diff options
| author | Emilio Jesus Gallego Arias | 2020-02-05 17:46:07 +0100 |
|---|---|---|
| committer | Emilio Jesus Gallego Arias | 2020-02-13 21:12:03 +0100 |
| commit | 9193769161e1f06b371eed99dfe9e90fec9a14a6 (patch) | |
| tree | e16e5f60ce6a88656ccd802d232cde6171be927d /plugins/funind | |
| parent | eb83c142eb33de18e3bfdd7c32ecfb797a640c38 (diff) | |
[build] Consolidate stdlib's .v files under a single directory.
Currently, `.v` under the `Coq.` prefix are found in both `theories`
and `plugins`. Usually these two directories are merged by special
loadpath code that allows double-binding of the prefix.
This adds some complexity to the build and loadpath system; and in
particular, it prevents from handling the `Coq.*` prefix in the
simple, `-R theories Coq` standard way.
We thus move all `.v` files to theories, leaving `plugins` as an
OCaml-only directory, and modify accordingly the loadpath / build
infrastructure.
Note that in general `plugins/foo/Foo.v` was not self-contained, in
the sense that it depended on files in `theories` and files in
`theories` depended on it; moreover, Coq saw all these files as
belonging to the same namespace so it didn't really care where they
lived.
This could also imply a performance gain as we now effectively
traverse less directories when locating a library.
See also discussion in #10003
Diffstat (limited to 'plugins/funind')
| -rw-r--r-- | plugins/funind/FunInd.v | 12 | ||||
| -rw-r--r-- | plugins/funind/Recdef.v | 52 |
2 files changed, 0 insertions, 64 deletions
diff --git a/plugins/funind/FunInd.v b/plugins/funind/FunInd.v deleted file mode 100644 index d58b169154..0000000000 --- a/plugins/funind/FunInd.v +++ /dev/null @@ -1,12 +0,0 @@ -(************************************************************************) -(* * The Coq Proof Assistant / The Coq Development Team *) -(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) -(* <O___,, * (see CREDITS file for the list of authors) *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(* * (see LICENSE file for the text of the license) *) -(************************************************************************) - -Require Coq.extraction.Extraction. -Declare ML Module "recdef_plugin". diff --git a/plugins/funind/Recdef.v b/plugins/funind/Recdef.v deleted file mode 100644 index cd3d69861f..0000000000 --- a/plugins/funind/Recdef.v +++ /dev/null @@ -1,52 +0,0 @@ -(************************************************************************) -(* * The Coq Proof Assistant / The Coq Development Team *) -(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) -(* <O___,, * (see CREDITS file for the list of authors) *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(* * (see LICENSE file for the text of the license) *) -(************************************************************************) - -Require Export Coq.funind.FunInd. -Require Import PeanoNat. -Require Compare_dec. -Require Wf_nat. - -Section Iter. -Variable A : Type. - -Fixpoint iter (n : nat) : (A -> A) -> A -> A := - fun (fl : A -> A) (def : A) => - match n with - | O => def - | S m => fl (iter m fl def) - end. -End Iter. - -Theorem le_lt_SS x y : x <= y -> x < S (S y). -Proof. - intros. now apply Nat.lt_succ_r, Nat.le_le_succ_r. -Qed. - -Theorem Splus_lt x y : y < S (x + y). -Proof. - apply Nat.lt_succ_r. rewrite Nat.add_comm. apply Nat.le_add_r. -Qed. - -Theorem SSplus_lt x y : x < S (S (x + y)). -Proof. - apply le_lt_SS, Nat.le_add_r. -Qed. - -Inductive max_type (m n:nat) : Set := - cmt : forall v, m <= v -> n <= v -> max_type m n. - -Definition max m n : max_type m n. -Proof. - destruct (Compare_dec.le_gt_dec m n) as [h|h]. - - exists n; [exact h | apply le_n]. - - exists m; [apply le_n | apply Nat.lt_le_incl; exact h]. -Defined. - -Definition Acc_intro_generator_function := fun A R => @Acc_intro_generator A R 100. |
