at level 0, x at level 99,
- format "'[hv' [ 'qualify' 'a' x | '/ ' P ] ']'").
-Reserved Notation "[ 'qualify' 'a' x : T | P ]" (at level 0, x at level 99,
- format "'[hv' [ 'qualify' 'a' x : T | '/ ' P ] ']'").
-Reserved Notation "[ 'qualify' 'an' x | P ]" (at level 0, x at level 99,
- format "'[hv' [ 'qualify' 'an' x | '/ ' P ] ']'").
-Reserved Notation "[ 'qualify' 'an' x : T | P ]" (at level 0, x at level 99,
- format "'[hv' [ 'qualify' 'an' x : T | '/ ' P ] ']'").
-
-Reserved Notation "[ 'rel' x y | E ]" (at level 0, x ident, y ident,
- format "'[hv' [ 'rel' x y | '/ ' E ] ']'").
-Reserved Notation "[ 'rel' x y : T | E ]" (at level 0, x ident, y ident,
- format "'[hv' [ 'rel' x y : T | '/ ' E ] ']'").
-Reserved Notation "[ 'rel' x y 'in' A & B | E ]" (at level 0, x ident, y ident,
- format "'[hv' [ 'rel' x y 'in' A & B | '/ ' E ] ']'").
-Reserved Notation "[ 'rel' x y 'in' A & B ]" (at level 0, x ident, y ident,
- format "'[hv' [ 'rel' x y 'in' A & B ] ']'").
-Reserved Notation "[ 'rel' x y 'in' A | E ]" (at level 0, x ident, y ident,
- format "'[hv' [ 'rel' x y 'in' A | '/ ' E ] ']'").
-Reserved Notation "[ 'rel' x y 'in' A ]" (at level 0, x ident, y ident,
- format "'[hv' [ 'rel' x y 'in' A ] ']'").
-
-Reserved Notation "[ 'mem' A ]" (at level 0, format "[ 'mem' A ]").
-Reserved Notation "[ 'predI' A & B ]" (at level 0,
- format "[ 'predI' A & B ]").
-Reserved Notation "[ 'predU' A & B ]" (at level 0,
- format "[ 'predU' A & B ]").
-Reserved Notation "[ 'predD' A & B ]" (at level 0,
- format "[ 'predD' A & B ]").
-Reserved Notation "[ 'predC' A ]" (at level 0,
- format "[ 'predC' A ]").
-Reserved Notation "[ 'preim' f 'of' A ]" (at level 0,
- format "[ 'preim' f 'of' A ]").
-
-Reserved Notation "\unless C , P" (at level 200, C at level 100,
- format "'[hv' \unless C , '/ ' P ']'").
-
-Reserved Notation "{ 'for' x , P }" (at level 0,
- format "'[hv' { 'for' x , '/ ' P } ']'").
-Reserved Notation "{ 'in' d , P }" (at level 0,
- format "'[hv' { 'in' d , '/ ' P } ']'").
-Reserved Notation "{ 'in' d1 & d2 , P }" (at level 0,
- format "'[hv' { 'in' d1 & d2 , '/ ' P } ']'").
-Reserved Notation "{ 'in' d & , P }" (at level 0,
- format "'[hv' { 'in' d & , '/ ' P } ']'").
-Reserved Notation "{ 'in' d1 & d2 & d3 , P }" (at level 0,
- format "'[hv' { 'in' d1 & d2 & d3 , '/ ' P } ']'").
-Reserved Notation "{ 'in' d1 & & d3 , P }" (at level 0,
- format "'[hv' { 'in' d1 & & d3 , '/ ' P } ']'").
-Reserved Notation "{ 'in' d1 & d2 & , P }" (at level 0,
- format "'[hv' { 'in' d1 & d2 & , '/ ' P } ']'").
-Reserved Notation "{ 'in' d & & , P }" (at level 0,
- format "'[hv' { 'in' d & & , '/ ' P } ']'").
-Reserved Notation "{ 'on' cd , P }" (at level 0,
- format "'[hv' { 'on' cd , '/ ' P } ']'").
-Reserved Notation "{ 'on' cd & , P }" (at level 0,
- format "'[hv' { 'on' cd & , '/ ' P } ']'").
-Reserved Notation "{ 'on' cd , P & g }" (at level 0, g at level 8,
- format "'[hv' { 'on' cd , '/ ' P & g } ']'").
-Reserved Notation "{ 'in' d , 'bijective' f }" (at level 0, f at level 8,
- format "'[hv' { 'in' d , '/ ' 'bijective' f } ']'").
-Reserved Notation "{ 'on' cd , 'bijective' f }" (at level 0, f at level 8,
- format "'[hv' { 'on' cd , '/ ' 'bijective' f } ']'").
-
-
-(**
- We introduce a number of n-ary "list-style" notations that share a common
- format, namely
- #[#op arg1, arg2, ... last_separator last_arg#]#
- This usually denotes a right-associative applications of op, e.g.,
- #[#&& a, b, c & d#]# denotes a && (b && (c && d))
- The last_separator must be a non-operator token. Here we use &, | or =>;
- our default is &, but we try to match the intended meaning of op. The
- separator is a workaround for limitations of the parsing engine; the same
- limitations mean the separator cannot be omitted even when last_arg can.
- The Notation declarations are complicated by the separate treatment for
- some fixed arities (binary for bool operators, and all arities for Prop
- operators).
- We also use the square brackets in comprehension-style notations
- #[#type var separator expr#]#
- where "type" is the type of the comprehension (e.g., pred) and "separator"
- is | or => . It is important that in other notations a leading square
- bracket #[# is always followed by an operator symbol or a fixed identifier. **)
-
-Reserved Notation "[ /\ P1 & P2 ]" (at level 0, only parsing).
-Reserved Notation "[ /\ P1 , P2 & P3 ]" (at level 0, format
- "'[hv' [ /\ '[' P1 , '/' P2 ']' '/ ' & P3 ] ']'").
-Reserved Notation "[ /\ P1 , P2 , P3 & P4 ]" (at level 0, format
- "'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 ']' '/ ' & P4 ] ']'").
-Reserved Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" (at level 0, format
- "'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 , '/' P4 ']' '/ ' & P5 ] ']'").
-
-Reserved Notation "[ \/ P1 | P2 ]" (at level 0, only parsing).
-Reserved Notation "[ \/ P1 , P2 | P3 ]" (at level 0, format
- "'[hv' [ \/ '[' P1 , '/' P2 ']' '/ ' | P3 ] ']'").
-Reserved Notation "[ \/ P1 , P2 , P3 | P4 ]" (at level 0, format
- "'[hv' [ \/ '[' P1 , '/' P2 , '/' P3 ']' '/ ' | P4 ] ']'").
-
-Reserved Notation "[ && b1 & c ]" (at level 0, only parsing).
-Reserved Notation "[ && b1 , b2 , .. , bn & c ]" (at level 0, format
- "'[hv' [ && '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' & c ] ']'").
-
-Reserved Notation "[ || b1 | c ]" (at level 0, only parsing).
-Reserved Notation "[ || b1 , b2 , .. , bn | c ]" (at level 0, format
- "'[hv' [ || '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' | c ] ']'").
-
-Reserved Notation "[ ==> b1 => c ]" (at level 0, only parsing).
-Reserved Notation "[ ==> b1 , b2 , .. , bn => c ]" (at level 0, format
- "'[hv' [ ==> '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/' => c ] ']'").
-
-(** Shorter delimiter **)
-Delimit Scope bool_scope with B.
-Open Scope bool_scope.
-
-(** An alternative to xorb that behaves somewhat better wrt simplification. **)
-Definition addb b := if b then negb else id.
-
-(** Notation for && and || is declared in Init.Datatypes. **)
-Notation "~~ b" := (negb b) : bool_scope.
-Notation "b ==> c" := (implb b c) : bool_scope.
-Notation "b1 (+) b2" := (addb b1 b2) : bool_scope.
-
-(** Constant is_true b := b = true is defined in Init.Datatypes. **)
-Coercion is_true : bool >-> Sortclass. (* Prop *)
-
-Lemma prop_congr : forall b b' : bool, b = b' -> b = b' :> Prop.
-Proof. by move=> b b' ->. Qed.
-
-Ltac prop_congr := apply: prop_congr.
-
-(** Lemmas for trivial. **)
-Lemma is_true_true : true. Proof. by []. Qed.
-Lemma not_false_is_true : ~ false. Proof. by []. Qed.
-Lemma is_true_locked_true : locked true. Proof. by unlock. Qed.
-Hint Resolve is_true_true not_false_is_true is_true_locked_true : core.
-
-(** Shorter names. **)
-Definition isT := is_true_true.
-Definition notF := not_false_is_true.
-
-(** Negation lemmas. **)
-
-(**
- We generally take NEGATION as the standard form of a false condition:
- negative boolean hypotheses should be of the form ~~ b, rather than ~ b or
- b = false, as much as possible. **)
-
-Lemma negbT b : b = false -> ~~ b. Proof. by case: b. Qed.
-Lemma negbTE b : ~~ b -> b = false. Proof. by case: b. Qed.
-Lemma negbF b : (b : bool) -> ~~ b = false. Proof. by case: b. Qed.
-Lemma negbFE b : ~~ b = false -> b. Proof. by case: b. Qed.
-Lemma negbK : involutive negb. Proof. by case. Qed.
-Lemma negbNE b : ~~ ~~ b -> b. Proof. by case: b. Qed.
-
-Lemma negb_inj : injective negb. Proof. exact: can_inj negbK. Qed.
-Lemma negbLR b c : b = ~~ c -> ~~ b = c. Proof. exact: canLR negbK. Qed.
-Lemma negbRL b c : ~~ b = c -> b = ~~ c. Proof. exact: canRL negbK. Qed.
-
-Lemma contra (c b : bool) : (c -> b) -> ~~ b -> ~~ c.
-Proof. by case: b => //; case: c. Qed.
-Definition contraNN := contra.
-
-Lemma contraL (c b : bool) : (c -> ~~ b) -> b -> ~~ c.
-Proof. by case: b => //; case: c. Qed.
-Definition contraTN := contraL.
-
-Lemma contraR (c b : bool) : (~~ c -> b) -> ~~ b -> c.
-Proof. by case: b => //; case: c. Qed.
-Definition contraNT := contraR.
-
-Lemma contraLR (c b : bool) : (~~ c -> ~~ b) -> b -> c.
-Proof. by case: b => //; case: c. Qed.
-Definition contraTT := contraLR.
-
-Lemma contraT b : (~~ b -> false) -> b. Proof. by case: b => // ->. Qed.
-
-Lemma wlog_neg b : (~~ b -> b) -> b. Proof. by case: b => // ->. Qed.
-
-Lemma contraFT (c b : bool) : (~~ c -> b) -> b = false -> c.
-Proof. by move/contraR=> notb_c /negbT. Qed.
-
-Lemma contraFN (c b : bool) : (c -> b) -> b = false -> ~~ c.
-Proof. by move/contra=> notb_notc /negbT. Qed.
-
-Lemma contraTF (c b : bool) : (c -> ~~ b) -> b -> c = false.
-Proof. by move/contraL=> b_notc /b_notc/negbTE. Qed.
-
-Lemma contraNF (c b : bool) : (c -> b) -> ~~ b -> c = false.
-Proof. by move/contra=> notb_notc /notb_notc/negbTE. Qed.
-
-Lemma contraFF (c b : bool) : (c -> b) -> b = false -> c = false.
-Proof. by move/contraFN=> bF_notc /bF_notc/negbTE. Qed.
-
-(**
- Coercion of sum-style datatypes into bool, which makes it possible
- to use ssr's boolean if rather than Coq's "generic" if. **)
-
-Coercion isSome T (u : option T) := if u is Some _ then true else false.
-
-Coercion is_inl A B (u : A + B) := if u is inl _ then true else false.
-
-Coercion is_left A B (u : {A} + {B}) := if u is left _ then true else false.
-
-Coercion is_inleft A B (u : A + {B}) := if u is inleft _ then true else false.
-
-Prenex Implicits isSome is_inl is_left is_inleft.
-
-Definition decidable P := {P} + {~ P}.
-
-(**
- Lemmas for ifs with large conditions, which allow reasoning about the
- condition without repeating it inside the proof (the latter IS
- preferable when the condition is short).
- Usage :
- if the goal contains (if cond then ...) = ...
- case: ifP => Hcond.
- generates two subgoal, with the assumption Hcond : cond = true/false
- Rewrite if_same eliminates redundant ifs
- Rewrite (fun_if f) moves a function f inside an if
- Rewrite if_arg moves an argument inside a function-valued if **)
-
-Section BoolIf.
-
-Variables (A B : Type) (x : A) (f : A -> B) (b : bool) (vT vF : A).
-
-Variant if_spec (not_b : Prop) : bool -> A -> Set :=
- | IfSpecTrue of b : if_spec not_b true vT
- | IfSpecFalse of not_b : if_spec not_b false vF.
-
-Lemma ifP : if_spec (b = false) b (if b then vT else vF).
-Proof. by case def_b: b; constructor. Qed.
-
-Lemma ifPn : if_spec (~~ b) b (if b then vT else vF).
-Proof. by case def_b: b; constructor; rewrite ?def_b. Qed.
-
-Lemma ifT : b -> (if b then vT else vF) = vT. Proof. by move->. Qed.
-Lemma ifF : b = false -> (if b then vT else vF) = vF. Proof. by move->. Qed.
-Lemma ifN : ~~ b -> (if b then vT else vF) = vF. Proof. by move/negbTE->. Qed.
-
-Lemma if_same : (if b then vT else vT) = vT.
-Proof. by case b. Qed.
-
-Lemma if_neg : (if ~~ b then vT else vF) = if b then vF else vT.
-Proof. by case b. Qed.
-
-Lemma fun_if : f (if b then vT else vF) = if b then f vT else f vF.
-Proof. by case b. Qed.
-
-Lemma if_arg (fT fF : A -> B) :
- (if b then fT else fF) x = if b then fT x else fF x.
-Proof. by case b. Qed.
-
-(** Turning a boolean "if" form into an application. **)
-Definition if_expr := if b then vT else vF.
-Lemma ifE : (if b then vT else vF) = if_expr. Proof. by []. Qed.
-
-End BoolIf.
-
-(** Core (internal) reflection lemmas, used for the three kinds of views. **)
-
-Section ReflectCore.
-
-Variables (P Q : Prop) (b c : bool).
-
-Hypothesis Hb : reflect P b.
-
-Lemma introNTF : (if c then ~ P else P) -> ~~ b = c.
-Proof. by case c; case Hb. Qed.
-
-Lemma introTF : (if c then P else ~ P) -> b = c.
-Proof. by case c; case Hb. Qed.
-
-Lemma elimNTF : ~~ b = c -> if c then ~ P else P.
-Proof. by move <-; case Hb. Qed.
-
-Lemma elimTF : b = c -> if c then P else ~ P.
-Proof. by move <-; case Hb. Qed.
-
-Lemma equivPif : (Q -> P) -> (P -> Q) -> if b then Q else ~ Q.
-Proof. by case Hb; auto. Qed.
-
-Lemma xorPif : Q \/ P -> ~ (Q /\ P) -> if b then ~ Q else Q.
-Proof. by case Hb => [? _ H ? | ? H _]; case: H. Qed.
-
-End ReflectCore.
-
-(** Internal negated reflection lemmas **)
-Section ReflectNegCore.
-
-Variables (P Q : Prop) (b c : bool).
-Hypothesis Hb : reflect P (~~ b).
-
-Lemma introTFn : (if c then ~ P else P) -> b = c.
-Proof. by move/(introNTF Hb) <-; case b. Qed.
-
-Lemma elimTFn : b = c -> if c then ~ P else P.
-Proof. by move <-; apply: (elimNTF Hb); case b. Qed.
-
-Lemma equivPifn : (Q -> P) -> (P -> Q) -> if b then ~ Q else Q.
-Proof. by rewrite -if_neg; apply: equivPif. Qed.
-
-Lemma xorPifn : Q \/ P -> ~ (Q /\ P) -> if b then Q else ~ Q.
-Proof. by rewrite -if_neg; apply: xorPif. Qed.
-
-End ReflectNegCore.
-
-(** User-oriented reflection lemmas **)
-Section Reflect.
-
-Variables (P Q : Prop) (b b' c : bool).
-Hypotheses (Pb : reflect P b) (Pb' : reflect P (~~ b')).
-
-Lemma introT : P -> b. Proof. exact: introTF true _. Qed.
-Lemma introF : ~ P -> b = false. Proof. exact: introTF false _. Qed.
-Lemma introN : ~ P -> ~~ b. Proof. exact: introNTF true _. Qed.
-Lemma introNf : P -> ~~ b = false. Proof. exact: introNTF false _. Qed.
-Lemma introTn : ~ P -> b'. Proof. exact: introTFn true _. Qed.
-Lemma introFn : P -> b' = false. Proof. exact: introTFn false _. Qed.
-
-Lemma elimT : b -> P. Proof. exact: elimTF true _. Qed.
-Lemma elimF : b = false -> ~ P. Proof. exact: elimTF false _. Qed.
-Lemma elimN : ~~ b -> ~P. Proof. exact: elimNTF true _. Qed.
-Lemma elimNf : ~~ b = false -> P. Proof. exact: elimNTF false _. Qed.
-Lemma elimTn : b' -> ~ P. Proof. exact: elimTFn true _. Qed.
-Lemma elimFn : b' = false -> P. Proof. exact: elimTFn false _. Qed.
-
-Lemma introP : (b -> Q) -> (~~ b -> ~ Q) -> reflect Q b.
-Proof. by case b; constructor; auto. Qed.
-
-Lemma iffP : (P -> Q) -> (Q -> P) -> reflect Q b.
-Proof. by case: Pb; constructor; auto. Qed.
-
-Lemma equivP : (P <-> Q) -> reflect Q b.
-Proof. by case; apply: iffP. Qed.
-
-Lemma sumboolP (decQ : decidable Q) : reflect Q decQ.
-Proof. by case: decQ; constructor. Qed.
-
-Lemma appP : reflect Q b -> P -> Q.
-Proof. by move=> Qb; move/introT; case: Qb. Qed.
-
-Lemma sameP : reflect P c -> b = c.
-Proof. by case; [apply: introT | apply: introF]. Qed.
-
-Lemma decPcases : if b then P else ~ P. Proof. by case Pb. Qed.
-
-Definition decP : decidable P. by case: b decPcases; [left | right]. Defined.
-
-Lemma rwP : P <-> b. Proof. by split; [apply: introT | apply: elimT]. Qed.
-
-Lemma rwP2 : reflect Q b -> (P <-> Q).
-Proof. by move=> Qb; split=> ?; [apply: appP | apply: elimT; case: Qb]. Qed.
-
-(** Predicate family to reflect excluded middle in bool. **)
-Variant alt_spec : bool -> Type :=
- | AltTrue of P : alt_spec true
- | AltFalse of ~~ b : alt_spec false.
-
-Lemma altP : alt_spec b.
-Proof. by case def_b: b / Pb; constructor; rewrite ?def_b. Qed.
-
-End Reflect.
-
-Hint View for move/ elimTF|3 elimNTF|3 elimTFn|3 introT|2 introTn|2 introN|2.
-
-Hint View for apply/ introTF|3 introNTF|3 introTFn|3 elimT|2 elimTn|2 elimN|2.
-
-Hint View for apply// equivPif|3 xorPif|3 equivPifn|3 xorPifn|3.
-
-(** Allow the direct application of a reflection lemma to a boolean assertion. **)
-Coercion elimT : reflect >-> Funclass.
-
-#[universes(template)]
-Variant implies P Q := Implies of P -> Q.
-Lemma impliesP P Q : implies P Q -> P -> Q. Proof. by case. Qed.
-Lemma impliesPn (P Q : Prop) : implies P Q -> ~ Q -> ~ P.
-Proof. by case=> iP ? /iP. Qed.
-Coercion impliesP : implies >-> Funclass.
-Hint View for move/ impliesPn|2 impliesP|2.
-Hint View for apply/ impliesPn|2 impliesP|2.
-
-(** Impredicative or, which can emulate a classical not-implies. **)
-Definition unless condition property : Prop :=
- forall goal : Prop, (condition -> goal) -> (property -> goal) -> goal.
-
-Notation "\unless C , P" := (unless C P) : type_scope.
-
-Lemma unlessL C P : implies C (\unless C, P).
-Proof. by split=> hC G /(_ hC). Qed.
-
-Lemma unlessR C P : implies P (\unless C, P).
-Proof. by split=> hP G _ /(_ hP). Qed.
-
-Lemma unless_sym C P : implies (\unless C, P) (\unless P, C).
-Proof. by split; apply; [apply/unlessR | apply/unlessL]. Qed.
-
-Lemma unlessP (C P : Prop) : (\unless C, P) <-> C \/ P.
-Proof. by split=> [|[/unlessL | /unlessR]]; apply; [left | right]. Qed.
-
-Lemma bind_unless C P {Q} : implies (\unless C, P) (\unless (\unless C, Q), P).
-Proof. by split; apply=> [hC|hP]; [apply/unlessL/unlessL | apply/unlessR]. Qed.
-
-Lemma unless_contra b C : implies (~~ b -> C) (\unless C, b).
-Proof. by split; case: b => [_ | hC]; [apply/unlessR | apply/unlessL/hC]. Qed.
-
-(**
- Classical reasoning becomes directly accessible for any bool subgoal.
- Note that we cannot use "unless" here for lack of universe polymorphism. **)
-Definition classically P : Prop := forall b : bool, (P -> b) -> b.
-
-Lemma classicP (P : Prop) : classically P <-> ~ ~ P.
-Proof.
-split=> [cP nP | nnP [] // nP]; last by case nnP; move/nP.
-by have: P -> false; [move/nP | move/cP].
-Qed.
-
-Lemma classicW P : P -> classically P. Proof. by move=> hP _ ->. Qed.
-
-Lemma classic_bind P Q : (P -> classically Q) -> classically P -> classically Q.
-Proof. by move=> iPQ cP b /iPQ-/cP. Qed.
-
-Lemma classic_EM P : classically (decidable P).
-Proof.
-by case=> // undecP; apply/undecP; right=> notP; apply/notF/undecP; left.
-Qed.
-
-Lemma classic_pick T P : classically ({x : T | P x} + (forall x, ~ P x)).
-Proof.
-case=> // undecP; apply/undecP; right=> x Px.
-by apply/notF/undecP; left; exists x.
-Qed.
-
-Lemma classic_imply P Q : (P -> classically Q) -> classically (P -> Q).
-Proof.
-move=> iPQ []// notPQ; apply/notPQ=> /iPQ-cQ.
-by case: notF; apply: cQ => hQ; apply: notPQ.
-Qed.
-
-(**
- List notations for wider connectives; the Prop connectives have a fixed
- width so as to avoid iterated destruction (we go up to width 5 for /\, and
- width 4 for or). The bool connectives have arbitrary widths, but denote
- expressions that associate to the RIGHT. This is consistent with the right
- associativity of list expressions and thus more convenient in most proofs. **)
-
-Inductive and3 (P1 P2 P3 : Prop) : Prop := And3 of P1 & P2 & P3.
-
-Inductive and4 (P1 P2 P3 P4 : Prop) : Prop := And4 of P1 & P2 & P3 & P4.
-
-Inductive and5 (P1 P2 P3 P4 P5 : Prop) : Prop :=
- And5 of P1 & P2 & P3 & P4 & P5.
-
-Inductive or3 (P1 P2 P3 : Prop) : Prop := Or31 of P1 | Or32 of P2 | Or33 of P3.
-
-Inductive or4 (P1 P2 P3 P4 : Prop) : Prop :=
- Or41 of P1 | Or42 of P2 | Or43 of P3 | Or44 of P4.
-
-Notation "[ /\ P1 & P2 ]" := (and P1 P2) (only parsing) : type_scope.
-Notation "[ /\ P1 , P2 & P3 ]" := (and3 P1 P2 P3) : type_scope.
-Notation "[ /\ P1 , P2 , P3 & P4 ]" := (and4 P1 P2 P3 P4) : type_scope.
-Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" := (and5 P1 P2 P3 P4 P5) : type_scope.
-
-Notation "[ \/ P1 | P2 ]" := (or P1 P2) (only parsing) : type_scope.
-Notation "[ \/ P1 , P2 | P3 ]" := (or3 P1 P2 P3) : type_scope.
-Notation "[ \/ P1 , P2 , P3 | P4 ]" := (or4 P1 P2 P3 P4) : type_scope.
-
-Notation "[ && b1 & c ]" := (b1 && c) (only parsing) : bool_scope.
-Notation "[ && b1 , b2 , .. , bn & c ]" := (b1 && (b2 && .. (bn && c) .. ))
- : bool_scope.
-
-Notation "[ || b1 | c ]" := (b1 || c) (only parsing) : bool_scope.
-Notation "[ || b1 , b2 , .. , bn | c ]" := (b1 || (b2 || .. (bn || c) .. ))
- : bool_scope.
-
-Notation "[ ==> b1 , b2 , .. , bn => c ]" :=
- (b1 ==> (b2 ==> .. (bn ==> c) .. )) : bool_scope.
-Notation "[ ==> b1 => c ]" := (b1 ==> c) (only parsing) : bool_scope.
-
-Section AllAnd.
-
-Variables (T : Type) (P1 P2 P3 P4 P5 : T -> Prop).
-Local Notation a P := (forall x, P x).
-
-Lemma all_and2 : implies (forall x, [/\ P1 x & P2 x]) [/\ a P1 & a P2].
-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
-
-Lemma all_and3 : implies (forall x, [/\ P1 x, P2 x & P3 x])
- [/\ a P1, a P2 & a P3].
-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
-
-Lemma all_and4 : implies (forall x, [/\ P1 x, P2 x, P3 x & P4 x])
- [/\ a P1, a P2, a P3 & a P4].
-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
-
-Lemma all_and5 : implies (forall x, [/\ P1 x, P2 x, P3 x, P4 x & P5 x])
- [/\ a P1, a P2, a P3, a P4 & a P5].
-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
-
-End AllAnd.
-
-Arguments all_and2 {T P1 P2}.
-Arguments all_and3 {T P1 P2 P3}.
-Arguments all_and4 {T P1 P2 P3 P4}.
-Arguments all_and5 {T P1 P2 P3 P4 P5}.
-
-Lemma pair_andP P Q : P /\ Q <-> P * Q. Proof. by split; case. Qed.
-
-Section ReflectConnectives.
-
-Variable b1 b2 b3 b4 b5 : bool.
-
-Lemma idP : reflect b1 b1.
-Proof. by case b1; constructor. Qed.
-
-Lemma boolP : alt_spec b1 b1 b1.
-Proof. exact: (altP idP). Qed.
-
-Lemma idPn : reflect (~~ b1) (~~ b1).
-Proof. by case b1; constructor. Qed.
-
-Lemma negP : reflect (~ b1) (~~ b1).
-Proof. by case b1; constructor; auto. Qed.
-
-Lemma negPn : reflect b1 (~~ ~~ b1).
-Proof. by case b1; constructor. Qed.
-
-Lemma negPf : reflect (b1 = false) (~~ b1).
-Proof. by case b1; constructor. Qed.
-
-Lemma andP : reflect (b1 /\ b2) (b1 && b2).
-Proof. by case b1; case b2; constructor=> //; case. Qed.
-
-Lemma and3P : reflect [/\ b1, b2 & b3] [&& b1, b2 & b3].
-Proof. by case b1; case b2; case b3; constructor; try by case. Qed.
-
-Lemma and4P : reflect [/\ b1, b2, b3 & b4] [&& b1, b2, b3 & b4].
-Proof. by case b1; case b2; case b3; case b4; constructor; try by case. Qed.
-
-Lemma and5P : reflect [/\ b1, b2, b3, b4 & b5] [&& b1, b2, b3, b4 & b5].
-Proof.
-by case b1; case b2; case b3; case b4; case b5; constructor; try by case.
-Qed.
-
-Lemma orP : reflect (b1 \/ b2) (b1 || b2).
-Proof. by case b1; case b2; constructor; auto; case. Qed.
-
-Lemma or3P : reflect [\/ b1, b2 | b3] [|| b1, b2 | b3].
-Proof.
-case b1; first by constructor; constructor 1.
-case b2; first by constructor; constructor 2.
-case b3; first by constructor; constructor 3.
-by constructor; case.
-Qed.
-
-Lemma or4P : reflect [\/ b1, b2, b3 | b4] [|| b1, b2, b3 | b4].
-Proof.
-case b1; first by constructor; constructor 1.
-case b2; first by constructor; constructor 2.
-case b3; first by constructor; constructor 3.
-case b4; first by constructor; constructor 4.
-by constructor; case.
-Qed.
-
-Lemma nandP : reflect (~~ b1 \/ ~~ b2) (~~ (b1 && b2)).
-Proof. by case b1; case b2; constructor; auto; case; auto. Qed.
-
-Lemma norP : reflect (~~ b1 /\ ~~ b2) (~~ (b1 || b2)).
-Proof. by case b1; case b2; constructor; auto; case; auto. Qed.
-
-Lemma implyP : reflect (b1 -> b2) (b1 ==> b2).
-Proof. by case b1; case b2; constructor; auto. Qed.
-
-End ReflectConnectives.
-
-Arguments idP {b1}.
-Arguments idPn {b1}.
-Arguments negP {b1}.
-Arguments negPn {b1}.
-Arguments negPf {b1}.
-Arguments andP {b1 b2}.
-Arguments and3P {b1 b2 b3}.
-Arguments and4P {b1 b2 b3 b4}.
-Arguments and5P {b1 b2 b3 b4 b5}.
-Arguments orP {b1 b2}.
-Arguments or3P {b1 b2 b3}.
-Arguments or4P {b1 b2 b3 b4}.
-Arguments nandP {b1 b2}.
-Arguments norP {b1 b2}.
-Arguments implyP {b1 b2}.
-Prenex Implicits idP idPn negP negPn negPf.
-Prenex Implicits andP and3P and4P and5P orP or3P or4P nandP norP implyP.
-
-(** Shorter, more systematic names for the boolean connectives laws. **)
-
-Lemma andTb : left_id true andb. Proof. by []. Qed.
-Lemma andFb : left_zero false andb. Proof. by []. Qed.
-Lemma andbT : right_id true andb. Proof. by case. Qed.
-Lemma andbF : right_zero false andb. Proof. by case. Qed.
-Lemma andbb : idempotent andb. Proof. by case. Qed.
-Lemma andbC : commutative andb. Proof. by do 2!case. Qed.
-Lemma andbA : associative andb. Proof. by do 3!case. Qed.
-Lemma andbCA : left_commutative andb. Proof. by do 3!case. Qed.
-Lemma andbAC : right_commutative andb. Proof. by do 3!case. Qed.
-Lemma andbACA : interchange andb andb. Proof. by do 4!case. Qed.
-
-Lemma orTb : forall b, true || b. Proof. by []. Qed.
-Lemma orFb : left_id false orb. Proof. by []. Qed.
-Lemma orbT : forall b, b || true. Proof. by case. Qed.
-Lemma orbF : right_id false orb. Proof. by case. Qed.
-Lemma orbb : idempotent orb. Proof. by case. Qed.
-Lemma orbC : commutative orb. Proof. by do 2!case. Qed.
-Lemma orbA : associative orb. Proof. by do 3!case. Qed.
-Lemma orbCA : left_commutative orb. Proof. by do 3!case. Qed.
-Lemma orbAC : right_commutative orb. Proof. by do 3!case. Qed.
-Lemma orbACA : interchange orb orb. Proof. by do 4!case. Qed.
-
-Lemma andbN b : b && ~~ b = false. Proof. by case: b. Qed.
-Lemma andNb b : ~~ b && b = false. Proof. by case: b. Qed.
-Lemma orbN b : b || ~~ b = true. Proof. by case: b. Qed.
-Lemma orNb b : ~~ b || b = true. Proof. by case: b. Qed.
-
-Lemma andb_orl : left_distributive andb orb. Proof. by do 3!case. Qed.
-Lemma andb_orr : right_distributive andb orb. Proof. by do 3!case. Qed.
-Lemma orb_andl : left_distributive orb andb. Proof. by do 3!case. Qed.
-Lemma orb_andr : right_distributive orb andb. Proof. by do 3!case. Qed.
-
-Lemma andb_idl (a b : bool) : (b -> a) -> a && b = b.
-Proof. by case: a; case: b => // ->. Qed.
-Lemma andb_idr (a b : bool) : (a -> b) -> a && b = a.
-Proof. by case: a; case: b => // ->. Qed.
-Lemma andb_id2l (a b c : bool) : (a -> b = c) -> a && b = a && c.
-Proof. by case: a; case: b; case: c => // ->. Qed.
-Lemma andb_id2r (a b c : bool) : (b -> a = c) -> a && b = c && b.
-Proof. by case: a; case: b; case: c => // ->. Qed.
-
-Lemma orb_idl (a b : bool) : (a -> b) -> a || b = b.
-Proof. by case: a; case: b => // ->. Qed.
-Lemma orb_idr (a b : bool) : (b -> a) -> a || b = a.
-Proof. by case: a; case: b => // ->. Qed.
-Lemma orb_id2l (a b c : bool) : (~~ a -> b = c) -> a || b = a || c.
-Proof. by case: a; case: b; case: c => // ->. Qed.
-Lemma orb_id2r (a b c : bool) : (~~ b -> a = c) -> a || b = c || b.
-Proof. by case: a; case: b; case: c => // ->. Qed.
-
-Lemma negb_and (a b : bool) : ~~ (a && b) = ~~ a || ~~ b.
-Proof. by case: a; case: b. Qed.
-
-Lemma negb_or (a b : bool) : ~~ (a || b) = ~~ a && ~~ b.
-Proof. by case: a; case: b. Qed.
-
-(** Pseudo-cancellation -- i.e, absorption **)
-
-Lemma andbK a b : a && b || a = a. Proof. by case: a; case: b. Qed.
-Lemma andKb a b : a || b && a = a. Proof. by case: a; case: b. Qed.
-Lemma orbK a b : (a || b) && a = a. Proof. by case: a; case: b. Qed.
-Lemma orKb a b : a && (b || a) = a. Proof. by case: a; case: b. Qed.
-
-(** Imply **)
-
-Lemma implybT b : b ==> true. Proof. by case: b. Qed.
-Lemma implybF b : (b ==> false) = ~~ b. Proof. by case: b. Qed.
-Lemma implyFb b : false ==> b. Proof. by []. Qed.
-Lemma implyTb b : (true ==> b) = b. Proof. by []. Qed.
-Lemma implybb b : b ==> b. Proof. by case: b. Qed.
-
-Lemma negb_imply a b : ~~ (a ==> b) = a && ~~ b.
-Proof. by case: a; case: b. Qed.
-
-Lemma implybE a b : (a ==> b) = ~~ a || b.
-Proof. by case: a; case: b. Qed.
-
-Lemma implyNb a b : (~~ a ==> b) = a || b.
-Proof. by case: a; case: b. Qed.
-
-Lemma implybN a b : (a ==> ~~ b) = (b ==> ~~ a).
-Proof. by case: a; case: b. Qed.
-
-Lemma implybNN a b : (~~ a ==> ~~ b) = b ==> a.
-Proof. by case: a; case: b. Qed.
-
-Lemma implyb_idl (a b : bool) : (~~ a -> b) -> (a ==> b) = b.
-Proof. by case: a; case: b => // ->. Qed.
-Lemma implyb_idr (a b : bool) : (b -> ~~ a) -> (a ==> b) = ~~ a.
-Proof. by case: a; case: b => // ->. Qed.
-Lemma implyb_id2l (a b c : bool) : (a -> b = c) -> (a ==> b) = (a ==> c).
-Proof. by case: a; case: b; case: c => // ->. Qed.
-
-(** Addition (xor) **)
-
-Lemma addFb : left_id false addb. Proof. by []. Qed.
-Lemma addbF : right_id false addb. Proof. by case. Qed.
-Lemma addbb : self_inverse false addb. Proof. by case. Qed.
-Lemma addbC : commutative addb. Proof. by do 2!case. Qed.
-Lemma addbA : associative addb. Proof. by do 3!case. Qed.
-Lemma addbCA : left_commutative addb. Proof. by do 3!case. Qed.
-Lemma addbAC : right_commutative addb. Proof. by do 3!case. Qed.
-Lemma addbACA : interchange addb addb. Proof. by do 4!case. Qed.
-Lemma andb_addl : left_distributive andb addb. Proof. by do 3!case. Qed.
-Lemma andb_addr : right_distributive andb addb. Proof. by do 3!case. Qed.
-Lemma addKb : left_loop id addb. Proof. by do 2!case. Qed.
-Lemma addbK : right_loop id addb. Proof. by do 2!case. Qed.
-Lemma addIb : left_injective addb. Proof. by do 3!case. Qed.
-Lemma addbI : right_injective addb. Proof. by do 3!case. Qed.
-
-Lemma addTb b : true (+) b = ~~ b. Proof. by []. Qed.
-Lemma addbT b : b (+) true = ~~ b. Proof. by case: b. Qed.
-
-Lemma addbN a b : a (+) ~~ b = ~~ (a (+) b).
-Proof. by case: a; case: b. Qed.
-Lemma addNb a b : ~~ a (+) b = ~~ (a (+) b).
-Proof. by case: a; case: b. Qed.
-
-Lemma addbP a b : reflect (~~ a = b) (a (+) b).
-Proof. by case: a; case: b; constructor. Qed.
-Arguments addbP {a b}.
-
-(**
- Resolution tactic for blindly weeding out common terms from boolean
- equalities. When faced with a goal of the form (andb/orb/addb b1 b2) = b3
- they will try to locate b1 in b3 and remove it. This can fail! **)
-
-Ltac bool_congr :=
- match goal with
- | |- (?X1 && ?X2 = ?X3) => first
- [ symmetry; rewrite -1?(andbC X1) -?(andbCA X1); congr 1 (andb X1); symmetry
- | case: (X1); [ rewrite ?andTb ?andbT // | by rewrite ?andbF /= ] ]
- | |- (?X1 || ?X2 = ?X3) => first
- [ symmetry; rewrite -1?(orbC X1) -?(orbCA X1); congr 1 (orb X1); symmetry
- | case: (X1); [ by rewrite ?orbT //= | rewrite ?orFb ?orbF ] ]
- | |- (?X1 (+) ?X2 = ?X3) =>
- symmetry; rewrite -1?(addbC X1) -?(addbCA X1); congr 1 (addb X1); symmetry
- | |- (~~ ?X1 = ?X2) => congr 1 negb
- end.
-
-
-(**
- Predicates, i.e., packaged functions to bool.
- - pred T, the basic type for predicates over a type T, is simply an alias
- for T -> bool.
- We actually distinguish two kinds of predicates, which we call applicative
- and collective, based on the syntax used to test them at some x in T:
- - For an applicative predicate P, one uses prefix syntax:
- P x
- Also, most operations on applicative predicates use prefix syntax as
- well (e.g., predI P Q).
- - For a collective predicate A, one uses infix syntax:
- x \in A
- and all operations on collective predicates use infix syntax as well
- (e.g., #[#predI A & B#]#).
- There are only two kinds of applicative predicates:
- - pred T, the alias for T -> bool mentioned above
- - simpl_pred T, an alias for simpl_fun T bool with a coercion to pred T
- that auto-simplifies on application (see ssrfun).
- On the other hand, the set of collective predicate types is open-ended via
- - predType T, a Structure that can be used to put Canonical collective
- predicate interpretation on other types, such as lists, tuples,
- finite sets, etc.
- Indeed, we define such interpretations for applicative predicate types,
- which can therefore also be used with the infix syntax, e.g.,
- x \in predI P Q
- Moreover these infix forms are convertible to their prefix counterpart
- (e.g., predI P Q x which in turn simplifies to P x && Q x). The converse
- is not true, however; collective predicate types cannot, in general, be
- used applicatively, because of restrictions on implicit coercions.
- However, we do define an explicit generic coercion
- - mem : forall (pT : predType), pT -> mem_pred T
- where mem_pred T is a variant of simpl_pred T that preserves the infix
- syntax, i.e., mem A x auto-simplifies to x \in A.
- Indeed, the infix "collective" operators are notation for a prefix
- operator with arguments of type mem_pred T or pred T, applied to coerced
- collective predicates, e.g.,
- Notation "x \in A" := (in_mem x (mem A)).
- This prevents the variability in the predicate type from interfering with
- the application of generic lemmas. Moreover this also makes it much easier
- to define generic lemmas, because the simplest type -- pred T -- can be
- used as the type of generic collective predicates, provided one takes care
- not to use it applicatively; this avoids the burden of having to declare a
- different predicate type for each predicate parameter of each section or
- lemma.
- In detail, we ensure that the head normal form of mem A is always of the
- eta-long MemPred (fun x => pA x) form, where pA is the pred interpretation of
- A following its predType pT, i.e., the _expansion_ of topred A. For a pred T
- evar ?P, (mem ?P) converts MemPred (fun x => ?P x), whose argument is a Miller
- pattern and therefore always unify: unifying (mem A) with (mem ?P) always
- yields ?P = pA, because the rigid constant MemPred aligns the unification.
- Furthermore, we ensure pA is always either A or toP .... A where toP ... is
- the expansion of @topred T pT, and toP is declared as a Coercion, so pA will
- _display_ as A in either case, and the instances of @mem T (predPredType T) pA
- appearing in the premises or right-hand side of a generic lemma parametrized
- by ?P will be indistinguishable from @mem T pT A.
- Users should take care not to inadvertently "strip" (mem A) down to the
- coerced A, since this will expose the internal toP coercion: Coq could then
- display terms A x that cannot be typed as such. The topredE lemma can be used
- to restore the x \in A syntax in this case. While -topredE can conversely be
- used to change x \in P into P x for an applicative P, it is safer to use the
- inE, unfold_in or and memE lemmas instead, as they do not run the risk of
- exposing internal coercions. As a consequence it is better to explicitly
- cast a generic applicative predicate to simpl_pred using the SimplPred
- constructor when it is used as a collective predicate (see, e.g.,
- Lemma eq_big in bigop).
- We also sometimes "instantiate" the predType structure by defining a
- coercion to the sort of the predPredType structure, conveniently denoted
- {pred T}. This works better for types such as {set T} that have subtypes that
- coerce to them, since the same coercion will be inserted by the application
- of mem, or of any lemma that expects a generic collective predicates with
- type {pred T} := pred_sort (predPredType T) = pred T; thus {pred T} should be
- the preferred type for generic collective predicate parameters.
- This device also lets us turn any Type aT : predArgType into the total
- predicate over that type, i.e., fun _: aT => true. This allows us to write,
- e.g., ##|'I_n| for the cardinal of the (finite) type of integers less than n.
- **)
-
-(** Boolean predicates. *)
-
-Definition pred T := T -> bool.
-Identity Coercion fun_of_pred : pred >-> Funclass.
-
-Definition subpred T (p1 p2 : pred T) := forall x : T, p1 x -> p2 x.
-
-(* Notation for some manifest predicates. *)
-
-Notation xpred0 := (fun=> false).
-Notation xpredT := (fun=> true).
-Notation xpredI := (fun (p1 p2 : pred _) x => p1 x && p2 x).
-Notation xpredU := (fun (p1 p2 : pred _) x => p1 x || p2 x).
-Notation xpredC := (fun (p : pred _) x => ~~ p x).
-Notation xpredD := (fun (p1 p2 : pred _) x => ~~ p2 x && p1 x).
-Notation xpreim := (fun f (p : pred _) x => p (f x)).
-
-(** The packed class interface for pred-like types. **)
-
-Structure predType T :=
- PredType {pred_sort :> Type; topred : pred_sort -> pred T}.
-
-Definition clone_pred T U :=
- fun pT & @pred_sort T pT -> U =>
- fun toP (pT' := @PredType T U toP) & phant_id pT' pT => pT'.
-Notation "[ 'predType' 'of' T ]" := (@clone_pred _ T _ id _ id) : form_scope.
-
-Canonical predPredType T := PredType (@id (pred T)).
-Canonical boolfunPredType T := PredType (@id (T -> bool)).
-
-(** The type of abstract collective predicates.
- While {pred T} is contertible to pred T, it presents the pred_sort coercion
- class, which crucially does _not_ coerce to Funclass. Term whose type P coerces
- to {pred T} cannot be applied to arguments, but they _can_ be used as if P
- had a canonical predType instance, as the coercion will be inserted if the
- unification P =~= pred_sort ?pT fails, changing the problem into the trivial
- {pred T} =~= pred_sort ?pT (solution ?pT := predPredType P).
- Additional benefits of this approach are that any type coercing to P will
- also inherit this behaviour, and that the coercion will be apparent in the
- elaborated expression. The latter may be important if the coercion is also
- a canonical structure projector - see mathcomp/fingroup/fingroup.v. The
- main drawback of implementing predType by coercion in this way is that the
- type of the value must be known when the unification constraint is imposed:
- if we only register the constraint and then later discover later that the
- expression had type P it will be too late of insert a coercion, whereas a
- canonical instance of predType fo P would have solved the deferred constraint.
- Finally, definitions, lemmas and sections should use type {pred T} for
- their generic collective type parameters, as this will make it possible to
- apply such definitions and lemmas directly to values of types that implement
- predType by coercion to {pred T} (values of types that implement predType
- without coercing to {pred T} will have to be coerced explicitly using topred).
-**)
-Notation "{ 'pred' T }" := (pred_sort (predPredType T)) : type_scope.
-
-(** The type of self-simplifying collective predicates. **)
-Definition simpl_pred T := simpl_fun T bool.
-Definition SimplPred {T} (p : pred T) : simpl_pred T := SimplFun p.
-
-(** Some simpl_pred constructors. **)
-
-Definition pred0 {T} := @SimplPred T xpred0.
-Definition predT {T} := @SimplPred T xpredT.
-Definition predI {T} (p1 p2 : pred T) := SimplPred (xpredI p1 p2).
-Definition predU {T} (p1 p2 : pred T) := SimplPred (xpredU p1 p2).
-Definition predC {T} (p : pred T) := SimplPred (xpredC p).
-Definition predD {T} (p1 p2 : pred T) := SimplPred (xpredD p1 p2).
-Definition preim {aT rT} (f : aT -> rT) (d : pred rT) := SimplPred (xpreim f d).
-
-Notation "[ 'pred' : T | E ]" := (SimplPred (fun _ : T => E%B)) : fun_scope.
-Notation "[ 'pred' x | E ]" := (SimplPred (fun x => E%B)) : fun_scope.
-Notation "[ 'pred' x | E1 & E2 ]" := [pred x | E1 && E2 ] : fun_scope.
-Notation "[ 'pred' x : T | E ]" :=
- (SimplPred (fun x : T => E%B)) (only parsing) : fun_scope.
-Notation "[ 'pred' x : T | E1 & E2 ]" :=
- [pred x : T | E1 && E2 ] (only parsing) : fun_scope.
-
-(** Coercions for simpl_pred.
- As simpl_pred T values are used both applicatively and collectively we
- need simpl_pred to coerce to both pred T _and_ {pred T}. However it is
- undesirable to have two distinct constants for what are essentially identical
- coercion functions, as this confuses the SSReflect keyed matching algorithm.
- While the Coq Coercion declarations appear to disallow such Coercion aliasing,
- it is possible to work around this limitation with a combination of modules
- and functors, which we do below.
- In addition we also give a predType instance for simpl_pred, which will
- be preferred to the {pred T} coercion to solve simpl_pred T =~= pred_sort ?pT
- constraints; not however that the pred_of_simpl coercion _will_ be used
- when a simpl_pred T is passed as a {pred T}, since the simplPredType T
- structure for simpl_pred T is _not_ convertible to predPredType T. **)
-
-Module PredOfSimpl.
-Definition coerce T (sp : simpl_pred T) : pred T := fun_of_simpl sp.
-End PredOfSimpl.
-Notation pred_of_simpl := PredOfSimpl.coerce.
-Coercion pred_of_simpl : simpl_pred >-> pred.
-Canonical simplPredType T := PredType (@pred_of_simpl T).
-
-Module Type PredSortOfSimplSignature.
-Parameter coerce : forall T, simpl_pred T -> {pred T}.
-End PredSortOfSimplSignature.
-Module DeclarePredSortOfSimpl (PredSortOfSimpl : PredSortOfSimplSignature).
-Coercion PredSortOfSimpl.coerce : simpl_pred >-> pred_sort.
-End DeclarePredSortOfSimpl.
-Module Export PredSortOfSimplCoercion := DeclarePredSortOfSimpl PredOfSimpl.
-
-(** Type to pred coercion.
- This lets us use types of sort predArgType as a synonym for their universal
- predicate. We define this predicate as a simpl_pred T rather than a pred T or
- a {pred T} so that /= and inE reduce (T x) and x \in T to true, respectively.
- Unfortunately, this can't be used for existing types like bool whose sort
- is already fixed (at least, not without redefining bool, true, false and
- all bool operations and lemmas); we provide syntax to recast a given type
- in predArgType as a workaround. **)
-Definition predArgType := Type.
-Bind Scope type_scope with predArgType.
-Identity Coercion sort_of_predArgType : predArgType >-> Sortclass.
-Coercion pred_of_argType (T : predArgType) : simpl_pred T := predT.
-Notation "{ : T }" := (T%type : predArgType) : type_scope.
-
-(** Boolean relations.
- Simplifying relations follow the coding pattern of 2-argument simplifying
- functions: the simplifying type constructor is applied to the _last_
- argument. This design choice will let the in_simpl componenent of inE expand
- membership in simpl_rel as well. We provide an explicit coercion to rel T
- to avoid eta-expansion during coercion; this coercion self-simplifies so it
- should be invisible.
- **)
-
-Definition rel T := T -> pred T.
-Identity Coercion fun_of_rel : rel >-> Funclass.
-
-Definition subrel T (r1 r2 : rel T) := forall x y : T, r1 x y -> r2 x y.
-
-Definition simpl_rel T := T -> simpl_pred T.
-
-Coercion rel_of_simpl T (sr : simpl_rel T) : rel T := fun x : T => sr x.
-Arguments rel_of_simpl {T} sr x /.
-
-Notation xrelU := (fun (r1 r2 : rel _) x y => r1 x y || r2 x y).
-Notation xrelpre := (fun f (r : rel _) x y => r (f x) (f y)).
-
-Definition SimplRel {T} (r : rel T) : simpl_rel T := fun x => SimplPred (r x).
-Definition relU {T} (r1 r2 : rel T) := SimplRel (xrelU r1 r2).
-Definition relpre {aT rT} (f : aT -> rT) (r : rel rT) := SimplRel (xrelpre f r).
-
-Notation "[ 'rel' x y | E ]" := (SimplRel (fun x y => E%B)) : fun_scope.
-Notation "[ 'rel' x y : T | E ]" :=
- (SimplRel (fun x y : T => E%B)) (only parsing) : fun_scope.
-
-Lemma subrelUl T (r1 r2 : rel T) : subrel r1 (relU r1 r2).
-Proof. by move=> x y r1xy; apply/orP; left. Qed.
-
-Lemma subrelUr T (r1 r2 : rel T) : subrel r2 (relU r1 r2).
-Proof. by move=> x y r2xy; apply/orP; right. Qed.
-
-(** Variant of simpl_pred specialised to the membership operator. **)
-
-Variant mem_pred T := Mem of pred T.
-
-(**
- We mainly declare pred_of_mem as a coercion so that it is not displayed.
- Similarly to pred_of_simpl, it will usually not be inserted by type
- inference, as all mem_pred mp =~= pred_sort ?pT unification problems will
- be solve by the memPredType instance below; pred_of_mem will however
- be used if a mem_pred T is used as a {pred T}, which is desirable as it
- will avoid a redundant mem in a collective, e.g., passing (mem A) to a lemma
- exception a generic collective predicate p : {pred T} and premise x \in P
- will display a subgoal x \in A rathere than x \in mem A.
- Conversely, pred_of_mem will _not_ if it is used id (mem A) is used
- applicatively or as a pred T; there the simpl_of_mem coercion defined below
- will be used, resulting in a subgoal that displays as mem A x by simplifies
- to x \in A.
- **)
-Coercion pred_of_mem {T} mp : {pred T} := let: Mem p := mp in [eta p].
-Canonical memPredType T := PredType (@pred_of_mem T).
-
-Definition in_mem {T} (x : T) mp := pred_of_mem mp x.
-Definition eq_mem {T} mp1 mp2 := forall x : T, in_mem x mp1 = in_mem x mp2.
-Definition sub_mem {T} mp1 mp2 := forall x : T, in_mem x mp1 -> in_mem x mp2.
-
-Arguments in_mem {T} x mp : simpl never.
-Typeclasses Opaque eq_mem.
-Typeclasses Opaque sub_mem.
-
-(** The [simpl_of_mem; pred_of_simpl] path provides a new mem_pred >-> pred
- coercion, but does _not_ override the pred_of_mem : mem_pred >-> pred_sort
- explicit coercion declaration above.
- **)
-Coercion simpl_of_mem {T} mp := SimplPred (fun x : T => in_mem x mp).
-
-Lemma sub_refl T (mp : mem_pred T) : sub_mem mp mp. Proof. by []. Qed.
-Arguments sub_refl {T mp} [x] mp_x.
-
-(**
- It is essential to interlock the production of the Mem constructor inside
- the branch of the predType match, to ensure that unifying mem A with
- Mem [eta ?p] sets ?p := toP A (or ?p := P if toP = id and A = [eta P]),
- rather than topred pT A, had we put mem A := Mem (topred A).
-**)
-Definition mem T (pT : predType T) : pT -> mem_pred T :=
- let: PredType toP := pT in fun A => Mem [eta toP A].
-Arguments mem {T pT} A : rename, simpl never.
-
-Notation "x \in A" := (in_mem x (mem A)) : bool_scope.
-Notation "x \in A" := (in_mem x (mem A)) : bool_scope.
-Notation "x \notin A" := (~~ (x \in A)) : bool_scope.
-Notation "A =i B" := (eq_mem (mem A) (mem B)) : type_scope.
-Notation "{ 'subset' A <= B }" := (sub_mem (mem A) (mem B)) : type_scope.
-
-Notation "[ 'mem' A ]" :=
- (pred_of_simpl (simpl_of_mem (mem A))) (only parsing) : fun_scope.
-
-Notation "[ 'predI' A & B ]" := (predI [mem A] [mem B]) : fun_scope.
-Notation "[ 'predU' A & B ]" := (predU [mem A] [mem B]) : fun_scope.
-Notation "[ 'predD' A & B ]" := (predD [mem A] [mem B]) : fun_scope.
-Notation "[ 'predC' A ]" := (predC [mem A]) : fun_scope.
-Notation "[ 'preim' f 'of' A ]" := (preim f [mem A]) : fun_scope.
-Notation "[ 'pred' x 'in' A ]" := [pred x | x \in A] : fun_scope.
-Notation "[ 'pred' x 'in' A | E ]" := [pred x | x \in A & E] : fun_scope.
-Notation "[ 'pred' x 'in' A | E1 & E2 ]" :=
- [pred x | x \in A & E1 && E2 ] : fun_scope.
-
-Notation "[ 'rel' x y 'in' A & B | E ]" :=
- [rel x y | (x \in A) && (y \in B) && E] : fun_scope.
-Notation "[ 'rel' x y 'in' A & B ]" :=
- [rel x y | (x \in A) && (y \in B)] : fun_scope.
-Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E] : fun_scope.
-Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A] : fun_scope.
-
-(** Aliases of pred T that let us tag instances of simpl_pred as applicative
- or collective, via bespoke coercions. This tagging will give control over
- the simplification behaviour of inE and othe rewriting lemmas below.
- For this control to work it is crucial that collective_of_simpl _not_
- be convertible to either applicative_of_simpl or pred_of_simpl. Indeed
- they differ here by a commutattive conversion (of the match and lambda).
- **)
-Definition applicative_pred T := pred T.
-Definition collective_pred T := pred T.
-Coercion applicative_pred_of_simpl T (sp : simpl_pred T) : applicative_pred T :=
- fun_of_simpl sp.
-Coercion collective_pred_of_simpl T (sp : simpl_pred T) : collective_pred T :=
- let: SimplFun p := sp in p.
-
-(** Explicit simplification rules for predicate application and membership. **)
-Section PredicateSimplification.
-
-Variables T : Type.
-
-Implicit Types (p : pred T) (pT : predType T) (sp : simpl_pred T).
-Implicit Types (mp : mem_pred T).
-
-(**
- The following four bespoke structures provide fine-grained control over
- matching the various predicate forms. While all four follow a common pattern
- of using a canonical projection to match a particular form of predicate
- (in pred T, simpl_pred, mem_pred and mem_pred, respectively), and display
- the matched predicate in the structure type, each is in fact used for a
- different, specific purpose:
- - registered_applicative_pred: this user-facing structure is used to
- declare values of type pred T meant to be used applicatively. The
- structure parameter merely displays this same value, and is used to avoid
- undesirable, visible occurrence of the structure in the right hand side
- of rewrite rules such as app_predE.
- There is a canonical instance of registered_applicative_pred for values
- of the applicative_of_simpl coercion, which handles the
- Definition Apred : applicative_pred T := [pred x | ...] idiom.
- This instance is mainly intended for the in_applicative component of inE,
- in conjunction with manifest_mem_pred and applicative_mem_pred.
- - manifest_simpl_pred: the only instance of this structure matches manifest
- simpl_pred values of the form SimplPred p, displaying p in the structure
- type. This structure is used in in_simpl to detect and selectively expand
- collective predicates of this form. An explicit SimplPred p pattern would
- _NOT_ work for this purpose, as then the left-hand side of in_simpl would
- reduce to in_mem ?x (Mem [eta ?p]) and would thus match _any_ instance
- of \in, not just those arising from a manifest simpl_pred.
- - manifest_mem_pred: similar to manifest_simpl_pred, the one instance of this
- structure matches manifest mem_pred values of the form Mem [eta ?p]. The
- purpose is different however: to match and display in ?p the actual
- predicate appearing in an ... \in ... expression matched by the left hand
- side of the in_applicative component of inE; then
- - applicative_mem_pred is a telescope refinement of manifest_mem_pred p with
- a default constructor that checks that the predicate p is the value of a
- registered_applicative_pred; any unfolding occurring during this check
- does _not_ affect the value of p passed to in_applicative, since that
- has been fixed earlier by the manifest_mem_pred match. In particular the
- definition of a predicate using the applicative_pred_of_simpl idiom above
- will not be expanded - this very case is the reason in_applicative uses
- a mem_pred telescope in its left hand side. The more straightforward
- ?x \in applicative_pred_value ?ap (equivalent to in_mem ?x (Mem ?ap))
- with ?ap : registered_applicative_pred ?p would set ?p := [pred x | ...]
- rather than ?p := Apred in the example above.
- Also note that the in_applicative component of inE must be come before the
- in_simpl one, as the latter also matches terms of the form x \in Apred.
- Finally, no component of inE matches x \in Acoll, when
- Definition Acoll : collective_pred T := [pred x | ...].
- as the collective_pred_of_simpl is _not_ convertible to pred_of_simpl. **)
-
-Structure registered_applicative_pred p := RegisteredApplicativePred {
- applicative_pred_value :> pred T;
- _ : applicative_pred_value = p
-}.
-Definition ApplicativePred p := RegisteredApplicativePred (erefl p).
-Canonical applicative_pred_applicative sp :=
- ApplicativePred (applicative_pred_of_simpl sp).
-
-Structure manifest_simpl_pred p := ManifestSimplPred {
- simpl_pred_value :> simpl_pred T;
- _ : simpl_pred_value = SimplPred p
-}.
-Canonical expose_simpl_pred p := ManifestSimplPred (erefl (SimplPred p)).
-
-Structure manifest_mem_pred p := ManifestMemPred {
- mem_pred_value :> mem_pred T;
- _ : mem_pred_value = Mem [eta p]
-}.
-Canonical expose_mem_pred p := ManifestMemPred (erefl (Mem [eta p])).
-
-Structure applicative_mem_pred p :=
- ApplicativeMemPred {applicative_mem_pred_value :> manifest_mem_pred p}.
-Canonical check_applicative_mem_pred p (ap : registered_applicative_pred p) :=
- [eta @ApplicativeMemPred ap].
-
-Lemma mem_topred pT (pp : pT) : mem (topred pp) = mem pp.
-Proof. by case: pT pp. Qed.
-
-Lemma topredE pT x (pp : pT) : topred pp x = (x \in pp).
-Proof. by rewrite -mem_topred. Qed.
-
-Lemma app_predE x p (ap : registered_applicative_pred p) : ap x = (x \in p).
-Proof. by case: ap => _ /= ->. Qed.
-
-Lemma in_applicative x p (amp : applicative_mem_pred p) : in_mem x amp = p x.
-Proof. by case: amp => -[_ /= ->]. Qed.
-
-Lemma in_collective x p (msp : manifest_simpl_pred p) :
- (x \in collective_pred_of_simpl msp) = p x.
-Proof. by case: msp => _ /= ->. Qed.
-
-Lemma in_simpl x p (msp : manifest_simpl_pred p) :
- in_mem x (Mem [eta pred_of_simpl msp]) = p x.
-Proof. by case: msp => _ /= ->. Qed.
-
-(**
- Because of the explicit eta expansion in the left-hand side, this lemma
- should only be used in the left-to-right direction.
- **)
-Lemma unfold_in x p : (x \in ([eta p] : pred T)) = p x.
-Proof. by []. Qed.
-
-Lemma simpl_predE p : SimplPred p =1 p.
-Proof. by []. Qed.
-
-Definition inE := (in_applicative, in_simpl, simpl_predE). (* to be extended *)
-
-Lemma mem_simpl sp : mem sp = sp :> pred T.
-Proof. by []. Qed.
-
-Definition memE := mem_simpl. (* could be extended *)
-
-Lemma mem_mem mp :
- (mem mp = mp) * (mem (mp : simpl_pred T) = mp) * (mem (mp : pred T) = mp).
-Proof. by case: mp. Qed.
-
-End PredicateSimplification.
-
-(** Qualifiers and keyed predicates. **)
-
-Variant qualifier (q : nat) T := Qualifier of {pred T}.
-
-Coercion has_quality n T (q : qualifier n T) : {pred T} :=
- fun x => let: Qualifier _ p := q in p x.
-Arguments has_quality n {T}.
-
-Lemma qualifE n T p x : (x \in @Qualifier n T p) = p x. Proof. by []. Qed.
-
-Notation "x \is A" := (x \in has_quality 0 A) : bool_scope.
-Notation "x \is 'a' A" := (x \in has_quality 1 A) : bool_scope.
-Notation "x \is 'an' A" := (x \in has_quality 2 A) : bool_scope.
-Notation "x \isn't A" := (x \notin has_quality 0 A) : bool_scope.
-Notation "x \isn't 'a' A" := (x \notin has_quality 1 A) : bool_scope.
-Notation "x \isn't 'an' A" := (x \notin has_quality 2 A) : bool_scope.
-Notation "[ 'qualify' x | P ]" := (Qualifier 0 (fun x => P%B)) : form_scope.
-Notation "[ 'qualify' x : T | P ]" :=
- (Qualifier 0 (fun x : T => P%B)) (only parsing) : form_scope.
-Notation "[ 'qualify' 'a' x | P ]" := (Qualifier 1 (fun x => P%B)) : form_scope.
-Notation "[ 'qualify' 'a' x : T | P ]" :=
- (Qualifier 1 (fun x : T => P%B)) (only parsing) : form_scope.
-Notation "[ 'qualify' 'an' x | P ]" :=
- (Qualifier 2 (fun x => P%B)) : form_scope.
-Notation "[ 'qualify' 'an' x : T | P ]" :=
- (Qualifier 2 (fun x : T => P%B)) (only parsing) : form_scope.
-
-(** Keyed predicates: support for property-bearing predicate interfaces. **)
-
-Section KeyPred.
-
-Variable T : Type.
-#[universes(template)]
-Variant pred_key (p : {pred T}) := DefaultPredKey.
-
-Variable p : {pred T}.
-Structure keyed_pred (k : pred_key p) :=
- PackKeyedPred {unkey_pred :> {pred T}; _ : unkey_pred =i p}.
-
-Variable k : pred_key p.
-Definition KeyedPred := @PackKeyedPred k p (frefl _).
-
-Variable k_p : keyed_pred k.
-Lemma keyed_predE : k_p =i p. Proof. by case: k_p. Qed.
-
-(**
- Instances that strip the mem cast; the first one has "pred_of_mem" as its
- projection head value, while the second has "pred_of_simpl". The latter
- has the side benefit of preempting accidental misdeclarations.
- Note: pred_of_mem is the registered mem >-> pred_sort coercion, while
- [simpl_of_mem; pred_of_simpl] is the mem >-> pred >=> Funclass coercion. We
- must write down the coercions explicitly as the Canonical head constant
- computation does not strip casts. **)
-Canonical keyed_mem :=
- @PackKeyedPred k (pred_of_mem (mem k_p)) keyed_predE.
-Canonical keyed_mem_simpl :=
- @PackKeyedPred k (pred_of_simpl (mem k_p)) keyed_predE.
-
-End KeyPred.
-
-Local Notation in_unkey x S := (x \in @unkey_pred _ S _ _) (only parsing).
-Notation "x \in S" := (in_unkey x S) (only printing) : bool_scope.
-
-Section KeyedQualifier.
-
-Variables (T : Type) (n : nat) (q : qualifier n T).
-
-Structure keyed_qualifier (k : pred_key q) :=
- PackKeyedQualifier {unkey_qualifier; _ : unkey_qualifier = q}.
-Definition KeyedQualifier k := PackKeyedQualifier k (erefl q).
-Variables (k : pred_key q) (k_q : keyed_qualifier k).
-Fact keyed_qualifier_suproof : unkey_qualifier k_q =i q.
-Proof. by case: k_q => /= _ ->. Qed.
-Canonical keyed_qualifier_keyed := PackKeyedPred k keyed_qualifier_suproof.
-
-End KeyedQualifier.
-
-Notation "x \is A" :=
- (in_unkey x (has_quality 0 A)) (only printing) : bool_scope.
-Notation "x \is 'a' A" :=
- (in_unkey x (has_quality 1 A)) (only printing) : bool_scope.
-Notation "x \is 'an' A" :=
- (in_unkey x (has_quality 2 A)) (only printing) : bool_scope.
-
-Module DefaultKeying.
-
-Canonical default_keyed_pred T p := KeyedPred (@DefaultPredKey T p).
-Canonical default_keyed_qualifier T n (q : qualifier n T) :=
- KeyedQualifier (DefaultPredKey q).
-
-End DefaultKeying.
-
-(** Skolemizing with conditions. **)
-
-Lemma all_tag_cond_dep I T (C : pred I) U :
- (forall x, T x) -> (forall x, C x -> {y : T x & U x y}) ->
- {f : forall x, T x & forall x, C x -> U x (f x)}.
-Proof.
-move=> f0 fP; apply: all_tag (fun x y => C x -> U x y) _ => x.
-by case Cx: (C x); [case/fP: Cx => y; exists y | exists (f0 x)].
-Qed.
-
-Lemma all_tag_cond I T (C : pred I) U :
- T -> (forall x, C x -> {y : T & U x y}) ->
- {f : I -> T & forall x, C x -> U x (f x)}.
-Proof. by move=> y0; apply: all_tag_cond_dep. Qed.
-
-Lemma all_sig_cond_dep I T (C : pred I) P :
- (forall x, T x) -> (forall x, C x -> {y : T x | P x y}) ->
- {f : forall x, T x | forall x, C x -> P x (f x)}.
-Proof. by move=> f0 /(all_tag_cond_dep f0)[f]; exists f. Qed.
-
-Lemma all_sig_cond I T (C : pred I) P :
- T -> (forall x, C x -> {y : T | P x y}) ->
- {f : I -> T | forall x, C x -> P x (f x)}.
-Proof. by move=> y0; apply: all_sig_cond_dep. Qed.
-
-Section RelationProperties.
-
-(**
- Caveat: reflexive should not be used to state lemmas, as auto and trivial
- will not expand the constant. **)
-
-Variable T : Type.
-
-Variable R : rel T.
-
-Definition total := forall x y, R x y || R y x.
-Definition transitive := forall y x z, R x y -> R y z -> R x z.
-
-Definition symmetric := forall x y, R x y = R y x.
-Definition antisymmetric := forall x y, R x y && R y x -> x = y.
-Definition pre_symmetric := forall x y, R x y -> R y x.
-
-Lemma symmetric_from_pre : pre_symmetric -> symmetric.
-Proof. by move=> symR x y; apply/idP/idP; apply: symR. Qed.
-
-Definition reflexive := forall x, R x x.
-Definition irreflexive := forall x, R x x = false.
-
-Definition left_transitive := forall x y, R x y -> R x =1 R y.
-Definition right_transitive := forall x y, R x y -> R^~ x =1 R^~ y.
-
-Section PER.
-
-Hypotheses (symR : symmetric) (trR : transitive).
-
-Lemma sym_left_transitive : left_transitive.
-Proof. by move=> x y Rxy z; apply/idP/idP; apply: trR; rewrite // symR. Qed.
-
-Lemma sym_right_transitive : right_transitive.
-Proof. by move=> x y /sym_left_transitive Rxy z; rewrite !(symR z) Rxy. Qed.
-
-End PER.
-
-(**
- We define the equivalence property with prenex quantification so that it
- can be localized using the {in ..., ..} form defined below. **)
-
-Definition equivalence_rel := forall x y z, R z z * (R x y -> R x z = R y z).
-
-Lemma equivalence_relP : equivalence_rel <-> reflexive /\ left_transitive.
-Proof.
-split=> [eqiR | [Rxx trR] x y z]; last by split=> [|/trR->].
-by split=> [x | x y Rxy z]; [rewrite (eqiR x x x) | rewrite (eqiR x y z)].
-Qed.
-
-End RelationProperties.
-
-Lemma rev_trans T (R : rel T) : transitive R -> transitive (fun x y => R y x).
-Proof. by move=> trR x y z Ryx Rzy; apply: trR Rzy Ryx. Qed.
-
-(** Property localization **)
-
-Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0).
-Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0).
-Local Notation "{ 'all3' P }" := (forall x y z, P x y z: Prop) (at level 0).
-Local Notation ph := (phantom _).
-
-Section LocalProperties.
-
-Variables T1 T2 T3 : Type.
-
-Variables (d1 : mem_pred T1) (d2 : mem_pred T2) (d3 : mem_pred T3).
-Local Notation ph := (phantom Prop).
-
-Definition prop_for (x : T1) P & ph {all1 P} := P x.
-
-Lemma forE x P phP : @prop_for x P phP = P x. Proof. by []. Qed.
-
-Definition prop_in1 P & ph {all1 P} :=
- forall x, in_mem x d1 -> P x.
-
-Definition prop_in11 P & ph {all2 P} :=
- forall x y, in_mem x d1 -> in_mem y d2 -> P x y.
-
-Definition prop_in2 P & ph {all2 P} :=
- forall x y, in_mem x d1 -> in_mem y d1 -> P x y.
-
-Definition prop_in111 P & ph {all3 P} :=
- forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d3 -> P x y z.
-
-Definition prop_in12 P & ph {all3 P} :=
- forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d2 -> P x y z.
-
-Definition prop_in21 P & ph {all3 P} :=
- forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d2 -> P x y z.
-
-Definition prop_in3 P & ph {all3 P} :=
- forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d1 -> P x y z.
-
-Variable f : T1 -> T2.
-
-Definition prop_on1 Pf P & phantom T3 (Pf f) & ph {all1 P} :=
- forall x, in_mem (f x) d2 -> P x.
-
-Definition prop_on2 Pf P & phantom T3 (Pf f) & ph {all2 P} :=
- forall x y, in_mem (f x) d2 -> in_mem (f y) d2 -> P x y.
-
-End LocalProperties.
-
-Definition inPhantom := Phantom Prop.
-Definition onPhantom {T} P (x : T) := Phantom Prop (P x).
-
-Definition bijective_in aT rT (d : mem_pred aT) (f : aT -> rT) :=
- exists2 g, prop_in1 d (inPhantom (cancel f g))
- & prop_on1 d (Phantom _ (cancel g)) (onPhantom (cancel g) f).
-
-Definition bijective_on aT rT (cd : mem_pred rT) (f : aT -> rT) :=
- exists2 g, prop_on1 cd (Phantom _ (cancel f)) (onPhantom (cancel f) g)
- & prop_in1 cd (inPhantom (cancel g f)).
-
-Notation "{ 'for' x , P }" := (prop_for x (inPhantom P)) : type_scope.
-Notation "{ 'in' d , P }" := (prop_in1 (mem d) (inPhantom P)) : type_scope.
-Notation "{ 'in' d1 & d2 , P }" :=
- (prop_in11 (mem d1) (mem d2) (inPhantom P)) : type_scope.
-Notation "{ 'in' d & , P }" := (prop_in2 (mem d) (inPhantom P)) : type_scope.
-Notation "{ 'in' d1 & d2 & d3 , P }" :=
- (prop_in111 (mem d1) (mem d2) (mem d3) (inPhantom P)) : type_scope.
-Notation "{ 'in' d1 & & d3 , P }" :=
- (prop_in21 (mem d1) (mem d3) (inPhantom P)) : type_scope.
-Notation "{ 'in' d1 & d2 & , P }" :=
- (prop_in12 (mem d1) (mem d2) (inPhantom P)) : type_scope.
-Notation "{ 'in' d & & , P }" := (prop_in3 (mem d) (inPhantom P)) : type_scope.
-Notation "{ 'on' cd , P }" :=
- (prop_on1 (mem cd) (inPhantom P) (inPhantom P)) : type_scope.
-
-Notation "{ 'on' cd & , P }" :=
- (prop_on2 (mem cd) (inPhantom P) (inPhantom P)) : type_scope.
-
-Local Arguments onPhantom : clear scopes.
-Notation "{ 'on' cd , P & g }" :=
- (prop_on1 (mem cd) (Phantom (_ -> Prop) P) (onPhantom P g)) : type_scope.
-Notation "{ 'in' d , 'bijective' f }" := (bijective_in (mem d) f) : type_scope.
-Notation "{ 'on' cd , 'bijective' f }" :=
- (bijective_on (mem cd) f) : type_scope.
-
-(**
- Weakening and monotonicity lemmas for localized predicates.
- Note that using these lemmas in backward reasoning will force expansion of
- the predicate definition, as Coq needs to expose the quantifier to apply
- these lemmas. We define a few specialized variants to avoid this for some
- of the ssrfun predicates. **)
-
-Section LocalGlobal.
-
-Variables T1 T2 T3 : predArgType.
-Variables (D1 : {pred T1}) (D2 : {pred T2}) (D3 : {pred T3}).
-Variables (d1 d1' : mem_pred T1) (d2 d2' : mem_pred T2) (d3 d3' : mem_pred T3).
-Variables (f f' : T1 -> T2) (g : T2 -> T1) (h : T3).
-Variables (P1 : T1 -> Prop) (P2 : T1 -> T2 -> Prop).
-Variable P3 : T1 -> T2 -> T3 -> Prop.
-Variable Q1 : (T1 -> T2) -> T1 -> Prop.
-Variable Q1l : (T1 -> T2) -> T3 -> T1 -> Prop.
-Variable Q2 : (T1 -> T2) -> T1 -> T1 -> Prop.
-
-Hypothesis sub1 : sub_mem d1 d1'.
-Hypothesis sub2 : sub_mem d2 d2'.
-Hypothesis sub3 : sub_mem d3 d3'.
-
-Lemma in1W : {all1 P1} -> {in D1, {all1 P1}}.
-Proof. by move=> ? ?. Qed.
-Lemma in2W : {all2 P2} -> {in D1 & D2, {all2 P2}}.
-Proof. by move=> ? ?. Qed.
-Lemma in3W : {all3 P3} -> {in D1 & D2 & D3, {all3 P3}}.
-Proof. by move=> ? ?. Qed.
-
-Lemma in1T : {in T1, {all1 P1}} -> {all1 P1}.
-Proof. by move=> ? ?; auto. Qed.
-Lemma in2T : {in T1 & T2, {all2 P2}} -> {all2 P2}.
-Proof. by move=> ? ?; auto. Qed.
-Lemma in3T : {in T1 & T2 & T3, {all3 P3}} -> {all3 P3}.
-Proof. by move=> ? ?; auto. Qed.
-
-Lemma sub_in1 (Ph : ph {all1 P1}) : prop_in1 d1' Ph -> prop_in1 d1 Ph.
-Proof. by move=> allP x /sub1; apply: allP. Qed.
-
-Lemma sub_in11 (Ph : ph {all2 P2}) : prop_in11 d1' d2' Ph -> prop_in11 d1 d2 Ph.
-Proof. by move=> allP x1 x2 /sub1 d1x1 /sub2; apply: allP. Qed.
-
-Lemma sub_in111 (Ph : ph {all3 P3}) :
- prop_in111 d1' d2' d3' Ph -> prop_in111 d1 d2 d3 Ph.
-Proof. by move=> allP x1 x2 x3 /sub1 d1x1 /sub2 d2x2 /sub3; apply: allP. Qed.
-
-Let allQ1 f'' := {all1 Q1 f''}.
-Let allQ1l f'' h' := {all1 Q1l f'' h'}.
-Let allQ2 f'' := {all2 Q2 f''}.
-
-Lemma on1W : allQ1 f -> {on D2, allQ1 f}. Proof. by move=> ? ?. Qed.
-
-Lemma on1lW : allQ1l f h -> {on D2, allQ1l f & h}. Proof. by move=> ? ?. Qed.
-
-Lemma on2W : allQ2 f -> {on D2 &, allQ2 f}. Proof. by move=> ? ?. Qed.
-
-Lemma on1T : {on T2, allQ1 f} -> allQ1 f. Proof. by move=> ? ?; auto. Qed.
-
-Lemma on1lT : {on T2, allQ1l f & h} -> allQ1l f h.
-Proof. by move=> ? ?; auto. Qed.
-
-Lemma on2T : {on T2 &, allQ2 f} -> allQ2 f.
-Proof. by move=> ? ?; auto. Qed.
-
-Lemma subon1 (Phf : ph (allQ1 f)) (Ph : ph (allQ1 f)) :
- prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph.
-Proof. by move=> allQ x /sub2; apply: allQ. Qed.
-
-Lemma subon1l (Phf : ph (allQ1l f)) (Ph : ph (allQ1l f h)) :
- prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph.
-Proof. by move=> allQ x /sub2; apply: allQ. Qed.
-
-Lemma subon2 (Phf : ph (allQ2 f)) (Ph : ph (allQ2 f)) :
- prop_on2 d2' Phf Ph -> prop_on2 d2 Phf Ph.
-Proof. by move=> allQ x y /sub2=> d2fx /sub2; apply: allQ. Qed.
-
-Lemma can_in_inj : {in D1, cancel f g} -> {in D1 &, injective f}.
-Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed.
-
-Lemma canLR_in x y : {in D1, cancel f g} -> y \in D1 -> x = f y -> g x = y.
-Proof. by move=> fK D1y ->; rewrite fK. Qed.
-
-Lemma canRL_in x y : {in D1, cancel f g} -> x \in D1 -> f x = y -> x = g y.
-Proof. by move=> fK D1x <-; rewrite fK. Qed.
-
-Lemma on_can_inj : {on D2, cancel f & g} -> {on D2 &, injective f}.
-Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed.
-
-Lemma canLR_on x y : {on D2, cancel f & g} -> f y \in D2 -> x = f y -> g x = y.
-Proof. by move=> fK D2fy ->; rewrite fK. Qed.
-
-Lemma canRL_on x y : {on D2, cancel f & g} -> f x \in D2 -> f x = y -> x = g y.
-Proof. by move=> fK D2fx <-; rewrite fK. Qed.
-
-Lemma inW_bij : bijective f -> {in D1, bijective f}.
-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
-
-Lemma onW_bij : bijective f -> {on D2, bijective f}.
-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
-
-Lemma inT_bij : {in T1, bijective f} -> bijective f.
-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
-
-Lemma onT_bij : {on T2, bijective f} -> bijective f.
-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
-
-Lemma sub_in_bij (D1' : pred T1) :
- {subset D1 <= D1'} -> {in D1', bijective f} -> {in D1, bijective f}.
-Proof.
-by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K].
-Qed.
-
-Lemma subon_bij (D2' : pred T2) :
- {subset D2 <= D2'} -> {on D2', bijective f} -> {on D2, bijective f}.
-Proof.
-by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K].
-Qed.
-
-End LocalGlobal.
-
-Lemma sub_in2 T d d' (P : T -> T -> Prop) :
- sub_mem d d' -> forall Ph : ph {all2 P}, prop_in2 d' Ph -> prop_in2 d Ph.
-Proof. by move=> /= sub_dd'; apply: sub_in11. Qed.
-
-Lemma sub_in3 T d d' (P : T -> T -> T -> Prop) :
- sub_mem d d' -> forall Ph : ph {all3 P}, prop_in3 d' Ph -> prop_in3 d Ph.
-Proof. by move=> /= sub_dd'; apply: sub_in111. Qed.
-
-Lemma sub_in12 T1 T d1 d1' d d' (P : T1 -> T -> T -> Prop) :
- sub_mem d1 d1' -> sub_mem d d' ->
- forall Ph : ph {all3 P}, prop_in12 d1' d' Ph -> prop_in12 d1 d Ph.
-Proof. by move=> /= sub1 sub; apply: sub_in111. Qed.
-
-Lemma sub_in21 T T3 d d' d3 d3' (P : T -> T -> T3 -> Prop) :
- sub_mem d d' -> sub_mem d3 d3' ->
- forall Ph : ph {all3 P}, prop_in21 d' d3' Ph -> prop_in21 d d3 Ph.
-Proof. by move=> /= sub sub3; apply: sub_in111. Qed.
-
-Lemma equivalence_relP_in T (R : rel T) (A : pred T) :
- {in A & &, equivalence_rel R}
- <-> {in A, reflexive R} /\ {in A &, forall x y, R x y -> {in A, R x =1 R y}}.
-Proof.
-split=> [eqiR | [Rxx trR] x y z *]; last by split=> [|/trR-> //]; apply: Rxx.
-by split=> [x Ax|x y Ax Ay Rxy z Az]; [rewrite (eqiR x x) | rewrite (eqiR x y)].
-Qed.
-
-Section MonoHomoMorphismTheory.
-
-Variables (aT rT sT : Type) (f : aT -> rT) (g : rT -> aT).
-Variables (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT).
-
-Lemma monoW : {mono f : x / aP x >-> rP x} -> {homo f : x / aP x >-> rP x}.
-Proof. by move=> hf x ax; rewrite hf. Qed.
-
-Lemma mono2W :
- {mono f : x y / aR x y >-> rR x y} -> {homo f : x y / aR x y >-> rR x y}.
-Proof. by move=> hf x y axy; rewrite hf. Qed.
-
-Hypothesis fgK : cancel g f.
-
-Lemma homoRL :
- {homo f : x y / aR x y >-> rR x y} -> forall x y, aR (g x) y -> rR x (f y).
-Proof. by move=> Hf x y /Hf; rewrite fgK. Qed.
-
-Lemma homoLR :
- {homo f : x y / aR x y >-> rR x y} -> forall x y, aR x (g y) -> rR (f x) y.
-Proof. by move=> Hf x y /Hf; rewrite fgK. Qed.
-
-Lemma homo_mono :
- {homo f : x y / aR x y >-> rR x y} -> {homo g : x y / rR x y >-> aR x y} ->
- {mono g : x y / rR x y >-> aR x y}.
-Proof.
-move=> mf mg x y; case: (boolP (rR _ _))=> [/mg //|].
-by apply: contraNF=> /mf; rewrite !fgK.
-Qed.
-
-Lemma monoLR :
- {mono f : x y / aR x y >-> rR x y} -> forall x y, rR (f x) y = aR x (g y).
-Proof. by move=> mf x y; rewrite -{1}[y]fgK mf. Qed.
-
-Lemma monoRL :
- {mono f : x y / aR x y >-> rR x y} -> forall x y, rR x (f y) = aR (g x) y.
-Proof. by move=> mf x y; rewrite -{1}[x]fgK mf. Qed.
-
-Lemma can_mono :
- {mono f : x y / aR x y >-> rR x y} -> {mono g : x y / rR x y >-> aR x y}.
-Proof. by move=> mf x y /=; rewrite -mf !fgK. Qed.
-
-End MonoHomoMorphismTheory.
-
-Section MonoHomoMorphismTheory_in.
-
-Variables (aT rT sT : predArgType) (f : aT -> rT) (g : rT -> aT).
-Variable (aD : {pred aT}).
-Variable (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT).
-
-Notation rD := [pred x | g x \in aD].
-
-Lemma monoW_in :
- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
- {in aD &, {homo f : x y / aR x y >-> rR x y}}.
-Proof. by move=> hf x y hx hy axy; rewrite hf. Qed.
-
-Lemma mono2W_in :
- {in aD, {mono f : x / aP x >-> rP x}} ->
- {in aD, {homo f : x / aP x >-> rP x}}.
-Proof. by move=> hf x hx ax; rewrite hf. Qed.
-
-Hypothesis fgK_on : {on aD, cancel g & f}.
-
-Lemma homoRL_in :
- {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
- {in rD & aD, forall x y, aR (g x) y -> rR x (f y)}.
-Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
-
-Lemma homoLR_in :
- {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
- {in aD & rD, forall x y, aR x (g y) -> rR (f x) y}.
-Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
-
-Lemma homo_mono_in :
- {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
- {in rD &, {homo g : x y / rR x y >-> aR x y}} ->
- {in rD &, {mono g : x y / rR x y >-> aR x y}}.
-Proof.
-move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact.
-by apply: contraNF=> /mf; rewrite !fgK_on //; apply.
-Qed.
-
-Lemma monoLR_in :
- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
- {in aD & rD, forall x y, rR (f x) y = aR x (g y)}.
-Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK_on // mf. Qed.
-
-Lemma monoRL_in :
- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
- {in rD & aD, forall x y, rR x (f y) = aR (g x) y}.
-Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK_on // mf. Qed.
-
-Lemma can_mono_in :
- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
- {in rD &, {mono g : x y / rR x y >-> aR x y}}.
-Proof. by move=> mf x y hx hy /=; rewrite -mf // !fgK_on. Qed.
-
-End MonoHomoMorphismTheory_in.
diff --git a/plugins/ssr/ssrclasses.v b/plugins/ssr/ssrclasses.v
deleted file mode 100644
index 0ae3f8c6a5..0000000000
--- a/plugins/ssr/ssrclasses.v
+++ /dev/null
@@ -1,32 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
-
-(** Compatibility layer for [under] and [setoid_rewrite].
-
- Note: this file does not require [ssreflect]; it is both required by
- [ssrsetoid] and required by [ssrunder].
-
- Redefine [Coq.Classes.RelationClasses.Reflexive] here, so that doing
- [Require Import ssreflect] does not [Require Import RelationClasses],
- and conversely. **)
-
-Section Defs.
- Context {A : Type}.
- Class Reflexive (R : A -> A -> Prop) :=
- reflexivity : forall x : A, R x x.
-End Defs.
-
-Register Reflexive as plugins.ssreflect.reflexive_type.
-Register reflexivity as plugins.ssreflect.reflexive_proof.
-
-Instance eq_Reflexive {A : Type} : Reflexive (@eq A) := @eq_refl A.
-Instance iff_Reflexive : Reflexive iff := iff_refl.
diff --git a/plugins/ssr/ssreflect.v b/plugins/ssr/ssreflect.v
deleted file mode 100644
index bc4a57dedd..0000000000
--- a/plugins/ssr/ssreflect.v
+++ /dev/null
@@ -1,656 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
-
-(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
-
-Require Import Bool. (* For bool_scope delimiter 'bool'. *)
-Require Import ssrmatching.
-Declare ML Module "ssreflect_plugin".
-
-
-(**
- This file is the Gallina part of the ssreflect plugin implementation.
- Files that use the ssreflect plugin should always Require ssreflect and
- either Import ssreflect or Import ssreflect.SsrSyntax.
- Part of the contents of this file is technical and will only interest
- advanced developers; in addition the following are defined:
- #[#the str of v by f#]# == the Canonical s : str such that f s = v.
- #[#the str of v#]# == the Canonical s : str that coerces to v.
- argumentType c == the T such that c : forall x : T, P x.
- returnType c == the R such that c : T -> R.
- {type of c for s} == P s where c : forall x : T, P x.
- nonPropType == an interface for non-Prop Types: a nonPropType coerces
- to a Type, and only types that do _not_ have sort
- Prop are canonical nonPropType instances. This is
- useful for applied views (see mid-file comment).
- notProp T == the nonPropType instance for type T.
- phantom T v == singleton type with inhabitant Phantom T v.
- phant T == singleton type with inhabitant Phant v.
- =^~ r == the converse of rewriting rule r (e.g., in a
- rewrite multirule).
- unkeyed t == t, but treated as an unkeyed matching pattern by
- the ssreflect matching algorithm.
- nosimpl t == t, but on the right-hand side of Definition C :=
- nosimpl disables expansion of C by /=.
- locked t == t, but locked t is not convertible to t.
- locked_with k t == t, but not convertible to t or locked_with k' t
- unless k = k' (with k : unit). Coq type-checking
- will be much more efficient if locked_with with a
- bespoke k is used for sealed definitions.
- unlockable v == interface for sealed constant definitions of v.
- Unlockable def == the unlockable that registers def : C = v.
- #[#unlockable of C#]# == a clone for C of the canonical unlockable for the
- definition of C (e.g., if it uses locked_with).
- #[#unlockable fun C#]# == #[#unlockable of C#]# with the expansion forced to be
- an explicit lambda expression.
- -> The usage pattern for ADT operations is:
- Definition foo_def x1 .. xn := big_foo_expression.
- Fact foo_key : unit. Proof. by #[# #]#. Qed.
- Definition foo := locked_with foo_key foo_def.
- Canonical foo_unlockable := #[#unlockable fun foo#]#.
- This minimizes the comparison overhead for foo, while still allowing
- rewrite unlock to expose big_foo_expression.
- More information about these definitions and their use can be found in the
- ssreflect manual, and in specific comments below. **)
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Unset Printing Implicit Defensive.
-
-Module SsrSyntax.
-
-(**
- Declare Ssr keywords: 'is' 'of' '//' '/=' and '//='. We also declare the
- parsing level 8, as a workaround for a notation grammar factoring problem.
- Arguments of application-style notations (at level 10) should be declared
- at level 8 rather than 9 or the camlp5 grammar will not factor properly. **)
-
-Reserved Notation "(* x 'is' y 'of' z 'isn't' // /= //= *)" (at level 8).
-Reserved Notation "(* 69 *)" (at level 69).
-
-(** Non ambiguous keyword to check if the SsrSyntax module is imported **)
-Reserved Notation "(* Use to test if 'SsrSyntax_is_Imported' *)" (at level 8).
-
-Reserved Notation "<hidden n >" (at level 0, n at level 0,
- format "<hidden n >").
-Reserved Notation "T (* n *)" (at level 200, format "T (* n *)").
-
-End SsrSyntax.
-
-Export SsrMatchingSyntax.
-Export SsrSyntax.
-
-(** Save primitive notation that will be overloaded. **)
-Local Notation CoqGenericIf c vT vF := (if c then vT else vF) (only parsing).
-Local Notation CoqGenericDependentIf c x R vT vF :=
- (if c as x return R then vT else vF) (only parsing).
-Local Notation CoqCast x T := (x : T) (only parsing).
-
-(** Reserve notation that introduced in this file. **)
-Reserved Notation "'if' c 'then' vT 'else' vF" (at level 200,
- c, vT, vF at level 200, only parsing).
-Reserved Notation "'if' c 'return' R 'then' vT 'else' vF" (at level 200,
- c, R, vT, vF at level 200, only parsing).
-Reserved Notation "'if' c 'as' x 'return' R 'then' vT 'else' vF" (at level 200,
- c, R, vT, vF at level 200, x ident, only parsing).
-
-Reserved Notation "x : T" (at level 100, right associativity,
- format "'[hv' x '/ ' : T ']'").
-Reserved Notation "T : 'Type'" (at level 100, format "T : 'Type'").
-Reserved Notation "P : 'Prop'" (at level 100, format "P : 'Prop'").
-
-Reserved Notation "[ 'the' sT 'of' v 'by' f ]" (at level 0,
- format "[ 'the' sT 'of' v 'by' f ]").
-Reserved Notation "[ 'the' sT 'of' v ]" (at level 0,
- format "[ 'the' sT 'of' v ]").
-Reserved Notation "{ 'type' 'of' c 'for' s }" (at level 0,
- format "{ 'type' 'of' c 'for' s }").
-
-Reserved Notation "=^~ r" (at level 100, format "=^~ r").
-
-Reserved Notation "[ 'unlockable' 'of' C ]" (at level 0,
- format "[ 'unlockable' 'of' C ]").
-Reserved Notation "[ 'unlockable' 'fun' C ]" (at level 0,
- format "[ 'unlockable' 'fun' C ]").
-
-(**
- To define notations for tactic in intro patterns.
- When "=> /t" is parsed, "t:%ssripat" is actually interpreted. **)
-Declare Scope ssripat_scope.
-Delimit Scope ssripat_scope with ssripat.
-
-(**
- Make the general "if" into a notation, so that we can override it below.
- The notations are "only parsing" because the Coq decompiler will not
- recognize the expansion of the boolean if; using the default printer
- avoids a spurious trailing %%GEN_IF. **)
-
-Declare Scope general_if_scope.
-Delimit Scope general_if_scope with GEN_IF.
-
-Notation "'if' c 'then' vT 'else' vF" :=
- (CoqGenericIf c vT vF) (only parsing) : general_if_scope.
-
-Notation "'if' c 'return' R 'then' vT 'else' vF" :=
- (CoqGenericDependentIf c c R vT vF) (only parsing) : general_if_scope.
-
-Notation "'if' c 'as' x 'return' R 'then' vT 'else' vF" :=
- (CoqGenericDependentIf c x R vT vF) (only parsing) : general_if_scope.
-
-(** Force boolean interpretation of simple if expressions. **)
-
-Declare Scope boolean_if_scope.
-Delimit Scope boolean_if_scope with BOOL_IF.
-
-Notation "'if' c 'return' R 'then' vT 'else' vF" :=
- (if c is true as c in bool return R then vT else vF) : boolean_if_scope.
-
-Notation "'if' c 'then' vT 'else' vF" :=
- (if c%bool is true as _ in bool return _ then vT else vF) : boolean_if_scope.
-
-Notation "'if' c 'as' x 'return' R 'then' vT 'else' vF" :=
- (if c%bool is true as x in bool return R then vT else vF) : boolean_if_scope.
-
-Open Scope boolean_if_scope.
-
-(**
- To allow a wider variety of notations without reserving a large number of
- of identifiers, the ssreflect library systematically uses "forms" to
- enclose complex mixfix syntax. A "form" is simply a mixfix expression
- enclosed in square brackets and introduced by a keyword:
- #[#keyword ... #]#
- Because the keyword follows a bracket it does not need to be reserved.
- Non-ssreflect libraries that do not respect the form syntax (e.g., the Coq
- Lists library) should be loaded before ssreflect so that their notations
- do not mask all ssreflect forms. **)
-Declare Scope form_scope.
-Delimit Scope form_scope with FORM.
-Open Scope form_scope.
-
-(**
- Allow overloading of the cast (x : T) syntax, put whitespace around the
- ":" symbol to avoid lexical clashes (and for consistency with the parsing
- precedence of the notation, which binds less tightly than application),
- and put printing boxes that print the type of a long definition on a
- separate line rather than force-fit it at the right margin. **)
-Notation "x : T" := (CoqCast x T) : core_scope.
-
-(**
- Allow the casual use of notations like nat * nat for explicit Type
- declarations. Note that (nat * nat : Type) is NOT equivalent to
- (nat * nat)%%type, whose inferred type is legacy type "Set". **)
-Notation "T : 'Type'" := (CoqCast T%type Type) (only parsing) : core_scope.
-(** Allow similarly Prop annotation for, e.g., rewrite multirules. **)
-Notation "P : 'Prop'" := (CoqCast P%type Prop) (only parsing) : core_scope.
-
-(** Constants for abstract: and #[#: name #]# intro pattern **)
-Definition abstract_lock := unit.
-Definition abstract_key := tt.
-
-Definition abstract (statement : Type) (id : nat) (lock : abstract_lock) :=
- let: tt := lock in statement.
-
-Declare Scope ssr_scope.
-Notation "<hidden n >" := (abstract _ n _) : ssr_scope.
-Notation "T (* n *)" := (abstract T n abstract_key) : ssr_scope.
-Open Scope ssr_scope.
-
-Register abstract_lock as plugins.ssreflect.abstract_lock.
-Register abstract_key as plugins.ssreflect.abstract_key.
-Register abstract as plugins.ssreflect.abstract.
-
-(** Constants for tactic-views **)
-Inductive external_view : Type := tactic_view of Type.
-
-(**
- Syntax for referring to canonical structures:
- #[#the struct_type of proj_val by proj_fun#]#
- This form denotes the Canonical instance s of the Structure type
- struct_type whose proj_fun projection is proj_val, i.e., such that
- proj_fun s = proj_val.
- Typically proj_fun will be A record field accessors of struct_type, but
- this need not be the case; it can be, for instance, a field of a record
- type to which struct_type coerces; proj_val will likewise be coerced to
- the return type of proj_fun. In all but the simplest cases, proj_fun
- should be eta-expanded to allow for the insertion of implicit arguments.
- In the common case where proj_fun itself is a coercion, the "by" part
- can be omitted entirely; in this case it is inferred by casting s to the
- inferred type of proj_val. Obviously the latter can be fixed by using an
- explicit cast on proj_val, and it is highly recommended to do so when the
- return type intended for proj_fun is "Type", as the type inferred for
- proj_val may vary because of sort polymorphism (it could be Set or Prop).
- Note when using the #[#the _ of _ #]# form to generate a substructure from a
- telescopes-style canonical hierarchy (implementing inheritance with
- coercions), one should always project or coerce the value to the BASE
- structure, because Coq will only find a Canonical derived structure for
- the Canonical base structure -- not for a base structure that is specific
- to proj_value. **)
-
-Module TheCanonical.
-
-#[universes(template)]
-Variant put vT sT (v1 v2 : vT) (s : sT) := Put.
-
-Definition get vT sT v s (p : @put vT sT v v s) := let: Put _ _ _ := p in s.
-
-Definition get_by vT sT of sT -> vT := @get vT sT.
-
-End TheCanonical.
-
-Import TheCanonical. (* Note: no export. *)
-
-Local Arguments get_by _%type_scope _%type_scope _ _ _ _.
-
-Notation "[ 'the' sT 'of' v 'by' f ]" :=
- (@get_by _ sT f _ _ ((fun v' (s : sT) => Put v' (f s) s) v _))
- (only parsing) : form_scope.
-
-Notation "[ 'the' sT 'of' v ]" := (get ((fun s : sT => Put v (*coerce*) s s) _))
- (only parsing) : form_scope.
-
-(**
- The following are "format only" versions of the above notations.
- We need to do this to prevent the formatter from being be thrown off by
- application collapsing, coercion insertion and beta reduction in the right
- hand side of the notations above. **)
-
-Notation "[ 'the' sT 'of' v 'by' f ]" := (@get_by _ sT f v _ _)
- (only printing) : form_scope.
-
-Notation "[ 'the' sT 'of' v ]" := (@get _ sT v _ _)
- (only printing) : form_scope.
-
-(**
- We would like to recognize
-Notation " #[# 'the' sT 'of' v : 'Type' #]#" := (@get Type sT v _ _)
- (at level 0, format " #[# 'the' sT 'of' v : 'Type' #]#") : form_scope.
- **)
-
-(**
- Helper notation for canonical structure inheritance support.
- This is a workaround for the poor interaction between delta reduction and
- canonical projections in Coq's unification algorithm, by which transparent
- definitions hide canonical instances, i.e., in
- Canonical a_type_struct := @Struct a_type ...
- Definition my_type := a_type.
- my_type doesn't effectively inherit the struct structure from a_type. Our
- solution is to redeclare the instance as follows
- Canonical my_type_struct := Eval hnf in #[#struct of my_type#]#.
- The special notation #[#str of _ #]# must be defined for each Strucure "str"
- with constructor "Str", typically as follows
- Definition clone_str s :=
- let: Str _ x y ... z := s return {type of Str for s} -> str in
- fun k => k _ x y ... z.
- Notation " #[# 'str' 'of' T 'for' s #]#" := (@clone_str s (@Str T))
- (at level 0, format " #[# 'str' 'of' T 'for' s #]#") : form_scope.
- Notation " #[# 'str' 'of' T #]#" := (repack_str (fun x => @Str T x))
- (at level 0, format " #[# 'str' 'of' T #]#") : form_scope.
- The notation for the match return predicate is defined below; the eta
- expansion in the second form serves both to distinguish it from the first
- and to avoid the delta reduction problem.
- There are several variations on the notation and the definition of the
- the "clone" function, for telescopes, mixin classes, and join (multiple
- inheritance) classes. We describe a different idiom for clones in ssrfun;
- it uses phantom types (see below) and static unification; see fintype and
- ssralg for examples. **)
-
-Definition argumentType T P & forall x : T, P x := T.
-Definition dependentReturnType T P & forall x : T, P x := P.
-Definition returnType aT rT & aT -> rT := rT.
-
-Notation "{ 'type' 'of' c 'for' s }" := (dependentReturnType c s) : type_scope.
-
-(**
- A generic "phantom" type (actually, a unit type with a phantom parameter).
- This type can be used for type definitions that require some Structure
- on one of their parameters, to allow Coq to infer said structure so it
- does not have to be supplied explicitly or via the " #[#the _ of _ #]#" notation
- (the latter interacts poorly with other Notation).
- The definition of a (co)inductive type with a parameter p : p_type, that
- needs to use the operations of a structure
- Structure p_str : Type := p_Str {p_repr :> p_type; p_op : p_repr -> ...}
- should be given as
- Inductive indt_type (p : p_str) := Indt ... .
- Definition indt_of (p : p_str) & phantom p_type p := indt_type p.
- Notation "{ 'indt' p }" := (indt_of (Phantom p)).
- Definition indt p x y ... z : {indt p} := @Indt p x y ... z.
- Notation " #[# 'indt' x y ... z #]#" := (indt x y ... z).
- That is, the concrete type and its constructor should be shadowed by
- definitions that use a phantom argument to infer and display the true
- value of p (in practice, the "indt" constructor often performs additional
- functions, like "locking" the representation -- see below).
- We also define a simpler version ("phant" / "Phant") of phantom for the
- common case where p_type is Type. **)
-
-#[universes(template)]
-Variant phantom T (p : T) := Phantom.
-Arguments phantom : clear implicits.
-Arguments Phantom : clear implicits.
-#[universes(template)]
-Variant phant (p : Type) := Phant.
-
-(** Internal tagging used by the implementation of the ssreflect elim. **)
-
-Definition protect_term (A : Type) (x : A) : A := x.
-
-Register protect_term as plugins.ssreflect.protect_term.
-
-(**
- The ssreflect idiom for a non-keyed pattern:
- - unkeyed t will match any subterm that unifies with t, regardless of
- whether it displays the same head symbol as t.
- - unkeyed t a b will match any application of a term f unifying with t,
- to two arguments unifying with with a and b, respectively, regardless of
- apparent head symbols.
- - unkeyed x where x is a variable will match any subterm with the same
- type as x (when x would raise the 'indeterminate pattern' error). **)
-
-Notation unkeyed x := (let flex := x in flex).
-
-(** Ssreflect converse rewrite rule rule idiom. **)
-Definition ssr_converse R (r : R) := (Logic.I, r).
-Notation "=^~ r" := (ssr_converse r) : form_scope.
-
-(**
- Term tagging (user-level).
- The ssreflect library uses four strengths of term tagging to restrict
- convertibility during type checking:
- nosimpl t simplifies to t EXCEPT in a definition; more precisely, given
- Definition foo := nosimpl bar, foo (or foo t') will NOT be expanded by
- the /= and //= switches unless it is in a forcing context (e.g., in
- match foo t' with ... end, foo t' will be reduced if this allows the
- match to be reduced). Note that nosimpl bar is simply notation for a
- a term that beta-iota reduces to bar; hence rewrite /foo will replace
- foo by bar, and rewrite -/foo will replace bar by foo.
- CAVEAT: nosimpl should not be used inside a Section, because the end of
- section "cooking" removes the iota redex.
- locked t is provably equal to t, but is not convertible to t; 'locked'
- provides support for selective rewriting, via the lock t : t = locked t
- Lemma, and the ssreflect unlock tactic.
- locked_with k t is equal but not convertible to t, much like locked t,
- but supports explicit tagging with a value k : unit. This is used to
- mitigate a flaw in the term comparison heuristic of the Coq kernel,
- which treats all terms of the form locked t as equal and compares their
- arguments recursively, leading to an exponential blowup of comparison.
- For this reason locked_with should be used rather than locked when
- defining ADT operations. The unlock tactic does not support locked_with
- but the unlock rewrite rule does, via the unlockable interface.
- we also use Module Type ascription to create truly opaque constants,
- because simple expansion of constants to reveal an unreducible term
- doubles the time complexity of a negative comparison. Such opaque
- constants can be expanded generically with the unlock rewrite rule.
- See the definition of card and subset in fintype for examples of this. **)
-
-Notation nosimpl t := (let: tt := tt in t).
-
-Lemma master_key : unit. Proof. exact tt. Qed.
-Definition locked A := let: tt := master_key in fun x : A => x.
-
-Register master_key as plugins.ssreflect.master_key.
-Register locked as plugins.ssreflect.locked.
-
-Lemma lock A x : x = locked x :> A. Proof. unlock; reflexivity. Qed.
-
-(** Needed for locked predicates, in particular for eqType's. **)
-Lemma not_locked_false_eq_true : locked false <> true.
-Proof. unlock; discriminate. Qed.
-
-(** The basic closing tactic "done". **)
-Ltac done :=
- trivial; hnf; intros; solve
- [ do ![solve [trivial | apply: sym_equal; trivial]
- | discriminate | contradiction | split]
- | case not_locked_false_eq_true; assumption
- | match goal with H : ~ _ |- _ => solve [case H; trivial] end ].
-
-(** Quicker done tactic not including split, syntax: /0/ **)
-Ltac ssrdone0 :=
- trivial; hnf; intros; solve
- [ do ![solve [trivial | apply: sym_equal; trivial]
- | discriminate | contradiction ]
- | case not_locked_false_eq_true; assumption
- | match goal with H : ~ _ |- _ => solve [case H; trivial] end ].
-
-(** To unlock opaque constants. **)
-#[universes(template)]
-Structure unlockable T v := Unlockable {unlocked : T; _ : unlocked = v}.
-Lemma unlock T x C : @unlocked T x C = x. Proof. by case: C. Qed.
-
-Notation "[ 'unlockable' 'of' C ]" :=
- (@Unlockable _ _ C (unlock _)) : form_scope.
-
-Notation "[ 'unlockable' 'fun' C ]" :=
- (@Unlockable _ (fun _ => _) C (unlock _)) : form_scope.
-
-(** Generic keyed constant locking. **)
-
-(** The argument order ensures that k is always compared before T. **)
-Definition locked_with k := let: tt := k in fun T x => x : T.
-
-(**
- This can be used as a cheap alternative to cloning the unlockable instance
- below, but with caution as unkeyed matching can be expensive. **)
-Lemma locked_withE T k x : unkeyed (locked_with k x) = x :> T.
-Proof. by case: k. Qed.
-
-(** Intensionaly, this instance will not apply to locked u. **)
-Canonical locked_with_unlockable T k x :=
- @Unlockable T x (locked_with k x) (locked_withE k x).
-
-(** More accurate variant of unlock, and safer alternative to locked_withE. **)
-Lemma unlock_with T k x : unlocked (locked_with_unlockable k x) = x :> T.
-Proof. exact: unlock. Qed.
-
-(** The internal lemmas for the have tactics. **)
-
-Definition ssr_have Plemma Pgoal (step : Plemma) rest : Pgoal := rest step.
-Arguments ssr_have Plemma [Pgoal].
-
-Definition ssr_have_let Pgoal Plemma step
- (rest : let x : Plemma := step in Pgoal) : Pgoal := rest.
-Arguments ssr_have_let [Pgoal].
-
-Register ssr_have as plugins.ssreflect.ssr_have.
-Register ssr_have_let as plugins.ssreflect.ssr_have_let.
-
-Definition ssr_suff Plemma Pgoal step (rest : Plemma) : Pgoal := step rest.
-Arguments ssr_suff Plemma [Pgoal].
-
-Definition ssr_wlog := ssr_suff.
-Arguments ssr_wlog Plemma [Pgoal].
-
-Register ssr_suff as plugins.ssreflect.ssr_suff.
-Register ssr_wlog as plugins.ssreflect.ssr_wlog.
-
-(** Internal N-ary congruence lemmas for the congr tactic. **)
-
-Fixpoint nary_congruence_statement (n : nat)
- : (forall B, (B -> B -> Prop) -> Prop) -> Prop :=
- match n with
- | O => fun k => forall B, k B (fun x1 x2 : B => x1 = x2)
- | S n' =>
- let k' A B e (f1 f2 : A -> B) :=
- forall x1 x2, x1 = x2 -> (e (f1 x1) (f2 x2) : Prop) in
- fun k => forall A, nary_congruence_statement n' (fun B e => k _ (k' A B e))
- end.
-
-Lemma nary_congruence n (k := fun B e => forall y : B, (e y y : Prop)) :
- nary_congruence_statement n k.
-Proof.
-have: k _ _ := _; rewrite {1}/k.
-elim: n k => [|n IHn] k k_P /= A; first exact: k_P.
-by apply: IHn => B e He; apply: k_P => f x1 x2 <-.
-Qed.
-
-Lemma ssr_congr_arrow Plemma Pgoal : Plemma = Pgoal -> Plemma -> Pgoal.
-Proof. by move->. Qed.
-Arguments ssr_congr_arrow : clear implicits.
-
-Register nary_congruence as plugins.ssreflect.nary_congruence.
-Register ssr_congr_arrow as plugins.ssreflect.ssr_congr_arrow.
-
-(** View lemmas that don't use reflection. **)
-
-Section ApplyIff.
-
-Variables P Q : Prop.
-Hypothesis eqPQ : P <-> Q.
-
-Lemma iffLR : P -> Q. Proof. by case: eqPQ. Qed.
-Lemma iffRL : Q -> P. Proof. by case: eqPQ. Qed.
-
-Lemma iffLRn : ~P -> ~Q. Proof. by move=> nP tQ; case: nP; case: eqPQ tQ. Qed.
-Lemma iffRLn : ~Q -> ~P. Proof. by move=> nQ tP; case: nQ; case: eqPQ tP. Qed.
-
-End ApplyIff.
-
-Hint View for move/ iffLRn|2 iffRLn|2 iffLR|2 iffRL|2.
-Hint View for apply/ iffRLn|2 iffLRn|2 iffRL|2 iffLR|2.
-
-(**
- To focus non-ssreflect tactics on a subterm, eg vm_compute.
- Usage:
- elim/abstract_context: (pattern) => G defG.
- vm_compute; rewrite {}defG {G}.
- Note that vm_cast are not stored in the proof term
- for reductions occurring in the context, hence
- set here := pattern; vm_compute in (value of here)
- blows up at Qed time. **)
-Lemma abstract_context T (P : T -> Type) x :
- (forall Q, Q = P -> Q x) -> P x.
-Proof. by move=> /(_ P); apply. Qed.
-
-(*****************************************************************************)
-(* Material for under/over (to rewrite under binders using "context lemmas") *)
-
-Require Export ssrunder.
-
-Hint Extern 0 (@Under_rel.Over_rel _ _ _ _) =>
- solve [ apply: Under_rel.over_rel_done ] : core.
-Hint Resolve Under_rel.over_rel_done : core.
-
-Register Under_rel.Under_rel as plugins.ssreflect.Under_rel.
-Register Under_rel.Under_rel_from_rel as plugins.ssreflect.Under_rel_from_rel.
-
-(** Closing rewrite rule *)
-Definition over := over_rel.
-
-(** Closing tactic *)
-Ltac over :=
- by [ apply: Under_rel.under_rel_done
- | rewrite over
- ].
-
-(** Convenience rewrite rule to unprotect evars, e.g., to instantiate
- them in another way than with reflexivity. *)
-Definition UnderE := Under_relE.
-
-(*****************************************************************************)
-
-(** An interface for non-Prop types; used to avoid improper instantiation
- of polymorphic lemmas with on-demand implicits when they are used as views.
- For example: Some_inj {T} : forall x y : T, Some x = Some y -> x = y.
- Using move/Some_inj on a goal of the form Some n = Some 0 will fail:
- SSReflect will interpret the view as @Some_inj ?T _top_assumption_
- since this is the well-typed application of the view with the minimal
- number of inserted evars (taking ?T := Some n = Some 0), and then will
- later complain that it cannot erase _top_assumption_ after having
- abstracted the viewed assumption. Making x and y maximal implicits
- would avoid this and force the intended @Some_inj nat x y _top_assumption_
- interpretation, but is undesirable as it makes it harder to use Some_inj
- with the many SSReflect and MathComp lemmas that have an injectivity
- premise. Specifying {T : nonPropType} solves this more elegantly, as then
- (?T : Type) no longer unifies with (Some n = Some 0), which has sort Prop.
- **)
-
-Module NonPropType.
-
-(** Implementation notes:
- We rely on three interface Structures:
- - test_of r, the middle structure, performs the actual check: it has two
- canonical instances whose 'condition' projection are maybeProj (?P : Prop)
- and tt, and which set r := true and r := false, respectively. Unifying
- condition (?t : test_of ?r) with maybeProj T will thus set ?r to true if
- T is in Prop as the test_Prop T instance will apply, and otherwise simplify
- maybeProp T to tt and use the test_negative instance and set ?r to false.
- - call_of c r sets up a call to test_of on condition c with expected result r.
- It has a default instance for its 'callee' projection to Type, which
- sets c := maybeProj T and r := false when unifying with a type T.
- - type is a telescope on call_of c r, which checks that unifying test_of ?r1
- with c indeed sets ?r1 := r; the type structure bundles the 'test' instance
- and its 'result' value along with its call_of c r projection. The default
- instance essentially provides eta-expansion for 'type'. This is only
- essential for the first 'result' projection to bool; using the instance
- for other projection merely avoids spurious delta expansions that would
- spoil the notProp T notation.
- In detail, unifying T =~= ?S with ?S : nonPropType, i.e.,
- (1) T =~= @callee (@condition (result ?S) (test ?S)) (result ?S) (frame ?S)
- first uses the default call instance with ?T := T to reduce (1) to
- (2a) @condition (result ?S) (test ?S) =~= maybeProp T
- (3) result ?S =~= false
- (4) frame ?S =~= call T
- along with some trivial universe-related checks which are irrelevant here.
- Then the unification tries to use the test_Prop instance to reduce (2a) to
- (6a) result ?S =~= true
- (7a) ?P =~= T with ?P : Prop
- (8a) test ?S =~= test_Prop ?P
- Now the default 'check' instance with ?result := true resolves (6a) as
- (9a) ?S := @check true ?test ?frame
- Then (7a) can be solved precisely if T has sort at most (hence exactly) Prop,
- and then (8a) is solved by the check instance, yielding ?test := test_Prop T,
- and completing the solution of (2a), and _committing_ to it. But now (3) is
- inconsistent with (9a), and this makes the entire problem (1) fails.
- If on the othe hand T does not have sort Prop then (7a) fails and the
- unification resorts to delta expanding (2a), which gives
- (2b) @condition (result ?S) (test ?S) =~= tt
- which is then reduced, using the test_negative instance, to
- (6b) result ?S =~= false
- (8b) test ?S =~= test_negative
- Both are solved using the check default instance, as in the (2a) branch, giving
- (9b) ?S := @check false test_negative ?frame
- Then (3) and (4) are similarly soved using check, giving the final assignment
- (9) ?S := notProp T
- Observe that we _must_ perform the actual test unification on the arguments
- of the initial canonical instance, and not on the instance itself as we do
- in mathcomp/matrix and mathcomp/vector, because we want the unification to
- fail when T has sort Prop. If both the test_of _and_ the result check
- unifications were done as part of the structure telescope then the latter
- would be a sub-problem of the former, and thus failing the check would merely
- make the test_of unification backtrack and delta-expand and we would not get
- failure.
- **)
-
-Structure call_of (condition : unit) (result : bool) := Call {callee : Type}.
-Definition maybeProp (T : Type) := tt.
-Definition call T := Call (maybeProp T) false T.
-
-Structure test_of (result : bool) := Test {condition :> unit}.
-Definition test_Prop (P : Prop) := Test true (maybeProp P).
-Definition test_negative := Test false tt.
-
-Structure type :=
- Check {result : bool; test : test_of result; frame : call_of test result}.
-Definition check result test frame := @Check result test frame.
-
-Module Exports.
-Canonical call.
-Canonical test_Prop.
-Canonical test_negative.
-Canonical check.
-Notation nonPropType := type.
-Coercion callee : call_of >-> Sortclass.
-Coercion frame : type >-> call_of.
-Notation notProp T := (@check false test_negative (call T)).
-End Exports.
-
-End NonPropType.
-Export NonPropType.Exports.
diff --git a/plugins/ssr/ssrfun.v b/plugins/ssr/ssrfun.v
deleted file mode 100644
index dd847169b9..0000000000
--- a/plugins/ssr/ssrfun.v
+++ /dev/null
@@ -1,812 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
-
-(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
-
-Require Import ssreflect.
-
-
-(**
- This file contains the basic definitions and notations for working with
- functions. The definitions provide for:
-
- - Pair projections:
- p.1 == first element of a pair
- p.2 == second element of a pair
- These notations also apply to p : P /\ Q, via an and >-> pair coercion.
-
- - Simplifying functions, beta-reduced by /= and simpl:
- #[#fun : T => E#]# == constant function from type T that returns E
- #[#fun x => E#]# == unary function
- #[#fun x : T => E#]# == unary function with explicit domain type
- #[#fun x y => E#]# == binary function
- #[#fun x y : T => E#]# == binary function with common domain type
- #[#fun (x : T) y => E#]# \
- #[#fun (x : xT) (y : yT) => E#]# | == binary function with (some) explicit,
- #[#fun x (y : T) => E#]# / independent domain types for each argument
-
- - Partial functions using option type:
- oapp f d ox == if ox is Some x returns f x, d otherwise
- odflt d ox == if ox is Some x returns x, d otherwise
- obind f ox == if ox is Some x returns f x, None otherwise
- omap f ox == if ox is Some x returns Some (f x), None otherwise
-
- - Singleton types:
- all_equal_to x0 == x0 is the only value in its type, so any such value
- can be rewritten to x0.
-
- - A generic wrapper type:
- wrapped T == the inductive type with values Wrap x for x : T.
- unwrap w == the projection of w : wrapped T on T.
- wrap x == the canonical injection of x : T into wrapped T; it is
- equivalent to Wrap x, but is declared as a (default)
- Canonical Structure, which lets the Coq HO unification
- automatically expand x into unwrap (wrap x). The delta
- reduction of wrap x to Wrap can be exploited to
- introduce controlled nondeterminism in Canonical
- Structure inference, as in the implementation of
- the mxdirect predicate in matrix.v.
-
- - The empty type:
- void == a notation for the Empty_set type of the standard library.
- of_void T == the canonical injection void -> T.
-
- - Sigma types:
- tag w == the i of w : {i : I & T i}.
- tagged w == the T i component of w : {i : I & T i}.
- Tagged T x == the {i : I & T i} with component x : T i.
- tag2 w == the i of w : {i : I & T i & U i}.
- tagged2 w == the T i component of w : {i : I & T i & U i}.
- tagged2' w == the U i component of w : {i : I & T i & U i}.
- Tagged2 T U x y == the {i : I & T i} with components x : T i and y : U i.
- sval u == the x of u : {x : T | P x}.
- s2val u == the x of u : {x : T | P x & Q x}.
- The properties of sval u, s2val u are given by lemmas svalP, s2valP, and
- s2valP'. We provide coercions sigT2 >-> sigT and sig2 >-> sig >-> sigT.
- A suite of lemmas (all_sig, ...) let us skolemize sig, sig2, sigT, sigT2
- and pair, e.g.,
- have /all_sig#[#f fP#]# (x : T): {y : U | P y} by ...
- yields an f : T -> U such that fP : forall x, P (f x).
- - Identity functions:
- id == NOTATION for the explicit identity function fun x => x.
- @id T == notation for the explicit identity at type T.
- idfun == an expression with a head constant, convertible to id;
- idfun x simplifies to x.
- @idfun T == the expression above, specialized to type T.
- phant_id x y == the function type phantom _ x -> phantom _ y.
- *** In addition to their casual use in functional programming, identity
- functions are often used to trigger static unification as part of the
- construction of dependent Records and Structures. For example, if we need
- a structure sT over a type T, we take as arguments T, sT, and a "dummy"
- function T -> sort sT:
- Definition foo T sT & T -> sort sT := ...
- We can avoid specifying sT directly by calling foo (@id T), or specify
- the call completely while still ensuring the consistency of T and sT, by
- calling @foo T sT idfun. The phant_id type allows us to extend this trick
- to non-Type canonical projections. It also allows us to sidestep
- dependent type constraints when building explicit records, e.g., given
- Record r := R {x; y : T(x)}.
- if we need to build an r from a given y0 while inferring some x0, such
- that y0 : T(x0), we pose
- Definition mk_r .. y .. (x := ...) y' & phant_id y y' := R x y'.
- Calling @mk_r .. y0 .. id will cause Coq to use y' := y0, while checking
- the dependent type constraint y0 : T(x0).
-
- - Extensional equality for functions and relations (i.e. functions of two
- arguments):
- f1 =1 f2 == f1 x is equal to f2 x for all x.
- f1 =1 f2 :> A == ... and f2 is explicitly typed.
- f1 =2 f2 == f1 x y is equal to f2 x y for all x y.
- f1 =2 f2 :> A == ... and f2 is explicitly typed.
-
- - Composition for total and partial functions:
- f^~ y == function f with second argument specialised to y,
- i.e., fun x => f x y
- CAVEAT: conditional (non-maximal) implicit arguments
- of f are NOT inserted in this context
- @^~ x == application at x, i.e., fun f => f x
- #[#eta f#]# == the explicit eta-expansion of f, i.e., fun x => f x
- CAVEAT: conditional (non-maximal) implicit arguments
- of f are NOT inserted in this context.
- fun=> v := the constant function fun _ => v.
- f1 \o f2 == composition of f1 and f2.
- Note: (f1 \o f2) x simplifies to f1 (f2 x).
- f1 \; f2 == categorical composition of f1 and f2. This expands to
- to f2 \o f1 and (f1 \; f2) x simplifies to f2 (f1 x).
- pcomp f1 f2 == composition of partial functions f1 and f2.
-
-
- - Properties of functions:
- injective f <-> f is injective.
- cancel f g <-> g is a left inverse of f / f is a right inverse of g.
- pcancel f g <-> g is a left inverse of f where g is partial.
- ocancel f g <-> g is a left inverse of f where f is partial.
- bijective f <-> f is bijective (has a left and right inverse).
- involutive f <-> f is involutive.
-
- - Properties for operations.
- left_id e op <-> e is a left identity for op (e op x = x).
- right_id e op <-> e is a right identity for op (x op e = x).
- left_inverse e inv op <-> inv is a left inverse for op wrt identity e,
- i.e., (inv x) op x = e.
- right_inverse e inv op <-> inv is a right inverse for op wrt identity e
- i.e., x op (i x) = e.
- self_inverse e op <-> each x is its own op-inverse (x op x = e).
- idempotent op <-> op is idempotent for op (x op x = x).
- associative op <-> op is associative, i.e.,
- x op (y op z) = (x op y) op z.
- commutative op <-> op is commutative (x op y = y op x).
- left_commutative op <-> op is left commutative, i.e.,
- x op (y op z) = y op (x op z).
- right_commutative op <-> op is right commutative, i.e.,
- (x op y) op z = (x op z) op y.
- left_zero z op <-> z is a left zero for op (z op x = z).
- right_zero z op <-> z is a right zero for op (x op z = z).
- left_distributive op1 op2 <-> op1 distributes over op2 to the left:
- (x op2 y) op1 z = (x op1 z) op2 (y op1 z).
- right_distributive op1 op2 <-> op distributes over add to the right:
- x op1 (y op2 z) = (x op1 z) op2 (x op1 z).
- interchange op1 op2 <-> op1 and op2 satisfy an interchange law:
- (x op2 y) op1 (z op2 t) = (x op1 z) op2 (y op1 t).
- Note that interchange op op is a commutativity property.
- left_injective op <-> op is injective in its left argument:
- x op y = z op y -> x = z.
- right_injective op <-> op is injective in its right argument:
- x op y = x op z -> y = z.
- left_loop inv op <-> op, inv obey the inverse loop left axiom:
- (inv x) op (x op y) = y for all x, y, i.e.,
- op (inv x) is always a left inverse of op x
- rev_left_loop inv op <-> op, inv obey the inverse loop reverse left
- axiom: x op ((inv x) op y) = y, for all x, y.
- right_loop inv op <-> op, inv obey the inverse loop right axiom:
- (x op y) op (inv y) = x for all x, y.
- rev_right_loop inv op <-> op, inv obey the inverse loop reverse right
- axiom: (x op (inv y)) op y = x for all x, y.
- Note that familiar "cancellation" identities like x + y - y = x or
- x - y + y = x are respectively instances of right_loop and rev_right_loop
- The corresponding lemmas will use the K and NK/VK suffixes, respectively.
-
- - Morphisms for functions and relations:
- {morph f : x / a >-> r} <-> f is a morphism with respect to functions
- (fun x => a) and (fun x => r); if r == R#[#x#]#,
- this states that f a = R#[#f x#]# for all x.
- {morph f : x / a} <-> f is a morphism with respect to the
- function expression (fun x => a). This is
- shorthand for {morph f : x / a >-> a}; note
- that the two instances of a are often
- interpreted at different types.
- {morph f : x y / a >-> r} <-> f is a morphism with respect to functions
- (fun x y => a) and (fun x y => r).
- {morph f : x y / a} <-> f is a morphism with respect to the
- function expression (fun x y => a).
- {homo f : x / a >-> r} <-> f is a homomorphism with respect to the
- predicates (fun x => a) and (fun x => r);
- if r == R#[#x#]#, this states that a -> R#[#f x#]#
- for all x.
- {homo f : x / a} <-> f is a homomorphism with respect to the
- predicate expression (fun x => a).
- {homo f : x y / a >-> r} <-> f is a homomorphism with respect to the
- relations (fun x y => a) and (fun x y => r).
- {homo f : x y / a} <-> f is a homomorphism with respect to the
- relation expression (fun x y => a).
- {mono f : x / a >-> r} <-> f is monotone with respect to projectors
- (fun x => a) and (fun x => r); if r == R#[#x#]#,
- this states that R#[#f x#]# = a for all x.
- {mono f : x / a} <-> f is monotone with respect to the projector
- expression (fun x => a).
- {mono f : x y / a >-> r} <-> f is monotone with respect to relators
- (fun x y => a) and (fun x y => r).
- {mono f : x y / a} <-> f is monotone with respect to the relator
- expression (fun x y => a).
-
- The file also contains some basic lemmas for the above concepts.
- Lemmas relative to cancellation laws use some abbreviated suffixes:
- K - a cancellation rule like esymK : cancel (@esym T x y) (@esym T y x).
- LR - a lemma moving an operation from the left hand side of a relation to
- the right hand side, like canLR: cancel g f -> x = g y -> f x = y.
- RL - a lemma moving an operation from the right to the left, e.g., canRL.
- Beware that the LR and RL orientations refer to an "apply" (back chaining)
- usage; when using the same lemmas with "have" or "move" (forward chaining)
- the directions will be reversed!. **)
-
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Unset Printing Implicit Defensive.
-
-(** Parsing / printing declarations. *)
-Reserved Notation "p .1" (at level 2, left associativity, format "p .1").
-Reserved Notation "p .2" (at level 2, left associativity, format "p .2").
-Reserved Notation "f ^~ y" (at level 10, y at level 8, no associativity,
- format "f ^~ y").
-Reserved Notation "@^~ x" (at level 10, x at level 8, no associativity,
- format "@^~ x").
-Reserved Notation "[ 'eta' f ]" (at level 0, format "[ 'eta' f ]").
-Reserved Notation "'fun' => E" (at level 200, format "'fun' => E").
-
-Reserved Notation "[ 'fun' : T => E ]" (at level 0,
- format "'[hv' [ 'fun' : T => '/ ' E ] ']'").
-Reserved Notation "[ 'fun' x => E ]" (at level 0,
- x ident, format "'[hv' [ 'fun' x => '/ ' E ] ']'").
-Reserved Notation "[ 'fun' x : T => E ]" (at level 0,
- x ident, format "'[hv' [ 'fun' x : T => '/ ' E ] ']'").
-Reserved Notation "[ 'fun' x y => E ]" (at level 0,
- x ident, y ident, format "'[hv' [ 'fun' x y => '/ ' E ] ']'").
-Reserved Notation "[ 'fun' x y : T => E ]" (at level 0,
- x ident, y ident, format "'[hv' [ 'fun' x y : T => '/ ' E ] ']'").
-Reserved Notation "[ 'fun' ( x : T ) y => E ]" (at level 0,
- x ident, y ident, format "'[hv' [ 'fun' ( x : T ) y => '/ ' E ] ']'").
-Reserved Notation "[ 'fun' x ( y : T ) => E ]" (at level 0,
- x ident, y ident, format "'[hv' [ 'fun' x ( y : T ) => '/ ' E ] ']'").
-Reserved Notation "[ 'fun' ( x : T ) ( y : U ) => E ]" (at level 0,
- x ident, y ident, format "[ 'fun' ( x : T ) ( y : U ) => E ]" ).
-
-Reserved Notation "f =1 g" (at level 70, no associativity).
-Reserved Notation "f =1 g :> A" (at level 70, g at next level, A at level 90).
-Reserved Notation "f =2 g" (at level 70, no associativity).
-Reserved Notation "f =2 g :> A" (at level 70, g at next level, A at level 90).
-Reserved Notation "f \o g" (at level 50, format "f \o '/ ' g").
-Reserved Notation "f \; g" (at level 60, right associativity,
- format "f \; '/ ' g").
-
-Reserved Notation "{ 'morph' f : x / a >-> r }" (at level 0, f at level 99,
- x ident, format "{ 'morph' f : x / a >-> r }").
-Reserved Notation "{ 'morph' f : x / a }" (at level 0, f at level 99,
- x ident, format "{ 'morph' f : x / a }").
-Reserved Notation "{ 'morph' f : x y / a >-> r }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'morph' f : x y / a >-> r }").
-Reserved Notation "{ 'morph' f : x y / a }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'morph' f : x y / a }").
-Reserved Notation "{ 'homo' f : x / a >-> r }" (at level 0, f at level 99,
- x ident, format "{ 'homo' f : x / a >-> r }").
-Reserved Notation "{ 'homo' f : x / a }" (at level 0, f at level 99,
- x ident, format "{ 'homo' f : x / a }").
-Reserved Notation "{ 'homo' f : x y / a >-> r }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'homo' f : x y / a >-> r }").
-Reserved Notation "{ 'homo' f : x y / a }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'homo' f : x y / a }").
-Reserved Notation "{ 'homo' f : x y /~ a }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'homo' f : x y /~ a }").
-Reserved Notation "{ 'mono' f : x / a >-> r }" (at level 0, f at level 99,
- x ident, format "{ 'mono' f : x / a >-> r }").
-Reserved Notation "{ 'mono' f : x / a }" (at level 0, f at level 99,
- x ident, format "{ 'mono' f : x / a }").
-Reserved Notation "{ 'mono' f : x y / a >-> r }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'mono' f : x y / a >-> r }").
-Reserved Notation "{ 'mono' f : x y / a }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'mono' f : x y / a }").
-Reserved Notation "{ 'mono' f : x y /~ a }" (at level 0, f at level 99,
- x ident, y ident, format "{ 'mono' f : x y /~ a }").
-
-Reserved Notation "@ 'id' T" (at level 10, T at level 8, format "@ 'id' T").
-Reserved Notation "@ 'sval'" (at level 10, format "@ 'sval'").
-
-(**
- Syntax for defining auxiliary recursive function.
- Usage:
- Section FooDefinition.
- Variables (g1 : T1) (g2 : T2). (globals)
- Fixoint foo_auxiliary (a3 : T3) ... :=
- body, using #[#rec e3, ... #]# for recursive calls
- where " #[# 'rec' a3 , a4 , ... #]#" := foo_auxiliary.
- Definition foo x y .. := #[#rec e1, ... #]#.
- + proofs about foo
- End FooDefinition. **)
-
-Reserved Notation "[ 'rec' a ]" (at level 0,
- format "[ 'rec' a ]").
-Reserved Notation "[ 'rec' a , b ]" (at level 0,
- format "[ 'rec' a , b ]").
-Reserved Notation "[ 'rec' a , b , c ]" (at level 0,
- format "[ 'rec' a , b , c ]").
-Reserved Notation "[ 'rec' a , b , c , d ]" (at level 0,
- format "[ 'rec' a , b , c , d ]").
-Reserved Notation "[ 'rec' a , b , c , d , e ]" (at level 0,
- format "[ 'rec' a , b , c , d , e ]").
-Reserved Notation "[ 'rec' a , b , c , d , e , f ]" (at level 0,
- format "[ 'rec' a , b , c , d , e , f ]").
-Reserved Notation "[ 'rec' a , b , c , d , e , f , g ]" (at level 0,
- format "[ 'rec' a , b , c , d , e , f , g ]").
-Reserved Notation "[ 'rec' a , b , c , d , e , f , g , h ]" (at level 0,
- format "[ 'rec' a , b , c , d , e , f , g , h ]").
-Reserved Notation "[ 'rec' a , b , c , d , e , f , g , h , i ]" (at level 0,
- format "[ 'rec' a , b , c , d , e , f , g , h , i ]").
-Reserved Notation "[ 'rec' a , b , c , d , e , f , g , h , i , j ]" (at level 0,
- format "[ 'rec' a , b , c , d , e , f , g , h , i , j ]").
-
-Declare Scope pair_scope.
-Delimit Scope pair_scope with PAIR.
-Open Scope pair_scope.
-
-(** Notations for pair/conjunction projections **)
-Notation "p .1" := (fst p) : pair_scope.
-Notation "p .2" := (snd p) : pair_scope.
-
-Coercion pair_of_and P Q (PandQ : P /\ Q) := (proj1 PandQ, proj2 PandQ).
-
-Definition all_pair I T U (w : forall i : I, T i * U i) :=
- (fun i => (w i).1, fun i => (w i).2).
-
-(**
- Complements on the option type constructor, used below to
- encode partial functions. **)
-
-Module Option.
-
-Definition apply aT rT (f : aT -> rT) x u := if u is Some y then f y else x.
-
-Definition default T := apply (fun x : T => x).
-
-Definition bind aT rT (f : aT -> option rT) := apply f None.
-
-Definition map aT rT (f : aT -> rT) := bind (fun x => Some (f x)).
-
-End Option.
-
-Notation oapp := Option.apply.
-Notation odflt := Option.default.
-Notation obind := Option.bind.
-Notation omap := Option.map.
-Notation some := (@Some _) (only parsing).
-
-(** Shorthand for some basic equality lemmas. **)
-
-Notation erefl := refl_equal.
-Notation ecast i T e x := (let: erefl in _ = i := e return T in x).
-Definition esym := sym_eq.
-Definition nesym := sym_not_eq.
-Definition etrans := trans_eq.
-Definition congr1 := f_equal.
-Definition congr2 := f_equal2.
-(** Force at least one implicit when used as a view. **)
-Prenex Implicits esym nesym.
-
-(** A predicate for singleton types. **)
-Definition all_equal_to T (x0 : T) := forall x, unkeyed x = x0.
-
-Lemma unitE : all_equal_to tt. Proof. by case. Qed.
-
-(** A generic wrapper type **)
-
-#[universes(template)]
-Structure wrapped T := Wrap {unwrap : T}.
-Canonical wrap T x := @Wrap T x.
-
-Prenex Implicits unwrap wrap Wrap.
-
-Declare Scope fun_scope.
-Delimit Scope fun_scope with FUN.
-Open Scope fun_scope.
-
-(** Notations for argument transpose **)
-Notation "f ^~ y" := (fun x => f x y) : fun_scope.
-Notation "@^~ x" := (fun f => f x) : fun_scope.
-
-(**
- Definitions and notation for explicit functions with simplification,
- i.e., which simpl and /= beta expand (this is complementary to nosimpl). **)
-
-#[universes(template)]
-Variant simpl_fun (aT rT : Type) := SimplFun of aT -> rT.
-
-Section SimplFun.
-
-Variables aT rT : Type.
-
-Definition fun_of_simpl (f : simpl_fun aT rT) := fun x => let: SimplFun lam := f in lam x.
-
-End SimplFun.
-
-Coercion fun_of_simpl : simpl_fun >-> Funclass.
-
-Notation "[ 'fun' : T => E ]" := (SimplFun (fun _ : T => E)) : fun_scope.
-Notation "[ 'fun' x => E ]" := (SimplFun (fun x => E)) : fun_scope.
-Notation "[ 'fun' x y => E ]" := (fun x => [fun y => E]) : fun_scope.
-Notation "[ 'fun' x : T => E ]" := (SimplFun (fun x : T => E))
- (only parsing) : fun_scope.
-Notation "[ 'fun' x y : T => E ]" := (fun x : T => [fun y : T => E])
- (only parsing) : fun_scope.
-Notation "[ 'fun' ( x : T ) y => E ]" := (fun x : T => [fun y => E])
- (only parsing) : fun_scope.
-Notation "[ 'fun' x ( y : T ) => E ]" := (fun x => [fun y : T => E])
- (only parsing) : fun_scope.
-Notation "[ 'fun' ( x : T ) ( y : U ) => E ]" := (fun x : T => [fun y : U => E])
- (only parsing) : fun_scope.
-
-(** For delta functions in eqtype.v. **)
-Definition SimplFunDelta aT rT (f : aT -> aT -> rT) := [fun z => f z z].
-
-(**
- Extensional equality, for unary and binary functions, including syntactic
- sugar. **)
-
-Section ExtensionalEquality.
-
-Variables A B C : Type.
-
-Definition eqfun (f g : B -> A) : Prop := forall x, f x = g x.
-
-Definition eqrel (r s : C -> B -> A) : Prop := forall x y, r x y = s x y.
-
-Lemma frefl f : eqfun f f. Proof. by []. Qed.
-Lemma fsym f g : eqfun f g -> eqfun g f. Proof. by move=> eq_fg x. Qed.
-
-Lemma ftrans f g h : eqfun f g -> eqfun g h -> eqfun f h.
-Proof. by move=> eq_fg eq_gh x; rewrite eq_fg. Qed.
-
-Lemma rrefl r : eqrel r r. Proof. by []. Qed.
-
-End ExtensionalEquality.
-
-Typeclasses Opaque eqfun.
-Typeclasses Opaque eqrel.
-
-Hint Resolve frefl rrefl : core.
-
-Notation "f1 =1 f2" := (eqfun f1 f2) : fun_scope.
-Notation "f1 =1 f2 :> A" := (f1 =1 (f2 : A)) : fun_scope.
-Notation "f1 =2 f2" := (eqrel f1 f2) : fun_scope.
-Notation "f1 =2 f2 :> A" := (f1 =2 (f2 : A)) : fun_scope.
-
-Section Composition.
-
-Variables A B C : Type.
-
-Definition comp (f : B -> A) (g : C -> B) x := f (g x).
-Definition catcomp g f := comp f g.
-Definition pcomp (f : B -> option A) (g : C -> option B) x := obind f (g x).
-
-Lemma eq_comp f f' g g' : f =1 f' -> g =1 g' -> comp f g =1 comp f' g'.
-Proof. by move=> eq_ff' eq_gg' x; rewrite /comp eq_gg' eq_ff'. Qed.
-
-End Composition.
-
-Arguments comp {A B C} f g x /.
-Arguments catcomp {A B C} g f x /.
-Notation "f1 \o f2" := (comp f1 f2) : fun_scope.
-Notation "f1 \; f2" := (catcomp f1 f2) : fun_scope.
-
-Notation "[ 'eta' f ]" := (fun x => f x) : fun_scope.
-
-Notation "'fun' => E" := (fun _ => E) : fun_scope.
-
-Notation id := (fun x => x).
-Notation "@ 'id' T" := (fun x : T => x) (only parsing) : fun_scope.
-
-Definition idfun T x : T := x.
-Arguments idfun {T} x /.
-
-Definition phant_id T1 T2 v1 v2 := phantom T1 v1 -> phantom T2 v2.
-
-(** The empty type. **)
-
-Notation void := Empty_set.
-
-Definition of_void T (x : void) : T := match x with end.
-
-(** Strong sigma types. **)
-
-Section Tag.
-
-Variables (I : Type) (i : I) (T_ U_ : I -> Type).
-
-Definition tag := projT1.
-Definition tagged : forall w, T_(tag w) := @projT2 I [eta T_].
-Definition Tagged x := @existT I [eta T_] i x.
-
-Definition tag2 (w : @sigT2 I T_ U_) := let: existT2 _ _ i _ _ := w in i.
-Definition tagged2 w : T_(tag2 w) := let: existT2 _ _ _ x _ := w in x.
-Definition tagged2' w : U_(tag2 w) := let: existT2 _ _ _ _ y := w in y.
-Definition Tagged2 x y := @existT2 I [eta T_] [eta U_] i x y.
-
-End Tag.
-
-Arguments Tagged [I i].
-Arguments Tagged2 [I i].
-Prenex Implicits tag tagged Tagged tag2 tagged2 tagged2' Tagged2.
-
-Coercion tag_of_tag2 I T_ U_ (w : @sigT2 I T_ U_) :=
- Tagged (fun i => T_ i * U_ i)%type (tagged2 w, tagged2' w).
-
-Lemma all_tag I T U :
- (forall x : I, {y : T x & U x y}) ->
- {f : forall x, T x & forall x, U x (f x)}.
-Proof. by move=> fP; exists (fun x => tag (fP x)) => x; case: (fP x). Qed.
-
-Lemma all_tag2 I T U V :
- (forall i : I, {y : T i & U i y & V i y}) ->
- {f : forall i, T i & forall i, U i (f i) & forall i, V i (f i)}.
-Proof. by case/all_tag=> f /all_pair[]; exists f. Qed.
-
-(** Refinement types. **)
-
-(** Prenex Implicits and renaming. **)
-Notation sval := (@proj1_sig _ _).
-Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
-
-Section Sig.
-
-Variables (T : Type) (P Q : T -> Prop).
-
-Lemma svalP (u : sig P) : P (sval u). Proof. by case: u. Qed.
-
-Definition s2val (u : sig2 P Q) := let: exist2 _ _ x _ _ := u in x.
-
-Lemma s2valP u : P (s2val u). Proof. by case: u. Qed.
-
-Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed.
-
-End Sig.
-
-Prenex Implicits svalP s2val s2valP s2valP'.
-
-Coercion tag_of_sig I P (u : @sig I P) := Tagged P (svalP u).
-
-Coercion sig_of_sig2 I P Q (u : @sig2 I P Q) :=
- exist (fun i => P i /\ Q i) (s2val u) (conj (s2valP u) (s2valP' u)).
-
-Lemma all_sig I T P :
- (forall x : I, {y : T x | P x y}) ->
- {f : forall x, T x | forall x, P x (f x)}.
-Proof. by case/all_tag=> f; exists f. Qed.
-
-Lemma all_sig2 I T P Q :
- (forall x : I, {y : T x | P x y & Q x y}) ->
- {f : forall x, T x | forall x, P x (f x) & forall x, Q x (f x)}.
-Proof. by case/all_sig=> f /all_pair[]; exists f. Qed.
-
-Section Morphism.
-
-Variables (aT rT sT : Type) (f : aT -> rT).
-
-(** Morphism property for unary and binary functions **)
-Definition morphism_1 aF rF := forall x, f (aF x) = rF (f x).
-Definition morphism_2 aOp rOp := forall x y, f (aOp x y) = rOp (f x) (f y).
-
-(** Homomorphism property for unary and binary relations **)
-Definition homomorphism_1 (aP rP : _ -> Prop) := forall x, aP x -> rP (f x).
-Definition homomorphism_2 (aR rR : _ -> _ -> Prop) :=
- forall x y, aR x y -> rR (f x) (f y).
-
-(** Stability property for unary and binary relations **)
-Definition monomorphism_1 (aP rP : _ -> sT) := forall x, rP (f x) = aP x.
-Definition monomorphism_2 (aR rR : _ -> _ -> sT) :=
- forall x y, rR (f x) (f y) = aR x y.
-
-End Morphism.
-
-Notation "{ 'morph' f : x / a >-> r }" :=
- (morphism_1 f (fun x => a) (fun x => r)) : type_scope.
-Notation "{ 'morph' f : x / a }" :=
- (morphism_1 f (fun x => a) (fun x => a)) : type_scope.
-Notation "{ 'morph' f : x y / a >-> r }" :=
- (morphism_2 f (fun x y => a) (fun x y => r)) : type_scope.
-Notation "{ 'morph' f : x y / a }" :=
- (morphism_2 f (fun x y => a) (fun x y => a)) : type_scope.
-Notation "{ 'homo' f : x / a >-> r }" :=
- (homomorphism_1 f (fun x => a) (fun x => r)) : type_scope.
-Notation "{ 'homo' f : x / a }" :=
- (homomorphism_1 f (fun x => a) (fun x => a)) : type_scope.
-Notation "{ 'homo' f : x y / a >-> r }" :=
- (homomorphism_2 f (fun x y => a) (fun x y => r)) : type_scope.
-Notation "{ 'homo' f : x y / a }" :=
- (homomorphism_2 f (fun x y => a) (fun x y => a)) : type_scope.
-Notation "{ 'homo' f : x y /~ a }" :=
- (homomorphism_2 f (fun y x => a) (fun x y => a)) : type_scope.
-Notation "{ 'mono' f : x / a >-> r }" :=
- (monomorphism_1 f (fun x => a) (fun x => r)) : type_scope.
-Notation "{ 'mono' f : x / a }" :=
- (monomorphism_1 f (fun x => a) (fun x => a)) : type_scope.
-Notation "{ 'mono' f : x y / a >-> r }" :=
- (monomorphism_2 f (fun x y => a) (fun x y => r)) : type_scope.
-Notation "{ 'mono' f : x y / a }" :=
- (monomorphism_2 f (fun x y => a) (fun x y => a)) : type_scope.
-Notation "{ 'mono' f : x y /~ a }" :=
- (monomorphism_2 f (fun y x => a) (fun x y => a)) : type_scope.
-
-(**
- In an intuitionistic setting, we have two degrees of injectivity. The
- weaker one gives only simplification, and the strong one provides a left
- inverse (we show in `fintype' that they coincide for finite types).
- We also define an intermediate version where the left inverse is only a
- partial function. **)
-
-Section Injections.
-
-Variables (rT aT : Type) (f : aT -> rT).
-
-Definition injective := forall x1 x2, f x1 = f x2 -> x1 = x2.
-
-Definition cancel g := forall x, g (f x) = x.
-
-Definition pcancel g := forall x, g (f x) = Some x.
-
-Definition ocancel (g : aT -> option rT) h := forall x, oapp h x (g x) = x.
-
-Lemma can_pcan g : cancel g -> pcancel (fun y => Some (g y)).
-Proof. by move=> fK x; congr (Some _). Qed.
-
-Lemma pcan_inj g : pcancel g -> injective.
-Proof. by move=> fK x y /(congr1 g); rewrite !fK => [[]]. Qed.
-
-Lemma can_inj g : cancel g -> injective.
-Proof. by move/can_pcan; apply: pcan_inj. Qed.
-
-Lemma canLR g x y : cancel g -> x = f y -> g x = y.
-Proof. by move=> fK ->. Qed.
-
-Lemma canRL g x y : cancel g -> f x = y -> x = g y.
-Proof. by move=> fK <-. Qed.
-
-End Injections.
-
-Lemma Some_inj {T : nonPropType} : injective (@Some T).
-Proof. by move=> x y []. Qed.
-
-Lemma of_voidK T : pcancel (of_void T) [fun _ => None].
-Proof. by case. Qed.
-
-(** cancellation lemmas for dependent type casts. **)
-Lemma esymK T x y : cancel (@esym T x y) (@esym T y x).
-Proof. by case: y /. Qed.
-
-Lemma etrans_id T x y (eqxy : x = y :> T) : etrans (erefl x) eqxy = eqxy.
-Proof. by case: y / eqxy. Qed.
-
-Section InjectionsTheory.
-
-Variables (A B C : Type) (f g : B -> A) (h : C -> B).
-
-Lemma inj_id : injective (@id A).
-Proof. by []. Qed.
-
-Lemma inj_can_sym f' : cancel f f' -> injective f' -> cancel f' f.
-Proof. by move=> fK injf' x; apply: injf'. Qed.
-
-Lemma inj_comp : injective f -> injective h -> injective (f \o h).
-Proof. by move=> injf injh x y /injf; apply: injh. Qed.
-
-Lemma inj_compr : injective (f \o h) -> injective h.
-Proof. by move=> injfh x y /(congr1 f) /injfh. Qed.
-
-Lemma can_comp f' h' : cancel f f' -> cancel h h' -> cancel (f \o h) (h' \o f').
-Proof. by move=> fK hK x; rewrite /= fK hK. Qed.
-
-Lemma pcan_pcomp f' h' :
- pcancel f f' -> pcancel h h' -> pcancel (f \o h) (pcomp h' f').
-Proof. by move=> fK hK x; rewrite /pcomp fK /= hK. Qed.
-
-Lemma eq_inj : injective f -> f =1 g -> injective g.
-Proof. by move=> injf eqfg x y; rewrite -2!eqfg; apply: injf. Qed.
-
-Lemma eq_can f' g' : cancel f f' -> f =1 g -> f' =1 g' -> cancel g g'.
-Proof. by move=> fK eqfg eqfg' x; rewrite -eqfg -eqfg'. Qed.
-
-Lemma inj_can_eq f' : cancel f f' -> injective f' -> cancel g f' -> f =1 g.
-Proof. by move=> fK injf' gK x; apply: injf'; rewrite fK. Qed.
-
-End InjectionsTheory.
-
-Section Bijections.
-
-Variables (A B : Type) (f : B -> A).
-
-Variant bijective : Prop := Bijective g of cancel f g & cancel g f.
-
-Hypothesis bijf : bijective.
-
-Lemma bij_inj : injective f.
-Proof. by case: bijf => g fK _; apply: can_inj fK. Qed.
-
-Lemma bij_can_sym f' : cancel f' f <-> cancel f f'.
-Proof.
-split=> fK; first exact: inj_can_sym fK bij_inj.
-by case: bijf => h _ hK x; rewrite -[x]hK fK.
-Qed.
-
-Lemma bij_can_eq f' f'' : cancel f f' -> cancel f f'' -> f' =1 f''.
-Proof.
-by move=> fK fK'; apply: (inj_can_eq _ bij_inj); apply/bij_can_sym.
-Qed.
-
-End Bijections.
-
-Section BijectionsTheory.
-
-Variables (A B C : Type) (f : B -> A) (h : C -> B).
-
-Lemma eq_bij : bijective f -> forall g, f =1 g -> bijective g.
-Proof. by case=> f' fK f'K g eqfg; exists f'; eapply eq_can; eauto. Qed.
-
-Lemma bij_comp : bijective f -> bijective h -> bijective (f \o h).
-Proof.
-by move=> [f' fK f'K] [h' hK h'K]; exists (h' \o f'); apply: can_comp; auto.
-Qed.
-
-Lemma bij_can_bij : bijective f -> forall f', cancel f f' -> bijective f'.
-Proof. by move=> bijf; exists f; first by apply/(bij_can_sym bijf). Qed.
-
-End BijectionsTheory.
-
-Section Involutions.
-
-Variables (A : Type) (f : A -> A).
-
-Definition involutive := cancel f f.
-
-Hypothesis Hf : involutive.
-
-Lemma inv_inj : injective f. Proof. exact: can_inj Hf. Qed.
-Lemma inv_bij : bijective f. Proof. by exists f. Qed.
-
-End Involutions.
-
-Section OperationProperties.
-
-Variables S T R : Type.
-
-Section SopTisR.
-Implicit Type op : S -> T -> R.
-Definition left_inverse e inv op := forall x, op (inv x) x = e.
-Definition right_inverse e inv op := forall x, op x (inv x) = e.
-Definition left_injective op := forall x, injective (op^~ x).
-Definition right_injective op := forall y, injective (op y).
-End SopTisR.
-
-
-Section SopTisS.
-Implicit Type op : S -> T -> S.
-Definition right_id e op := forall x, op x e = x.
-Definition left_zero z op := forall x, op z x = z.
-Definition right_commutative op := forall x y z, op (op x y) z = op (op x z) y.
-Definition left_distributive op add :=
- forall x y z, op (add x y) z = add (op x z) (op y z).
-Definition right_loop inv op := forall y, cancel (op^~ y) (op^~ (inv y)).
-Definition rev_right_loop inv op := forall y, cancel (op^~ (inv y)) (op^~ y).
-End SopTisS.
-
-Section SopTisT.
-Implicit Type op : S -> T -> T.
-Definition left_id e op := forall x, op e x = x.
-Definition right_zero z op := forall x, op x z = z.
-Definition left_commutative op := forall x y z, op x (op y z) = op y (op x z).
-Definition right_distributive op add :=
- forall x y z, op x (add y z) = add (op x y) (op x z).
-Definition left_loop inv op := forall x, cancel (op x) (op (inv x)).
-Definition rev_left_loop inv op := forall x, cancel (op (inv x)) (op x).
-End SopTisT.
-
-Section SopSisT.
-Implicit Type op : S -> S -> T.
-Definition self_inverse e op := forall x, op x x = e.
-Definition commutative op := forall x y, op x y = op y x.
-End SopSisT.
-
-Section SopSisS.
-Implicit Type op : S -> S -> S.
-Definition idempotent op := forall x, op x x = x.
-Definition associative op := forall x y z, op x (op y z) = op (op x y) z.
-Definition interchange op1 op2 :=
- forall x y z t, op1 (op2 x y) (op2 z t) = op2 (op1 x z) (op1 y t).
-End SopSisS.
-
-End OperationProperties.
-
-
-
-
-
-
-
-
-
-
diff --git a/plugins/ssr/ssrsetoid.v b/plugins/ssr/ssrsetoid.v
deleted file mode 100644
index 7c5cd135fe..0000000000
--- a/plugins/ssr/ssrsetoid.v
+++ /dev/null
@@ -1,38 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
-
-(** Compatibility layer for [under] and [setoid_rewrite].
-
- This file is intended to be required by [Require Import Setoid].
-
- In particular, we can use the [under] tactic with other relations
- than [eq] or [iff], e.g. a [RewriteRelation], by doing:
- [Require Import ssreflect. Require Setoid.]
-
- This file's instances have priority 12 > other stdlib instances.
-
- (Note: this file could be skipped when porting [under] to stdlib2.)
- *)
-
-Require Import ssrclasses.
-Require Import ssrunder.
-Require Import RelationClasses.
-Require Import Relation_Definitions.
-
-(** Reconcile [Coq.Classes.RelationClasses.Reflexive] with
- [Coq.ssr.ssrclasses.Reflexive] *)
-
-Instance compat_Reflexive :
- forall {A} {R : relation A},
- RelationClasses.Reflexive R ->
- ssrclasses.Reflexive R | 12.
-Proof. now trivial. Qed.
diff --git a/plugins/ssr/ssrunder.v b/plugins/ssr/ssrunder.v
deleted file mode 100644
index 7c529a6133..0000000000
--- a/plugins/ssr/ssrunder.v
+++ /dev/null
@@ -1,75 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
-
-(** Constants for under/over, to rewrite under binders using "context lemmas"
-
- Note: this file does not require [ssreflect]; it is both required by
- [ssrsetoid] and *exported* by [ssrunder].
-
- This preserves the following feature: we can use [Setoid] without
- requiring [ssreflect] and use [ssreflect] without requiring [Setoid].
-*)
-
-Require Import ssrclasses.
-
-Module Type UNDER_REL.
-Parameter Under_rel :
- forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
-Parameter Under_rel_from_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y -> eqA x y.
-Parameter Under_relE :
- forall (A : Type) (eqA : A -> A -> Prop),
- @Under_rel A eqA = eqA.
-
-(** [Over_rel, over_rel, over_rel_done]: for "by rewrite over_rel" *)
-Parameter Over_rel :
- forall (A : Type) (eqA : A -> A -> Prop), A -> A -> Prop.
-Parameter over_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y = @Over_rel A eqA x y.
-Parameter over_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Over_rel A eqA x x.
-
-(** [under_rel_done]: for Ltac-style over *)
-Parameter under_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Under_rel A eqA x x.
-Notation "''Under[' x ]" := (@Under_rel _ _ x _)
- (at level 8, format "''Under[' x ]", only printing).
-End UNDER_REL.
-
-Module Export Under_rel : UNDER_REL.
-Definition Under_rel (A : Type) (eqA : A -> A -> Prop) :=
- eqA.
-Lemma Under_rel_from_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y -> eqA x y.
-Proof. now trivial. Qed.
-Lemma Under_relE (A : Type) (eqA : A -> A -> Prop) :
- @Under_rel A eqA = eqA.
-Proof. now trivial. Qed.
-Definition Over_rel := Under_rel.
-Lemma over_rel :
- forall (A : Type) (eqA : A -> A -> Prop) (x y : A),
- @Under_rel A eqA x y = @Over_rel A eqA x y.
-Proof. now trivial. Qed.
-Lemma over_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Over_rel A eqA x x.
-Proof. now unfold Over_rel. Qed.
-Lemma under_rel_done :
- forall (A : Type) (eqA : A -> A -> Prop) (EeqA : Reflexive eqA) (x : A),
- @Under_rel A eqA x x.
-Proof. now trivial. Qed.
-End Under_rel.