aboutsummaryrefslogtreecommitdiff
path: root/plugins/funind
diff options
context:
space:
mode:
authorEmilio Jesus Gallego Arias2020-02-05 17:46:07 +0100
committerEmilio Jesus Gallego Arias2020-02-13 21:12:03 +0100
commit9193769161e1f06b371eed99dfe9e90fec9a14a6 (patch)
treee16e5f60ce6a88656ccd802d232cde6171be927d /plugins/funind
parenteb83c142eb33de18e3bfdd7c32ecfb797a640c38 (diff)
[build] Consolidate stdlib's .v files under a single directory.
Currently, `.v` under the `Coq.` prefix are found in both `theories` and `plugins`. Usually these two directories are merged by special loadpath code that allows double-binding of the prefix. This adds some complexity to the build and loadpath system; and in particular, it prevents from handling the `Coq.*` prefix in the simple, `-R theories Coq` standard way. We thus move all `.v` files to theories, leaving `plugins` as an OCaml-only directory, and modify accordingly the loadpath / build infrastructure. Note that in general `plugins/foo/Foo.v` was not self-contained, in the sense that it depended on files in `theories` and files in `theories` depended on it; moreover, Coq saw all these files as belonging to the same namespace so it didn't really care where they lived. This could also imply a performance gain as we now effectively traverse less directories when locating a library. See also discussion in #10003
Diffstat (limited to 'plugins/funind')
-rw-r--r--plugins/funind/FunInd.v12
-rw-r--r--plugins/funind/Recdef.v52
2 files changed, 0 insertions, 64 deletions
diff --git a/plugins/funind/FunInd.v b/plugins/funind/FunInd.v
deleted file mode 100644
index d58b169154..0000000000
--- a/plugins/funind/FunInd.v
+++ /dev/null
@@ -1,12 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-Require Coq.extraction.Extraction.
-Declare ML Module "recdef_plugin".
diff --git a/plugins/funind/Recdef.v b/plugins/funind/Recdef.v
deleted file mode 100644
index cd3d69861f..0000000000
--- a/plugins/funind/Recdef.v
+++ /dev/null
@@ -1,52 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* <O___,, * (see CREDITS file for the list of authors) *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(* * (see LICENSE file for the text of the license) *)
-(************************************************************************)
-
-Require Export Coq.funind.FunInd.
-Require Import PeanoNat.
-Require Compare_dec.
-Require Wf_nat.
-
-Section Iter.
-Variable A : Type.
-
-Fixpoint iter (n : nat) : (A -> A) -> A -> A :=
- fun (fl : A -> A) (def : A) =>
- match n with
- | O => def
- | S m => fl (iter m fl def)
- end.
-End Iter.
-
-Theorem le_lt_SS x y : x <= y -> x < S (S y).
-Proof.
- intros. now apply Nat.lt_succ_r, Nat.le_le_succ_r.
-Qed.
-
-Theorem Splus_lt x y : y < S (x + y).
-Proof.
- apply Nat.lt_succ_r. rewrite Nat.add_comm. apply Nat.le_add_r.
-Qed.
-
-Theorem SSplus_lt x y : x < S (S (x + y)).
-Proof.
- apply le_lt_SS, Nat.le_add_r.
-Qed.
-
-Inductive max_type (m n:nat) : Set :=
- cmt : forall v, m <= v -> n <= v -> max_type m n.
-
-Definition max m n : max_type m n.
-Proof.
- destruct (Compare_dec.le_gt_dec m n) as [h|h].
- - exists n; [exact h | apply le_n].
- - exists m; [apply le_n | apply Nat.lt_le_incl; exact h].
-Defined.
-
-Definition Acc_intro_generator_function := fun A R => @Acc_intro_generator A R 100.