aboutsummaryrefslogtreecommitdiff
path: root/plugins/funind
diff options
context:
space:
mode:
authorEmilio Jesus Gallego Arias2019-07-17 07:11:41 +0200
committerEmilio Jesus Gallego Arias2019-07-31 11:13:04 +0200
commit105269d6799356eb52f289e191217b153c3bdade (patch)
treee62ad76ebf11c0af3f53263e2304844a2dff0fa1 /plugins/funind
parent7864ae92065ecb787c72cdd8eca2b3aeb6604dbe (diff)
[funind] Move principle generation to its own file.
Diffstat (limited to 'plugins/funind')
-rw-r--r--plugins/funind/g_indfun.mlg26
-rw-r--r--plugins/funind/gen_principle.ml1654
-rw-r--r--plugins/funind/gen_principle.mli17
-rw-r--r--plugins/funind/glob_term_to_relation.ml2
-rw-r--r--plugins/funind/indfun.ml1626
-rw-r--r--plugins/funind/indfun.mli23
-rw-r--r--plugins/funind/indfun_common.ml3
-rw-r--r--plugins/funind/recdef_plugin.mlpack1
8 files changed, 1696 insertions, 1656 deletions
diff --git a/plugins/funind/g_indfun.mlg b/plugins/funind/g_indfun.mlg
index 1b75d3d966..430fb2dee3 100644
--- a/plugins/funind/g_indfun.mlg
+++ b/plugins/funind/g_indfun.mlg
@@ -202,10 +202,10 @@ VERNAC COMMAND EXTEND Function STATE CUSTOM
-> {
if is_interactive recsl then
Vernacextend.VtOpenProof (fun () ->
- do_generate_principle_interactive (List.map snd recsl))
+ Gen_principle.do_generate_principle_interactive (List.map snd recsl))
else
Vernacextend.VtDefault (fun () ->
- do_generate_principle (List.map snd recsl)) }
+ Gen_principle.do_generate_principle (List.map snd recsl)) }
END
{
@@ -226,15 +226,15 @@ END
let warning_error names e =
match e with
- | Building_graph e ->
- let names = pr_enum Libnames.pr_qualid names in
- let error = if do_observe () then (spc () ++ CErrors.print e) else mt () in
- warn_cannot_define_graph (names,error)
- | Defining_principle e ->
- let names = pr_enum Libnames.pr_qualid names in
- let error = if do_observe () then CErrors.print e else mt () in
- warn_cannot_define_principle (names,error)
- | _ -> raise e
+ | Building_graph e ->
+ let names = pr_enum Libnames.pr_qualid names in
+ let error = if do_observe () then (spc () ++ CErrors.print e) else mt () in
+ Gen_principle.warn_cannot_define_graph (names,error)
+ | Defining_principle e ->
+ let names = pr_enum Libnames.pr_qualid names in
+ let error = if do_observe () then CErrors.print e else mt () in
+ Gen_principle.warn_cannot_define_principle (names,error)
+ | _ -> raise e
}
@@ -251,7 +251,7 @@ VERNAC COMMAND EXTEND NewFunctionalScheme
match fas with
| (_,fun_name,_)::_ ->
begin
- make_graph (Smartlocate.global_with_alias fun_name);
+ Gen_principle.make_graph (Smartlocate.global_with_alias fun_name);
try Functional_principles_types.build_scheme fas
with
| Functional_principles_types.No_graph_found ->
@@ -279,5 +279,5 @@ END
(***** debug only ***)
VERNAC COMMAND EXTEND GenerateGraph CLASSIFIED AS QUERY
| ["Generate" "graph" "for" reference(c)] ->
- { make_graph (Smartlocate.global_with_alias c) }
+ { Gen_principle.make_graph (Smartlocate.global_with_alias c) }
END
diff --git a/plugins/funind/gen_principle.ml b/plugins/funind/gen_principle.ml
new file mode 100644
index 0000000000..a6c5e63ecf
--- /dev/null
+++ b/plugins/funind/gen_principle.ml
@@ -0,0 +1,1654 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+open Util
+open Names
+
+open Indfun_common
+
+module RelDecl = Context.Rel.Declaration
+
+let make_eq () =
+ try EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type"))
+ with _ -> assert false
+
+(* Move to common *)
+let observe strm =
+ if do_observe ()
+ then Feedback.msg_debug strm
+ else ()
+
+let do_observe_tac s tac g =
+ let goal =
+ try Printer.pr_goal g
+ with e when CErrors.noncritical e -> assert false
+ in
+ try
+ let v = tac g in
+ msgnl Pp.(goal ++ fnl () ++ s ++(str " ")++(str "finished")); v
+ with reraise ->
+ let reraise = CErrors.push reraise in
+ observe Pp.(hov 0 (str "observation "++ s++str " raised exception " ++
+ CErrors.iprint reraise ++ str " on goal" ++ fnl() ++ goal ));
+ iraise reraise;;
+
+let observe_tac s tac g =
+ if do_observe ()
+ then do_observe_tac (Pp.str s) tac g
+ else tac g
+
+(*
+ Construct a fixpoint as a Glob_term
+ and not as a constr
+*)
+let rec abstract_glob_constr c = function
+ | [] -> c
+ | Constrexpr.CLocalDef (x,b,t)::bl -> Constrexpr_ops.mkLetInC(x,b,t,abstract_glob_constr c bl)
+ | Constrexpr.CLocalAssum (idl,k,t)::bl ->
+ List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl
+ (abstract_glob_constr c bl)
+ | Constrexpr.CLocalPattern _::bl -> assert false
+
+let interp_casted_constr_with_implicits env sigma impls c =
+ Constrintern.intern_gen Pretyping.WithoutTypeConstraint env sigma ~impls c
+
+let build_newrecursive lnameargsardef =
+ let env0 = Global.env() in
+ let sigma = Evd.from_env env0 in
+ let (rec_sign,rec_impls) =
+ List.fold_left
+ (fun (env,impls) { Vernacexpr.fname={CAst.v=recname}; binders; rtype } ->
+ let arityc = Constrexpr_ops.mkCProdN binders rtype in
+ let arity,ctx = Constrintern.interp_type env0 sigma arityc in
+ let evd = Evd.from_env env0 in
+ let evd, (_, (_, impls')) = Constrintern.interp_context_evars ~program_mode:false env evd binders in
+ let impl = Constrintern.compute_internalization_data env0 evd Constrintern.Recursive arity impls' in
+ let open Context.Named.Declaration in
+ let r = Sorts.Relevant in (* TODO relevance *)
+ (EConstr.push_named (LocalAssum (Context.make_annot recname r,arity)) env, Id.Map.add recname impl impls))
+ (env0,Constrintern.empty_internalization_env) lnameargsardef in
+ let recdef =
+ (* Declare local notations *)
+ let f { Vernacexpr.binders; body_def } =
+ match body_def with
+ | Some body_def ->
+ let def = abstract_glob_constr body_def binders in
+ interp_casted_constr_with_implicits
+ rec_sign sigma rec_impls def
+ | None -> CErrors.user_err ~hdr:"Function" (Pp.str "Body of Function must be given")
+ in
+ States.with_state_protection (List.map f) lnameargsardef
+ in
+ recdef,rec_impls
+
+(* Checks whether or not the mutual bloc is recursive *)
+let is_rec names =
+ let open Glob_term in
+ let names = List.fold_right Id.Set.add names Id.Set.empty in
+ let check_id id names = Id.Set.mem id names in
+ let rec lookup names gt = match DAst.get gt with
+ | GVar(id) -> check_id id names
+ | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ | GInt _ -> false
+ | GCast(b,_) -> lookup names b
+ | GRec _ -> CErrors.user_err (Pp.str "GRec not handled")
+ | GIf(b,_,lhs,rhs) ->
+ (lookup names b) || (lookup names lhs) || (lookup names rhs)
+ | GProd(na,_,t,b) | GLambda(na,_,t,b) ->
+ lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b
+ | GLetIn(na,b,t,c) ->
+ lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c
+ | GLetTuple(nal,_,t,b) -> lookup names t ||
+ lookup
+ (List.fold_left
+ (fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc)
+ names
+ nal
+ )
+ b
+ | GApp(f,args) -> List.exists (lookup names) (f::args)
+ | GCases(_,_,el,brl) ->
+ List.exists (fun (e,_) -> lookup names e) el ||
+ List.exists (lookup_br names) brl
+ and lookup_br names {CAst.v=(idl,_,rt)} =
+ let new_names = List.fold_right Id.Set.remove idl names in
+ lookup new_names rt
+ in
+ lookup names
+
+let rec rebuild_bl aux bl typ =
+ let open Constrexpr in
+ match bl,typ with
+ | [], _ -> List.rev aux,typ
+ | (CLocalAssum(nal,bk,_))::bl',typ ->
+ rebuild_nal aux bk bl' nal typ
+ | (CLocalDef(na,_,_))::bl',{ CAst.v = CLetIn(_,nat,ty,typ') } ->
+ rebuild_bl (Constrexpr.CLocalDef(na,nat,ty)::aux)
+ bl' typ'
+ | _ -> assert false
+and rebuild_nal aux bk bl' nal typ =
+ let open Constrexpr in
+ match nal,typ with
+ | _,{ CAst.v = CProdN([],typ) } -> rebuild_nal aux bk bl' nal typ
+ | [], _ -> rebuild_bl aux bl' typ
+ | na::nal,{ CAst.v = CProdN(CLocalAssum(na'::nal',bk',nal't)::rest,typ') } ->
+ if Name.equal (na.CAst.v) (na'.CAst.v) || Name.is_anonymous (na'.CAst.v)
+ then
+ let assum = CLocalAssum([na],bk,nal't) in
+ let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in
+ rebuild_nal
+ (assum::aux)
+ bk
+ bl'
+ nal
+ (CAst.make @@ CProdN(new_rest,typ'))
+ else
+ let assum = CLocalAssum([na'],bk,nal't) in
+ let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in
+ rebuild_nal
+ (assum::aux)
+ bk
+ bl'
+ (na::nal)
+ (CAst.make @@ CProdN(new_rest,typ'))
+ | _ ->
+ assert false
+
+let rebuild_bl aux bl typ = rebuild_bl aux bl typ
+
+let recompute_binder_list fixpoint_exprl =
+ let fixl =
+ List.map (fun fix -> Vernacexpr.{
+ fix
+ with rec_order = ComFixpoint.adjust_rec_order ~structonly:false fix.binders fix.rec_order }) fixpoint_exprl in
+ let ((_,_,_,typel),_,ctx,_) = ComFixpoint.interp_fixpoint ~cofix:false fixl in
+ let constr_expr_typel =
+ with_full_print (List.map (fun c -> Constrextern.extern_constr false (Global.env ()) (Evd.from_ctx ctx) (EConstr.of_constr c))) typel in
+ let fixpoint_exprl_with_new_bl =
+ List.map2 (fun ({ Vernacexpr.binders } as fp) fix_typ ->
+ let binders, rtype = rebuild_bl [] binders fix_typ in
+ { fp with Vernacexpr.binders; rtype }
+ ) fixpoint_exprl constr_expr_typel
+ in
+ fixpoint_exprl_with_new_bl
+
+let rec local_binders_length = function
+ (* Assume that no `{ ... } contexts occur *)
+ | [] -> 0
+ | Constrexpr.CLocalDef _::bl -> 1 + local_binders_length bl
+ | Constrexpr.CLocalAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl
+ | Constrexpr.CLocalPattern _::bl -> assert false
+
+let prepare_body { Vernacexpr.binders } rt =
+ let n = local_binders_length binders in
+ (* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *)
+ let fun_args,rt' = chop_rlambda_n n rt in
+ (fun_args,rt')
+
+let generate_principle (evd:Evd.evar_map ref) pconstants on_error
+ is_general do_built fix_rec_l recdefs interactive_proof
+ (continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int ->
+ Tacmach.tactic) : unit =
+ let names = List.map (function { Vernacexpr.fname = {CAst.v=name} } -> name) fix_rec_l in
+ let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in
+ let funs_args = List.map fst fun_bodies in
+ let funs_types = List.map (function { Vernacexpr.rtype } -> rtype) fix_rec_l in
+ try
+ (* We then register the Inductive graphs of the functions *)
+ Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs;
+ if do_built
+ then
+ begin
+ (*i The next call to mk_rel_id is valid since we have just construct the graph
+ Ensures by : do_built
+ i*)
+ let f_R_mut = Libnames.qualid_of_ident @@ mk_rel_id (List.nth names 0) in
+ let ind_kn =
+ fst (locate_with_msg
+ Pp.(Libnames.pr_qualid f_R_mut ++ str ": Not an inductive type!")
+ locate_ind
+ f_R_mut)
+ in
+ let fname_kn { Vernacexpr.fname } =
+ let f_ref = Libnames.qualid_of_ident ?loc:fname.CAst.loc fname.CAst.v in
+ locate_with_msg
+ Pp.(Libnames.pr_qualid f_ref++str ": Not an inductive type!")
+ locate_constant
+ f_ref
+ in
+ let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in
+ let _ =
+ List.map_i
+ (fun i x ->
+ let env = Global.env () in
+ let princ = Indrec.lookup_eliminator env (ind_kn,i) (Sorts.InProp) in
+ let evd = ref (Evd.from_env env) in
+ let evd',uprinc = Evd.fresh_global env !evd princ in
+ let _ = evd := evd' in
+ let sigma, princ_type = Typing.type_of ~refresh:true env !evd uprinc in
+ evd := sigma;
+ let princ_type = EConstr.Unsafe.to_constr princ_type in
+ Functional_principles_types.generate_functional_principle
+ evd
+ interactive_proof
+ princ_type
+ None
+ None
+ (Array.of_list pconstants)
+ (* funs_kn *)
+ i
+ (continue_proof 0 [|funs_kn.(i)|])
+ )
+ 0
+ fix_rec_l
+ in
+ Array.iter (add_Function is_general) funs_kn;
+ ()
+ end
+ with e when CErrors.noncritical e ->
+ on_error names e
+
+let register_struct is_rec fixpoint_exprl =
+ let open EConstr in
+ match fixpoint_exprl with
+ | [{ Vernacexpr.fname; univs; binders; rtype; body_def }] when not is_rec ->
+ let body =
+ match body_def with
+ | Some body -> body
+ | None ->
+ CErrors.user_err ~hdr:"Function" Pp.(str "Body of Function must be given") in
+ ComDefinition.do_definition
+ ~program_mode:false
+ ~name:fname.CAst.v
+ ~poly:false
+ ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
+ ~kind:Decls.Definition univs
+ binders None body (Some rtype);
+ let evd,rev_pconstants =
+ List.fold_left
+ (fun (evd,l) { Vernacexpr.fname } ->
+ let evd,c =
+ Evd.fresh_global
+ (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in
+ let (cst, u) = destConst evd c in
+ let u = EInstance.kind evd u in
+ evd,((cst, u) :: l)
+ )
+ (Evd.from_env (Global.env ()),[])
+ fixpoint_exprl
+ in
+ None, evd,List.rev rev_pconstants
+ | _ ->
+ ComFixpoint.do_fixpoint ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) ~poly:false fixpoint_exprl;
+ let evd,rev_pconstants =
+ List.fold_left
+ (fun (evd,l) { Vernacexpr.fname } ->
+ let evd,c =
+ Evd.fresh_global
+ (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in
+ let (cst, u) = destConst evd c in
+ let u = EInstance.kind evd u in
+ evd,((cst, u) :: l)
+ )
+ (Evd.from_env (Global.env ()),[])
+ fixpoint_exprl
+ in
+ None,evd,List.rev rev_pconstants
+
+let generate_correction_proof_wf f_ref tcc_lemma_ref
+ is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
+ (_: int) (_:Names.Constant.t array) (_:EConstr.constr array) (_:int) : Tacmach.tactic =
+ Functional_principles_proofs.prove_principle_for_gen
+ (f_ref,functional_ref,eq_ref)
+ tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation
+
+(* [generate_type g_to_f f graph i] build the completeness (resp. correctness) lemma type if [g_to_f = true]
+ (resp. g_to_f = false) where [graph] is the graph of [f] and is the [i]th function in the block.
+
+ [generate_type true f i] returns
+ \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
+ graph\ x_1\ldots x_n\ res \rightarrow res = fv \] decomposed as the context and the conclusion
+
+ [generate_type false f i] returns
+ \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
+ res = fv \rightarrow graph\ x_1\ldots x_n\ res\] decomposed as the context and the conclusion
+*)
+
+let generate_type evd g_to_f f graph i =
+ let open Context.Rel.Declaration in
+ let open EConstr in
+ let open EConstr.Vars in
+ (*i we deduce the number of arguments of the function and its returned type from the graph i*)
+ let evd',graph =
+ Evd.fresh_global (Global.env ()) !evd (GlobRef.IndRef (fst (destInd !evd graph)))
+ in
+ evd:=evd';
+ let sigma, graph_arity = Typing.type_of (Global.env ()) !evd graph in
+ evd := sigma;
+ let ctxt,_ = decompose_prod_assum !evd graph_arity in
+ let fun_ctxt,res_type =
+ match ctxt with
+ | [] | [_] -> CErrors.anomaly (Pp.str "Not a valid context.")
+ | decl :: fun_ctxt -> fun_ctxt, RelDecl.get_type decl
+ in
+ let rec args_from_decl i accu = function
+ | [] -> accu
+ | LocalDef _ :: l ->
+ args_from_decl (succ i) accu l
+ | _ :: l ->
+ let t = mkRel i in
+ args_from_decl (succ i) (t :: accu) l
+ in
+ (*i We need to name the vars [res] and [fv] i*)
+ let filter = fun decl -> match RelDecl.get_name decl with
+ | Name id -> Some id
+ | Anonymous -> None
+ in
+ let named_ctxt = Id.Set.of_list (List.map_filter filter fun_ctxt) in
+ let res_id = Namegen.next_ident_away_in_goal (Id.of_string "_res") named_ctxt in
+ let fv_id = Namegen.next_ident_away_in_goal (Id.of_string "fv") (Id.Set.add res_id named_ctxt) in
+ (*i we can then type the argument to be applied to the function [f] i*)
+ let args_as_rels = Array.of_list (args_from_decl 1 [] fun_ctxt) in
+ (*i
+ the hypothesis [res = fv] can then be computed
+ We will need to lift it by one in order to use it as a conclusion
+ i*)
+ let make_eq = make_eq () in
+ let res_eq_f_of_args =
+ mkApp(make_eq ,[|lift 2 res_type;mkRel 1;mkRel 2|])
+ in
+ (*i
+ The hypothesis [graph\ x_1\ldots x_n\ res] can then be computed
+ We will need to lift it by one in order to use it as a conclusion
+ i*)
+ let args_and_res_as_rels = Array.of_list (args_from_decl 3 [] fun_ctxt) in
+ let args_and_res_as_rels = Array.append args_and_res_as_rels [|mkRel 1|] in
+ let graph_applied = mkApp(graph, args_and_res_as_rels) in
+ (*i The [pre_context] is the defined to be the context corresponding to
+ \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, \]
+ i*)
+ let pre_ctxt =
+ LocalAssum (Context.make_annot (Name res_id) Sorts.Relevant, lift 1 res_type) ::
+ LocalDef (Context.make_annot (Name fv_id) Sorts.Relevant, mkApp (f,args_as_rels), res_type) :: fun_ctxt
+ in
+ (*i and we can return the solution depending on which lemma type we are defining i*)
+ if g_to_f
+ then LocalAssum (Context.make_annot Anonymous Sorts.Relevant,graph_applied)::pre_ctxt,(lift 1 res_eq_f_of_args),graph
+ else LocalAssum (Context.make_annot Anonymous Sorts.Relevant,res_eq_f_of_args)::pre_ctxt,(lift 1 graph_applied),graph
+
+(**
+ [find_induction_principle f] searches and returns the [body] and the [type] of [f_rect]
+
+ WARNING: while convertible, [type_of body] and [type] can be non equal
+*)
+let find_induction_principle evd f =
+ let f_as_constant,u = match EConstr.kind !evd f with
+ | Constr.Const c' -> c'
+ | _ -> CErrors.user_err Pp.(str "Must be used with a function")
+ in
+ let infos = find_Function_infos f_as_constant in
+ match infos.rect_lemma with
+ | None -> raise Not_found
+ | Some rect_lemma ->
+ let evd',rect_lemma = Evd.fresh_global (Global.env ()) !evd (GlobRef.ConstRef rect_lemma) in
+ let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in
+ evd:=evd';
+ rect_lemma,typ
+
+(* [prove_fun_correct funs_constr graphs_constr schemes lemmas_types_infos i ]
+ is the tactic used to prove correctness lemma.
+
+ [funs_constr], [graphs_constr] [schemes] [lemmas_types_infos] are the mutually recursive functions
+ (resp. graphs of the functions and principles and correctness lemma types) to prove correct.
+
+ [i] is the indice of the function to prove correct
+
+ The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
+ it looks like~:
+ [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
+ res = f x_1\ldots x_n in, \rightarrow graph\ x_1\ldots x_n\ res]
+
+
+ The sketch of the proof is the following one~:
+ \begin{enumerate}
+ \item intros until $x_n$
+ \item $functional\ induction\ (f.(i)\ x_1\ldots x_n)$ using schemes.(i)
+ \item for each generated branch intro [res] and [hres :res = f x_1\ldots x_n], rewrite [hres] and the
+ apply the corresponding constructor of the corresponding graph inductive.
+ \end{enumerate}
+
+*)
+
+let rec generate_fresh_id x avoid i =
+ if i == 0
+ then []
+ else
+ let id = Namegen.next_ident_away_in_goal x (Id.Set.of_list avoid) in
+ id::(generate_fresh_id x (id::avoid) (pred i))
+
+let prove_fun_correct evd funs_constr graphs_constr schemes lemmas_types_infos i : Tacmach.tactic =
+ let open Constr in
+ let open EConstr in
+ let open Context.Rel.Declaration in
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ fun g ->
+ (* first of all we recreate the lemmas types to be used as predicates of the induction principle
+ that is~:
+ \[fun (x_1:t_1)\ldots(x_n:t_n)=> fun fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\]
+ *)
+ (* we the get the definition of the graphs block *)
+ let graph_ind,u = destInd evd graphs_constr.(i) in
+ let kn = fst graph_ind in
+ let mib,_ = Global.lookup_inductive graph_ind in
+ (* and the principle to use in this lemma in $\zeta$ normal form *)
+ let f_principle,princ_type = schemes.(i) in
+ let princ_type = Reductionops.nf_zeta (Global.env ()) evd princ_type in
+ let princ_infos = Tactics.compute_elim_sig evd princ_type in
+ (* The number of args of the function is then easily computable *)
+ let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in
+ let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
+ let ids = args_names@(pf_ids_of_hyps g) in
+ (* Since we cannot ensure that the functional principle is defined in the
+ environment and due to the bug #1174, we will need to pose the principle
+ using a name
+ *)
+ let principle_id = Namegen.next_ident_away_in_goal (Id.of_string "princ") (Id.Set.of_list ids) in
+ let ids = principle_id :: ids in
+ (* We get the branches of the principle *)
+ let branches = List.rev princ_infos.Tactics.branches in
+ (* and built the intro pattern for each of them *)
+ let intro_pats =
+ List.map
+ (fun decl ->
+ List.map
+ (fun id -> CAst.make @@ Tactypes.IntroNaming (Namegen.IntroIdentifier id))
+ (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl)))))
+ )
+ branches
+ in
+ (* before building the full intro pattern for the principle *)
+ let eq_ind = make_eq () in
+ let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in
+ (* The next to referencies will be used to find out which constructor to apply in each branch *)
+ let ind_number = ref 0
+ and min_constr_number = ref 0 in
+ (* The tactic to prove the ith branch of the principle *)
+ let prove_branche i g =
+ (* We get the identifiers of this branch *)
+ let pre_args =
+ List.fold_right
+ (fun {CAst.v=pat} acc ->
+ match pat with
+ | Tactypes.IntroNaming (Namegen.IntroIdentifier id) -> id::acc
+ | _ -> CErrors.anomaly (Pp.str "Not an identifier.")
+ )
+ (List.nth intro_pats (pred i))
+ []
+ in
+ (* and get the real args of the branch by unfolding the defined constant *)
+ (*
+ We can then recompute the arguments of the constructor.
+ For each [hid] introduced by this branch, if [hid] has type
+ $forall res, res=fv -> graph.(j)\ x_1\ x_n res$ the corresponding arguments of the constructor are
+ [ fv (hid fv (refl_equal fv)) ].
+ If [hid] has another type the corresponding argument of the constructor is [hid]
+ *)
+ let constructor_args g =
+ List.fold_right
+ (fun hid acc ->
+ let type_of_hid = pf_unsafe_type_of g (mkVar hid) in
+ let sigma = project g in
+ match EConstr.kind sigma type_of_hid with
+ | Prod(_,_,t') ->
+ begin
+ match EConstr.kind sigma t' with
+ | Prod(_,t'',t''') ->
+ begin
+ match EConstr.kind sigma t'',EConstr.kind sigma t''' with
+ | App(eq,args), App(graph',_)
+ when
+ (EConstr.eq_constr sigma eq eq_ind) &&
+ Array.exists (EConstr.eq_constr_nounivs sigma graph') graphs_constr ->
+ (args.(2)::(mkApp(mkVar hid,[|args.(2);(mkApp(eq_construct,[|args.(0);args.(2)|]))|]))
+ ::acc)
+ | _ -> mkVar hid :: acc
+ end
+ | _ -> mkVar hid :: acc
+ end
+ | _ -> mkVar hid :: acc
+ ) pre_args []
+ in
+ (* in fact we must also add the parameters to the constructor args *)
+ let constructor_args g =
+ let params_id = fst (List.chop princ_infos.Tactics.nparams args_names) in
+ (List.map mkVar params_id)@((constructor_args g))
+ in
+ (* We then get the constructor corresponding to this branch and
+ modifies the references has needed i.e.
+ if the constructor is the last one of the current inductive then
+ add one the number of the inductive to take and add the number of constructor of the previous
+ graph to the minimal constructor number
+ *)
+ let constructor =
+ let constructor_num = i - !min_constr_number in
+ let length = Array.length (mib.Declarations.mind_packets.(!ind_number).Declarations.mind_consnames) in
+ if constructor_num <= length
+ then
+ begin
+ (kn,!ind_number),constructor_num
+ end
+ else
+ begin
+ incr ind_number;
+ min_constr_number := !min_constr_number + length ;
+ (kn,!ind_number),1
+ end
+ in
+ (* we can then build the final proof term *)
+ let app_constructor g = applist((mkConstructU(constructor,u)),constructor_args g) in
+ (* an apply the tactic *)
+ let res,hres =
+ match generate_fresh_id (Id.of_string "z") (ids(* @this_branche_ids *)) 2 with
+ | [res;hres] -> res,hres
+ | _ -> assert false
+ in
+ (* observe (str "constructor := " ++ Printer.pr_lconstr_env (pf_env g) app_constructor); *)
+ (
+ tclTHENLIST
+ [
+ observe_tac ("h_intro_patterns ") (let l = (List.nth intro_pats (pred i)) in
+ match l with
+ | [] -> tclIDTAC
+ | _ -> Proofview.V82.of_tactic (intro_patterns false l));
+ (* unfolding of all the defined variables introduced by this branch *)
+ (* observe_tac "unfolding" pre_tac; *)
+ (* $zeta$ normalizing of the conclusion *)
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ { Redops.all_flags with
+ Genredexpr.rDelta = false ;
+ Genredexpr.rConst = []
+ }
+ )
+ Locusops.onConcl);
+ observe_tac ("toto ") tclIDTAC;
+
+ (* introducing the result of the graph and the equality hypothesis *)
+ observe_tac "introducing" (tclMAP (fun x -> Proofview.V82.of_tactic (Simple.intro x)) [res;hres]);
+ (* replacing [res] with its value *)
+ observe_tac "rewriting res value" (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar hres)));
+ (* Conclusion *)
+ observe_tac "exact" (fun g ->
+ Proofview.V82.of_tactic (exact_check (app_constructor g)) g)
+ ]
+ )
+ g
+ in
+ (* end of branche proof *)
+ let lemmas =
+ Array.map
+ (fun ((_,(ctxt,concl))) ->
+ match ctxt with
+ | [] | [_] | [_;_] -> CErrors.anomaly (Pp.str "bad context.")
+ | hres::res::decl::ctxt ->
+ let res = EConstr.it_mkLambda_or_LetIn
+ (EConstr.it_mkProd_or_LetIn concl [hres;res])
+ (LocalAssum (RelDecl.get_annot decl, RelDecl.get_type decl) :: ctxt)
+ in
+ res)
+ lemmas_types_infos
+ in
+ let param_names = fst (List.chop princ_infos.nparams args_names) in
+ let params = List.map mkVar param_names in
+ let lemmas = Array.to_list (Array.map (fun c -> applist(c,params)) lemmas) in
+ (* The bindings of the principle
+ that is the params of the principle and the different lemma types
+ *)
+ let bindings =
+ let params_bindings,avoid =
+ List.fold_left2
+ (fun (bindings,avoid) decl p ->
+ let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
+ p::bindings,id::avoid
+ )
+ ([],pf_ids_of_hyps g)
+ princ_infos.params
+ (List.rev params)
+ in
+ let lemmas_bindings =
+ List.rev (fst (List.fold_left2
+ (fun (bindings,avoid) decl p ->
+ let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
+ (Reductionops.nf_zeta (pf_env g) (project g) p)::bindings,id::avoid)
+ ([],avoid)
+ princ_infos.predicates
+ (lemmas)))
+ in
+ (params_bindings@lemmas_bindings)
+ in
+ tclTHENLIST
+ [
+ observe_tac "principle" (Proofview.V82.of_tactic (assert_by
+ (Name principle_id)
+ princ_type
+ (exact_check f_principle)));
+ observe_tac "intro args_names" (tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) args_names);
+ (* observe_tac "titi" (pose_proof (Name (Id.of_string "__")) (Reductionops.nf_beta Evd.empty ((mkApp (mkVar principle_id,Array.of_list bindings))))); *)
+ observe_tac "idtac" tclIDTAC;
+ tclTHEN_i
+ (observe_tac
+ "functional_induction" (
+ (fun gl ->
+ let term = mkApp (mkVar principle_id,Array.of_list bindings) in
+ let gl', _ty = pf_eapply (Typing.type_of ~refresh:true) gl term in
+ Proofview.V82.of_tactic (apply term) gl')
+ ))
+ (fun i g -> observe_tac ("proving branche "^string_of_int i) (prove_branche i) g )
+ ]
+ g
+
+(* [prove_fun_complete funs graphs schemes lemmas_types_infos i]
+ is the tactic used to prove completeness lemma.
+
+ [funcs], [graphs] [schemes] [lemmas_types_infos] are the mutually recursive functions
+ (resp. definitions of the graphs of the functions, principles and correctness lemma types) to prove correct.
+
+ [i] is the indice of the function to prove complete
+
+ The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
+ it looks like~:
+ [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
+ graph\ x_1\ldots x_n\ res, \rightarrow res = f x_1\ldots x_n in]
+
+
+ The sketch of the proof is the following one~:
+ \begin{enumerate}
+ \item intros until $H:graph\ x_1\ldots x_n\ res$
+ \item $elim\ H$ using schemes.(i)
+ \item for each generated branch, intro the news hyptohesis, for each such hyptohesis [h], if [h] has
+ type [x=?] with [x] a variable, then subst [x],
+ if [h] has type [t=?] with [t] not a variable then rewrite [t] in the subterms, else
+ if [h] is a match then destruct it, else do just introduce it,
+ after all intros, the conclusion should be a reflexive equality.
+ \end{enumerate}
+
+*)
+
+let thin ids gl = Proofview.V82.of_tactic (Tactics.clear ids) gl
+
+(* [intros_with_rewrite] do the intros in each branch and treat each new hypothesis
+ (unfolding, substituting, destructing cases \ldots)
+*)
+let tauto =
+ let open Ltac_plugin in
+ let dp = List.map Id.of_string ["Tauto" ; "Init"; "Coq"] in
+ let mp = ModPath.MPfile (DirPath.make dp) in
+ let kn = KerName.make mp (Label.make "tauto") in
+ Proofview.tclBIND (Proofview.tclUNIT ()) begin fun () ->
+ let body = Tacenv.interp_ltac kn in
+ Tacinterp.eval_tactic body
+ end
+
+(* [generalize_dependent_of x hyp g]
+ generalize every hypothesis which depends of [x] but [hyp]
+*)
+let generalize_dependent_of x hyp g =
+ let open Context.Named.Declaration in
+ let open Tacmach in
+ let open Tacticals in
+ tclMAP
+ (function
+ | LocalAssum ({Context.binder_name=id},t) when not (Id.equal id hyp) &&
+ (Termops.occur_var (pf_env g) (project g) x t) ->
+ tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [EConstr.mkVar id])) (thin [id])
+ | _ -> tclIDTAC
+ )
+ (pf_hyps g)
+ g
+
+let rec intros_with_rewrite g =
+ observe_tac "intros_with_rewrite" intros_with_rewrite_aux g
+and intros_with_rewrite_aux : Tacmach.tactic =
+ let open Constr in
+ let open EConstr in
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ fun g ->
+ let eq_ind = make_eq () in
+ let sigma = project g in
+ match EConstr.kind sigma (pf_concl g) with
+ | Prod(_,t,t') ->
+ begin
+ match EConstr.kind sigma t with
+ | App(eq,args) when (EConstr.eq_constr sigma eq eq_ind) ->
+ if Reductionops.is_conv (pf_env g) (project g) args.(1) args.(2)
+ then
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); thin [id]; intros_with_rewrite ] g
+ else if isVar sigma args.(1) && (Environ.evaluable_named (destVar sigma args.(1)) (pf_env g))
+ then tclTHENLIST[
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))]);
+ tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))] ((destVar sigma args.(1)),Locus.InHyp) )))
+ (pf_ids_of_hyps g);
+ intros_with_rewrite
+ ] g
+ else if isVar sigma args.(2) && (Environ.evaluable_named (destVar sigma args.(2)) (pf_env g))
+ then tclTHENLIST[
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))]);
+ tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))] ((destVar sigma args.(2)),Locus.InHyp) )))
+ (pf_ids_of_hyps g);
+ intros_with_rewrite
+ ] g
+ else if isVar sigma args.(1)
+ then
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
+ generalize_dependent_of (destVar sigma args.(1)) id;
+ tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
+ intros_with_rewrite
+ ]
+ g
+ else if isVar sigma args.(2)
+ then
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
+ generalize_dependent_of (destVar sigma args.(2)) id;
+ tclTRY (Proofview.V82.of_tactic (Equality.rewriteRL (mkVar id)));
+ intros_with_rewrite
+ ]
+ g
+ else
+ begin
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST[
+ Proofview.V82.of_tactic (Simple.intro id);
+ tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
+ intros_with_rewrite
+ ] g
+ end
+ | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr (UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.False.type")) ->
+ Proofview.V82.of_tactic tauto g
+ | Case(_,_,v,_) ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (simplest_case v);
+ intros_with_rewrite
+ ] g
+ | LetIn _ ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ {Redops.all_flags
+ with Genredexpr.rDelta = false;
+ })
+ Locusops.onConcl)
+ ;
+ intros_with_rewrite
+ ] g
+ | _ ->
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);intros_with_rewrite] g
+ end
+ | LetIn _ ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ {Redops.all_flags
+ with Genredexpr.rDelta = false;
+ })
+ Locusops.onConcl)
+ ;
+ intros_with_rewrite
+ ] g
+ | _ -> tclIDTAC g
+
+let rec reflexivity_with_destruct_cases g =
+ let open Constr in
+ let open EConstr in
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ let destruct_case () =
+ try
+ match EConstr.kind (project g) (snd (destApp (project g) (pf_concl g))).(2) with
+ | Case(_,_,v,_) ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (simplest_case v);
+ Proofview.V82.of_tactic intros;
+ observe_tac "reflexivity_with_destruct_cases" reflexivity_with_destruct_cases
+ ]
+ | _ -> Proofview.V82.of_tactic reflexivity
+ with e when CErrors.noncritical e -> Proofview.V82.of_tactic reflexivity
+ in
+ let eq_ind = make_eq () in
+ let my_inj_flags = Some {
+ Equality.keep_proof_equalities = false;
+ injection_in_context = false; (* for compatibility, necessary *)
+ injection_pattern_l2r_order = false; (* probably does not matter; except maybe with dependent hyps *)
+ } in
+ let discr_inject =
+ Tacticals.onAllHypsAndConcl (
+ fun sc g ->
+ match sc with
+ None -> tclIDTAC g
+ | Some id ->
+ match EConstr.kind (project g) (pf_unsafe_type_of g (mkVar id)) with
+ | App(eq,[|_;t1;t2|]) when EConstr.eq_constr (project g) eq eq_ind ->
+ if Equality.discriminable (pf_env g) (project g) t1 t2
+ then Proofview.V82.of_tactic (Equality.discrHyp id) g
+ else if Equality.injectable (pf_env g) (project g) ~keep_proofs:None t1 t2
+ then tclTHENLIST [Proofview.V82.of_tactic (Equality.injHyp my_inj_flags None id);thin [id];intros_with_rewrite] g
+ else tclIDTAC g
+ | _ -> tclIDTAC g
+ )
+ in
+ (tclFIRST
+ [ observe_tac "reflexivity_with_destruct_cases : reflexivity" (Proofview.V82.of_tactic reflexivity);
+ observe_tac "reflexivity_with_destruct_cases : destruct_case" ((destruct_case ()));
+ (* We reach this point ONLY if
+ the same value is matched (at least) two times
+ along binding path.
+ In this case, either we have a discriminable hypothesis and we are done,
+ either at least an injectable one and we do the injection before continuing
+ *)
+ observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases)
+ ])
+ g
+
+let prove_fun_complete funcs graphs schemes lemmas_types_infos i : Tacmach.tactic =
+ let open EConstr in
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ fun g ->
+ (* We compute the types of the different mutually recursive lemmas
+ in $\zeta$ normal form
+ *)
+ let lemmas =
+ Array.map
+ (fun (_,(ctxt,concl)) -> Reductionops.nf_zeta (pf_env g) (project g) (EConstr.it_mkLambda_or_LetIn concl ctxt))
+ lemmas_types_infos
+ in
+ (* We get the constant and the principle corresponding to this lemma *)
+ let f = funcs.(i) in
+ let graph_principle = Reductionops.nf_zeta (pf_env g) (project g) (EConstr.of_constr schemes.(i)) in
+ let princ_type = pf_unsafe_type_of g graph_principle in
+ let princ_infos = Tactics.compute_elim_sig (project g) princ_type in
+ (* Then we get the number of argument of the function
+ and compute a fresh name for each of them
+ *)
+ let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in
+ let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
+ let ids = args_names@(pf_ids_of_hyps g) in
+ (* and fresh names for res H and the principle (cf bug bug #1174) *)
+ let res,hres,graph_principle_id =
+ match generate_fresh_id (Id.of_string "z") ids 3 with
+ | [res;hres;graph_principle_id] -> res,hres,graph_principle_id
+ | _ -> assert false
+ in
+ let ids = res::hres::graph_principle_id::ids in
+ (* we also compute fresh names for each hyptohesis of each branch
+ of the principle *)
+ let branches = List.rev princ_infos.branches in
+ let intro_pats =
+ List.map
+ (fun decl ->
+ List.map
+ (fun id -> id)
+ (generate_fresh_id (Id.of_string "y") ids (Termops.nb_prod (project g) (RelDecl.get_type decl)))
+ )
+ branches
+ in
+ (* We will need to change the function by its body
+ using [f_equation] if it is recursive (that is the graph is infinite
+ or unfold if the graph is finite
+ *)
+ let rewrite_tac j ids : Tacmach.tactic =
+ let graph_def = graphs.(j) in
+ let infos =
+ try find_Function_infos (fst (destConst (project g) funcs.(j)))
+ with Not_found -> CErrors.user_err Pp.(str "No graph found")
+ in
+ if infos.is_general
+ || Rtree.is_infinite Declareops.eq_recarg graph_def.Declarations.mind_recargs
+ then
+ let eq_lemma =
+ try Option.get (infos).equation_lemma
+ with Option.IsNone -> CErrors.anomaly (Pp.str "Cannot find equation lemma.")
+ in
+ tclTHENLIST[
+ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) ids;
+ Proofview.V82.of_tactic (Equality.rewriteLR (mkConst eq_lemma));
+ (* Don't forget to $\zeta$ normlize the term since the principles
+ have been $\zeta$-normalized *)
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ {Redops.all_flags
+ with Genredexpr.rDelta = false;
+ })
+ Locusops.onConcl)
+ ;
+ Proofview.V82.of_tactic (generalize (List.map mkVar ids));
+ thin ids
+ ]
+ else
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst (project g) f)))])
+ in
+ (* The proof of each branche itself *)
+ let ind_number = ref 0 in
+ let min_constr_number = ref 0 in
+ let prove_branche i g =
+ (* we fist compute the inductive corresponding to the branch *)
+ let this_ind_number =
+ let constructor_num = i - !min_constr_number in
+ let length = Array.length (graphs.(!ind_number).Declarations.mind_consnames) in
+ if constructor_num <= length
+ then !ind_number
+ else
+ begin
+ incr ind_number;
+ min_constr_number := !min_constr_number + length;
+ !ind_number
+ end
+ in
+ let this_branche_ids = List.nth intro_pats (pred i) in
+ tclTHENLIST[
+ (* we expand the definition of the function *)
+ observe_tac "rewrite_tac" (rewrite_tac this_ind_number this_branche_ids);
+ (* introduce hypothesis with some rewrite *)
+ observe_tac "intros_with_rewrite (all)" intros_with_rewrite;
+ (* The proof is (almost) complete *)
+ observe_tac "reflexivity" (reflexivity_with_destruct_cases)
+ ]
+ g
+ in
+ let params_names = fst (List.chop princ_infos.nparams args_names) in
+ let open EConstr in
+ let params = List.map mkVar params_names in
+ tclTHENLIST
+ [ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) (args_names@[res;hres]);
+ observe_tac "h_generalize"
+ (Proofview.V82.of_tactic (generalize [mkApp(applist(graph_principle,params),Array.map (fun c -> applist(c,params)) lemmas)]));
+ Proofview.V82.of_tactic (Simple.intro graph_principle_id);
+ observe_tac "" (tclTHEN_i
+ (observe_tac "elim" (Proofview.V82.of_tactic (elim false None (mkVar hres, Tactypes.NoBindings)
+ (Some (mkVar graph_principle_id, Tactypes.NoBindings)))))
+ (fun i g -> observe_tac "prove_branche" (prove_branche i) g ))
+ ]
+ g
+
+(* [derive_correctness make_scheme funs graphs] create correctness and completeness
+ lemmas for each function in [funs] w.r.t. [graphs]
+*)
+
+let derive_correctness (funs: Constr.pconstant list) (graphs:inductive list) =
+ let open EConstr in
+ assert (funs <> []);
+ assert (graphs <> []);
+ let funs = Array.of_list funs and graphs = Array.of_list graphs in
+ let map (c, u) = mkConstU (c, EInstance.make u) in
+ let funs_constr = Array.map map funs in
+ (* XXX STATE Why do we need this... why is the toplevel protection not enough *)
+ funind_purify
+ (fun () ->
+ let env = Global.env () in
+ let evd = ref (Evd.from_env env) in
+ let graphs_constr = Array.map mkInd graphs in
+ let lemmas_types_infos =
+ Util.Array.map2_i
+ (fun i f_constr graph ->
+ (* let const_of_f,u = destConst f_constr in *)
+ let (type_of_lemma_ctxt,type_of_lemma_concl,graph) =
+ generate_type evd false f_constr graph i
+ in
+ let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
+ graphs_constr.(i) <- graph;
+ let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
+ let sigma, _ = Typing.type_of (Global.env ()) !evd type_of_lemma in
+ evd := sigma;
+ let type_of_lemma = Reductionops.nf_zeta (Global.env ()) !evd type_of_lemma in
+ observe Pp.(str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma);
+ type_of_lemma,type_info
+ )
+ funs_constr
+ graphs_constr
+ in
+ let schemes =
+ (* The functional induction schemes are computed and not saved if there is more that one function
+ if the block contains only one function we can safely reuse [f_rect]
+ *)
+ try
+ if not (Int.equal (Array.length funs_constr) 1) then raise Not_found;
+ [| find_induction_principle evd funs_constr.(0) |]
+ with Not_found ->
+ (
+
+ Array.of_list
+ (List.map
+ (fun entry ->
+ (EConstr.of_constr (fst (fst(Future.force entry.Proof_global.proof_entry_body))), EConstr.of_constr (Option.get entry.Proof_global.proof_entry_type ))
+ )
+ (Functional_principles_types.make_scheme evd (Array.map_to_list (fun const -> const,Sorts.InType) funs))
+ )
+ )
+ in
+ let proving_tac =
+ prove_fun_correct !evd funs_constr graphs_constr schemes lemmas_types_infos
+ in
+ Array.iteri
+ (fun i f_as_constant ->
+ let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
+ (*i The next call to mk_correct_id is valid since we are constructing the lemma
+ Ensures by: obvious
+ i*)
+ let lem_id = mk_correct_id f_id in
+ let (typ,_) = lemmas_types_infos.(i) in
+ let info = Lemmas.Info.make
+ ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
+ ~kind:(Decls.(IsProof Theorem)) () in
+ let lemma = Lemmas.start_lemma
+ ~name:lem_id
+ ~poly:false
+ ~info
+ !evd
+ typ in
+ let lemma = fst @@ Lemmas.by
+ (Proofview.V82.tactic (proving_tac i)) lemma in
+ let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in
+ let finfo = find_Function_infos (fst f_as_constant) in
+ (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *)
+ let _,lem_cst_constr = Evd.fresh_global
+ (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
+ let (lem_cst,_) = EConstr.destConst !evd lem_cst_constr in
+ update_Function {finfo with correctness_lemma = Some lem_cst};
+
+ )
+ funs;
+ let lemmas_types_infos =
+ Util.Array.map2_i
+ (fun i f_constr graph ->
+ let (type_of_lemma_ctxt,type_of_lemma_concl,graph) =
+ generate_type evd true f_constr graph i
+ in
+ let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
+ graphs_constr.(i) <- graph;
+ let type_of_lemma =
+ EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt
+ in
+ let type_of_lemma = Reductionops.nf_zeta env !evd type_of_lemma in
+ observe Pp.(str "type_of_lemma := " ++ Printer.pr_leconstr_env env !evd type_of_lemma);
+ type_of_lemma,type_info
+ )
+ funs_constr
+ graphs_constr
+ in
+
+ let (kn,_) as graph_ind,u = (destInd !evd graphs_constr.(0)) in
+ let mib,mip = Global.lookup_inductive graph_ind in
+ let sigma, scheme =
+ (Indrec.build_mutual_induction_scheme (Global.env ()) !evd
+ (Array.to_list
+ (Array.mapi
+ (fun i _ -> ((kn,i), EInstance.kind !evd u),true, Sorts.InType)
+ mib.Declarations.mind_packets
+ )
+ )
+ )
+ in
+ let schemes =
+ Array.of_list scheme
+ in
+ let proving_tac =
+ prove_fun_complete funs_constr mib.Declarations.mind_packets schemes lemmas_types_infos
+ in
+ Array.iteri
+ (fun i f_as_constant ->
+ let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
+ (*i The next call to mk_complete_id is valid since we are constructing the lemma
+ Ensures by: obvious
+ i*)
+ let lem_id = mk_complete_id f_id in
+ let info = Lemmas.Info.make
+ ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
+ ~kind:Decls.(IsProof Theorem) () in
+ let lemma = Lemmas.start_lemma ~name:lem_id ~poly:false ~info
+ sigma (fst lemmas_types_infos.(i)) in
+ let lemma = fst (Lemmas.by
+ (Proofview.V82.tactic (observe_tac ("prove completeness ("^(Id.to_string f_id)^")")
+ (proving_tac i))) lemma) in
+ let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in
+ let finfo = find_Function_infos (fst f_as_constant) in
+ let _,lem_cst_constr = Evd.fresh_global
+ (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
+ let (lem_cst,_) = destConst !evd lem_cst_constr in
+ update_Function {finfo with completeness_lemma = Some lem_cst}
+ )
+ funs)
+ ()
+
+let warn_funind_cannot_build_inversion =
+ CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind"
+ Pp.(fun e' -> strbrk "Cannot build inversion information" ++
+ if do_observe () then (fnl() ++ CErrors.print e') else mt ())
+
+let derive_inversion fix_names =
+ try
+ let evd' = Evd.from_env (Global.env ()) in
+ (* we first transform the fix_names identifier into their corresponding constant *)
+ let evd',fix_names_as_constant =
+ List.fold_right
+ (fun id (evd,l) ->
+ let evd,c =
+ Evd.fresh_global
+ (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in
+ let (cst, u) = EConstr.destConst evd c in
+ evd, (cst, EConstr.EInstance.kind evd u) :: l
+ )
+ fix_names
+ (evd',[])
+ in
+ (*
+ Then we check that the graphs have been defined
+ If one of the graphs haven't been defined
+ we do nothing
+ *)
+ List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ;
+ try
+ let evd', lind =
+ List.fold_right
+ (fun id (evd,l) ->
+ let evd,id =
+ Evd.fresh_global
+ (Global.env ()) evd
+ (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id)))
+ in
+ evd,(fst (EConstr.destInd evd id))::l
+ )
+ fix_names
+ (evd',[])
+ in
+ derive_correctness
+ fix_names_as_constant
+ lind;
+ with e when CErrors.noncritical e ->
+ warn_funind_cannot_build_inversion e
+ with e when CErrors.noncritical e ->
+ warn_funind_cannot_build_inversion e
+
+let register_wf interactive_proof ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body
+ pre_hook
+ =
+ let type_of_f = Constrexpr_ops.mkCProdN args ret_type in
+ let rec_arg_num =
+ let names =
+ List.map
+ CAst.(with_val (fun x -> x))
+ (Constrexpr_ops.names_of_local_assums args)
+ in
+ List.index Name.equal (Name wf_arg) names
+ in
+ let unbounded_eq =
+ let f_app_args =
+ CAst.make @@ Constrexpr.CAppExpl(
+ (None, Libnames.qualid_of_ident fname,None) ,
+ (List.map
+ (function
+ | {CAst.v=Anonymous} -> assert false
+ | {CAst.v=Name e} -> (Constrexpr_ops.mkIdentC e)
+ )
+ (Constrexpr_ops.names_of_local_assums args)
+ )
+ )
+ in
+ CAst.make @@ Constrexpr.CApp ((None,Constrexpr_ops.mkRefC (Libnames.qualid_of_string "Logic.eq")),
+ [(f_app_args,None);(body,None)])
+ in
+ let eq = Constrexpr_ops.mkCProdN args unbounded_eq in
+ let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type
+ nb_args relation =
+ try
+ pre_hook [fconst]
+ (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes
+ functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
+ );
+ derive_inversion [fname]
+ with e when CErrors.noncritical e ->
+ (* No proof done *)
+ ()
+ in
+ Recdef.recursive_definition ~interactive_proof
+ ~is_mes fname rec_impls
+ type_of_f
+ wf_rel_expr
+ rec_arg_num
+ eq
+ hook
+ using_lemmas
+
+let register_mes interactive_proof fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body =
+ let wf_arg_type,wf_arg =
+ match wf_arg with
+ | None ->
+ begin
+ match args with
+ | [Constrexpr.CLocalAssum ([{CAst.v=Name x}],k,t)] -> t,x
+ | _ -> CErrors.user_err (Pp.str "Recursive argument must be specified")
+ end
+ | Some wf_args ->
+ try
+ match
+ List.find
+ (function
+ | Constrexpr.CLocalAssum(l,k,t) ->
+ List.exists
+ (function {CAst.v=Name id} -> Id.equal id wf_args | _ -> false)
+ l
+ | _ -> false
+ )
+ args
+ with
+ | Constrexpr.CLocalAssum(_,k,t) -> t,wf_args
+ | _ -> assert false
+ with Not_found -> assert false
+ in
+ let wf_rel_from_mes,is_mes =
+ match wf_rel_expr_opt with
+ | None ->
+ let ltof =
+ let make_dir l = DirPath.make (List.rev_map Id.of_string l) in
+ Libnames.qualid_of_path
+ (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof"))
+ in
+ let fun_from_mes =
+ let applied_mes =
+ Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in
+ Constrexpr_ops.mkLambdaC ([CAst.make @@ Name wf_arg],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes)
+ in
+ let wf_rel_from_mes =
+ Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes])
+ in
+ wf_rel_from_mes,true
+ | Some wf_rel_expr ->
+ let wf_rel_with_mes =
+ let a = Names.Id.of_string "___a" in
+ let b = Names.Id.of_string "___b" in
+ Constrexpr_ops.mkLambdaC(
+ [CAst.make @@ Name a; CAst.make @@ Name b],
+ Constrexpr.Default Decl_kinds.Explicit,
+ wf_arg_type,
+ Constrexpr_ops.mkAppC(wf_rel_expr,
+ [
+ Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]);
+ Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b])
+ ])
+ )
+ in
+ wf_rel_with_mes,false
+ in
+ register_wf interactive_proof ~is_mes:is_mes fname rec_impls wf_rel_from_mes wf_arg
+ using_lemmas args ret_type body
+
+let do_generate_principle_aux pconstants on_error register_built interactive_proof fixpoint_exprl : Lemmas.t option =
+ List.iter (fun { Vernacexpr.notations } ->
+ if not (List.is_empty notations)
+ then CErrors.user_err (Pp.str "Function does not support notations for now")) fixpoint_exprl;
+ let lemma, _is_struct =
+ match fixpoint_exprl with
+ | [{ Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CWfRec (wf_x,wf_rel)} } as fixpoint_expr] ->
+ let { Vernacexpr.fname; univs; binders; rtype; body_def } as fixpoint_expr =
+ match recompute_binder_list [fixpoint_expr] with
+ | [e] -> e
+ | _ -> assert false
+ in
+ let fixpoint_exprl = [fixpoint_expr] in
+ let body = match body_def with | Some body -> body | None ->
+ CErrors.user_err ~hdr:"Function" (Pp.str "Body of Function must be given") in
+ let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
+ let using_lemmas = [] in
+ let pre_hook pconstants =
+ generate_principle
+ (ref (Evd.from_env (Global.env ())))
+ pconstants
+ on_error
+ true
+ register_built
+ fixpoint_exprl
+ recdefs
+ true
+ in
+ if register_built
+ then register_wf interactive_proof fname.CAst.v rec_impls wf_rel wf_x.CAst.v using_lemmas binders rtype body pre_hook, false
+ else None, false
+ | [{ Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CMeasureRec(wf_x,wf_mes,wf_rel_opt)} } as fixpoint_expr] ->
+ let { Vernacexpr.fname; univs; binders; rtype; body_def} as fixpoint_expr =
+ match recompute_binder_list [fixpoint_expr] with
+ | [e] -> e
+ | _ -> assert false
+ in
+ let fixpoint_exprl = [fixpoint_expr] in
+ let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
+ let using_lemmas = [] in
+ let body = match body_def with
+ | Some body -> body
+ | None ->
+ CErrors.user_err ~hdr:"Function" Pp.(str "Body of Function must be given") in
+ let pre_hook pconstants =
+ generate_principle
+ (ref (Evd.from_env (Global.env ())))
+ pconstants
+ on_error
+ true
+ register_built
+ fixpoint_exprl
+ recdefs
+ true
+ in
+ if register_built
+ then register_mes interactive_proof fname.CAst.v rec_impls wf_mes wf_rel_opt
+ (Option.map (fun x -> x.CAst.v) wf_x) using_lemmas binders rtype body pre_hook, true
+ else None, true
+ | _ ->
+ List.iter (function { Vernacexpr.rec_order } ->
+ match rec_order with
+ | Some { CAst.v = (Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _) } ->
+ CErrors.user_err
+ (Pp.str "Cannot use mutual definition with well-founded recursion or measure")
+ | _ -> ()
+ )
+ fixpoint_exprl;
+ let fixpoint_exprl = recompute_binder_list fixpoint_exprl in
+ let fix_names = List.map (function { Vernacexpr.fname } -> fname.CAst.v) fixpoint_exprl in
+ (* ok all the expressions are structural *)
+ let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
+ let is_rec = List.exists (is_rec fix_names) recdefs in
+ let lemma,evd,pconstants =
+ if register_built
+ then register_struct is_rec fixpoint_exprl
+ else None, Evd.from_env (Global.env ()), pconstants
+ in
+ let evd = ref evd in
+ generate_principle
+ (ref !evd)
+ pconstants
+ on_error
+ false
+ register_built
+ fixpoint_exprl
+ recdefs
+ interactive_proof
+ (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof);
+ if register_built then
+ begin derive_inversion fix_names; end;
+ lemma, true
+ in
+ lemma
+
+let warn_cannot_define_graph =
+ CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind"
+ (fun (names,error) ->
+ Pp.(strbrk "Cannot define graph(s) for " ++
+ h 1 names ++ error))
+
+let warn_cannot_define_principle =
+ CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind"
+ (fun (names,error) ->
+ Pp.(strbrk "Cannot define induction principle(s) for "++
+ h 1 names ++ error))
+
+let warning_error names e =
+ let e_explain e =
+ match e with
+ | ToShow e ->
+ Pp.(spc () ++ CErrors.print e)
+ | _ ->
+ if do_observe ()
+ then Pp.(spc () ++ CErrors.print e)
+ else Pp.mt ()
+ in
+ match e with
+ | Building_graph e ->
+ let names = Pp.(prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) in
+ warn_cannot_define_graph (names,e_explain e)
+ | Defining_principle e ->
+ let names = Pp.(prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) in
+ warn_cannot_define_principle (names,e_explain e)
+ | _ -> raise e
+
+let error_error names e =
+ let e_explain e =
+ match e with
+ | ToShow e -> Pp.(spc () ++ CErrors.print e)
+ | _ -> if do_observe () then Pp.(spc () ++ CErrors.print e) else Pp.mt ()
+ in
+ match e with
+ | Building_graph e ->
+ CErrors.user_err
+ Pp.(str "Cannot define graph(s) for " ++
+ h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++
+ e_explain e)
+ | _ -> raise e
+
+(* [chop_n_arrow n t] chops the [n] first arrows in [t]
+ Acts on Constrexpr.constr_expr
+*)
+let rec chop_n_arrow n t =
+ let exception Stop of Constrexpr.constr_expr in
+ let open Constrexpr in
+ if n <= 0
+ then t (* If we have already removed all the arrows then return the type *)
+ else (* If not we check the form of [t] *)
+ match t.CAst.v with
+ | Constrexpr.CProdN(nal_ta',t') -> (* If we have a forall, two results are possible :
+ either we need to discard more than the number of arrows contained
+ in this product declaration then we just recall [chop_n_arrow] on
+ the remaining number of arrow to chop and [t'] we discard it and
+ recall [chop_n_arrow], either this product contains more arrows
+ than the number we need to chop and then we return the new type
+ *)
+ begin
+ try
+ let new_n =
+ let rec aux (n:int) = function
+ [] -> n
+ | CLocalAssum(nal,k,t'')::nal_ta' ->
+ let nal_l = List.length nal in
+ if n >= nal_l
+ then
+ aux (n - nal_l) nal_ta'
+ else
+ let new_t' = CAst.make @@
+ Constrexpr.CProdN(
+ CLocalAssum((snd (List.chop n nal)),k,t'')::nal_ta',t')
+ in
+ raise (Stop new_t')
+ | _ -> CErrors.anomaly (Pp.str "Not enough products.")
+ in
+ aux n nal_ta'
+ in
+ chop_n_arrow new_n t'
+ with Stop t -> t
+ end
+ | _ -> CErrors.anomaly (Pp.str "Not enough products.")
+
+let rec add_args id new_args =
+ let open Libnames in
+ let open Constrexpr in
+ CAst.map (function
+ | CRef (qid,_) as b ->
+ if qualid_is_ident qid && Id.equal (qualid_basename qid) id then
+ CAppExpl((None,qid,None),new_args)
+ else b
+ | CFix _ | CCoFix _ ->
+ CErrors.anomaly ~label:"add_args " (Pp.str "todo.")
+ | CProdN(nal,b1) ->
+ CProdN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2)
+ | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t)
+ | CLocalPattern _ ->
+ CErrors.user_err (Pp.str "pattern with quote not allowed here.")) nal,
+ add_args id new_args b1)
+ | CLambdaN(nal,b1) ->
+ CLambdaN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2)
+ | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t)
+ | CLocalPattern _ ->
+ CErrors.user_err (Pp.str "pattern with quote not allowed here.")) nal,
+ add_args id new_args b1)
+ | CLetIn(na,b1,t,b2) ->
+ CLetIn(na,add_args id new_args b1,Option.map (add_args id new_args) t,add_args id new_args b2)
+ | CAppExpl((pf,qid,us),exprl) ->
+ if qualid_is_ident qid && Id.equal (qualid_basename qid) id then
+ CAppExpl((pf,qid,us),new_args@(List.map (add_args id new_args) exprl))
+ else CAppExpl((pf,qid,us),List.map (add_args id new_args) exprl)
+ | CApp((pf,b),bl) ->
+ CApp((pf,add_args id new_args b),
+ List.map (fun (e,o) -> add_args id new_args e,o) bl)
+ | CCases(sty,b_option,cel,cal) ->
+ CCases(sty,Option.map (add_args id new_args) b_option,
+ List.map (fun (b,na,b_option) ->
+ add_args id new_args b,
+ na, b_option) cel,
+ List.map CAst.(map (fun (cpl,e) -> (cpl,add_args id new_args e))) cal
+ )
+ | CLetTuple(nal,(na,b_option),b1,b2) ->
+ CLetTuple(nal,(na,Option.map (add_args id new_args) b_option),
+ add_args id new_args b1,
+ add_args id new_args b2
+ )
+
+ | CIf(b1,(na,b_option),b2,b3) ->
+ CIf(add_args id new_args b1,
+ (na,Option.map (add_args id new_args) b_option),
+ add_args id new_args b2,
+ add_args id new_args b3
+ )
+ | CHole _
+ | CPatVar _
+ | CEvar _
+ | CPrim _
+ | CSort _ as b -> b
+ | CCast(b1,b2) ->
+ CCast(add_args id new_args b1,
+ Glob_ops.map_cast_type (add_args id new_args) b2)
+ | CRecord pars ->
+ CRecord (List.map (fun (e,o) -> e, add_args id new_args o) pars)
+ | CNotation _ ->
+ CErrors.anomaly ~label:"add_args " (Pp.str "CNotation.")
+ | CGeneralization _ ->
+ CErrors.anomaly ~label:"add_args " (Pp.str "CGeneralization.")
+ | CDelimiters _ ->
+ CErrors.anomaly ~label:"add_args " (Pp.str "CDelimiters.")
+ )
+
+let rec get_args b t : Constrexpr.local_binder_expr list * Constrexpr.constr_expr * Constrexpr.constr_expr =
+ let open Constrexpr in
+ match b.CAst.v with
+ | Constrexpr.CLambdaN (CLocalAssum(nal,k,ta) as d::rest, b') ->
+ begin
+ let n = List.length nal in
+ let nal_tas,b'',t'' = get_args (CAst.make ?loc:b.CAst.loc @@ Constrexpr.CLambdaN (rest,b')) (chop_n_arrow n t) in
+ d :: nal_tas, b'',t''
+ end
+ | Constrexpr.CLambdaN ([], b) -> [],b,t
+ | _ -> [],b,t
+
+let make_graph (f_ref : GlobRef.t) =
+ let open Constrexpr in
+ let env = Global.env() in
+ let sigma = Evd.from_env env in
+ let c,c_body =
+ match f_ref with
+ | GlobRef.ConstRef c ->
+ begin
+ try c,Global.lookup_constant c
+ with Not_found ->
+ CErrors.user_err Pp.(str "Cannot find " ++ Printer.pr_leconstr_env env sigma (EConstr.mkConst c))
+ end
+ | _ ->
+ CErrors.user_err Pp.(str "Not a function reference")
+ in
+ (match Global.body_of_constant_body Library.indirect_accessor c_body with
+ | None ->
+ CErrors.user_err (Pp.str "Cannot build a graph over an axiom!")
+ | Some (body, _, _) ->
+ let env = Global.env () in
+ let extern_body,extern_type =
+ with_full_print (fun () ->
+ (Constrextern.extern_constr false env sigma (EConstr.of_constr body),
+ Constrextern.extern_type false env sigma
+ (EConstr.of_constr (*FIXME*) c_body.Declarations.const_type)
+ )
+ )
+ ()
+ in
+ let (nal_tas,b,t) = get_args extern_body extern_type in
+ let expr_list =
+ match b.CAst.v with
+ | Constrexpr.CFix(l_id,fixexprl) ->
+ let l =
+ List.map
+ (fun (id,recexp,bl,t,b) ->
+ let { CAst.loc; v=rec_id } = match Option.get recexp with
+ | { CAst.v = CStructRec id } -> id
+ | { CAst.v = CWfRec (id,_) } -> id
+ | { CAst.v = CMeasureRec (oid,_,_) } -> Option.get oid
+ in
+ let new_args =
+ List.flatten
+ (List.map
+ (function
+ | Constrexpr.CLocalDef (na,_,_)-> []
+ | Constrexpr.CLocalAssum (nal,_,_) ->
+ List.map
+ (fun {CAst.loc;v=n} -> CAst.make ?loc @@
+ CRef(Libnames.qualid_of_ident ?loc @@ Nameops.Name.get_id n,None))
+ nal
+ | Constrexpr.CLocalPattern _ -> assert false
+ )
+ nal_tas
+ )
+ in
+ let b' = add_args id.CAst.v new_args b in
+ { Vernacexpr.fname=id; univs=None
+ ; rec_order = Some (CAst.make (CStructRec (CAst.make rec_id)))
+ ; binders = nal_tas@bl; rtype=t; body_def=Some b'; notations = []}
+ )
+ fixexprl
+ in
+ l
+ | _ ->
+ let fname = CAst.make (Label.to_id (Constant.label c)) in
+ [{ Vernacexpr.fname; univs=None; rec_order = None; binders=nal_tas; rtype=t; body_def=Some b; notations=[]}]
+ in
+ let mp = Constant.modpath c in
+ let pstate = do_generate_principle_aux [c,Univ.Instance.empty] error_error false false expr_list in
+ assert (Option.is_empty pstate);
+ (* We register the infos *)
+ List.iter
+ (fun { Vernacexpr.fname= {CAst.v=id} } ->
+ add_Function false (Constant.make2 mp (Label.of_id id)))
+ expr_list)
+
+(* *************** statically typed entrypoints ************************* *)
+
+let do_generate_principle_interactive fixl : Lemmas.t =
+ match
+ do_generate_principle_aux [] warning_error true true fixl
+ with
+ | Some lemma -> lemma
+ | None ->
+ CErrors.anomaly
+ (Pp.str"indfun: leaving no open proof in interactive mode")
+
+let do_generate_principle fixl : unit =
+ match do_generate_principle_aux [] warning_error true false fixl with
+ | Some _lemma ->
+ CErrors.anomaly
+ (Pp.str"indfun: leaving a goal open in non-interactive mode")
+ | None -> ()
diff --git a/plugins/funind/gen_principle.mli b/plugins/funind/gen_principle.mli
new file mode 100644
index 0000000000..06ece6feee
--- /dev/null
+++ b/plugins/funind/gen_principle.mli
@@ -0,0 +1,17 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+val warn_cannot_define_graph : ?loc:Loc.t -> Pp.t * Pp.t -> unit
+val warn_cannot_define_principle : ?loc:Loc.t -> Pp.t * Pp.t -> unit
+
+val do_generate_principle_interactive : Vernacexpr.fixpoint_expr list -> Lemmas.t
+val do_generate_principle : Vernacexpr.fixpoint_expr list -> unit
+
+val make_graph : Names.GlobRef.t -> unit
diff --git a/plugins/funind/glob_term_to_relation.ml b/plugins/funind/glob_term_to_relation.ml
index 6dc01a9f8f..798c62d549 100644
--- a/plugins/funind/glob_term_to_relation.ml
+++ b/plugins/funind/glob_term_to_relation.ml
@@ -1554,5 +1554,3 @@ let build_inductive evd funconstants funsargs returned_types rtl =
Detyping.print_universes := pu;
Constrextern.print_universes := cu;
raise (Building_graph e)
-
-
diff --git a/plugins/funind/indfun.ml b/plugins/funind/indfun.ml
index 73e9c94d34..eeb2f246c2 100644
--- a/plugins/funind/indfun.ml
+++ b/plugins/funind/indfun.ml
@@ -13,43 +13,13 @@ open Sorts
open Util
open Names
open Constr
-open Context
open EConstr
open Pp
open Indfun_common
-open Libnames
-open Glob_term
-open Declarations
open Tactypes
-open Decl_kinds
module RelDecl = Context.Rel.Declaration
-(* Move to common *)
-let observe strm =
- if do_observe ()
- then Feedback.msg_debug strm
- else ()
-
-let do_observe_tac s tac g =
- let goal =
- try Printer.pr_goal g
- with e when CErrors.noncritical e -> assert false
- in
- try
- let v = tac g in
- msgnl (goal ++ fnl () ++ s ++(str " ")++(str "finished")); v
- with reraise ->
- let reraise = CErrors.push reraise in
- observe (hov 0 (str "observation "++ s++str " raised exception " ++
- CErrors.iprint reraise ++ str " on goal" ++ fnl() ++ goal ));
- iraise reraise;;
-
-let observe_tac s tac g =
- if do_observe ()
- then do_observe_tac (str s) tac g
- else tac g
-
let is_rec_info sigma scheme_info =
let test_branche min acc decl =
acc || (
@@ -175,1599 +145,3 @@ let functional_induction with_clean c princl pat =
subst_and_reduce
g'
in res
-
-let rec abstract_glob_constr c = function
- | [] -> c
- | Constrexpr.CLocalDef (x,b,t)::bl -> Constrexpr_ops.mkLetInC(x,b,t,abstract_glob_constr c bl)
- | Constrexpr.CLocalAssum (idl,k,t)::bl ->
- List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl
- (abstract_glob_constr c bl)
- | Constrexpr.CLocalPattern _::bl -> assert false
-
-let interp_casted_constr_with_implicits env sigma impls c =
- Constrintern.intern_gen Pretyping.WithoutTypeConstraint env sigma ~impls c
-
-(*
- Construct a fixpoint as a Glob_term
- and not as a constr
-*)
-
-let build_newrecursive lnameargsardef =
- let env0 = Global.env() in
- let sigma = Evd.from_env env0 in
- let (rec_sign,rec_impls) =
- List.fold_left
- (fun (env,impls) { Vernacexpr.fname={CAst.v=recname}; binders; rtype } ->
- let arityc = Constrexpr_ops.mkCProdN binders rtype in
- let arity,ctx = Constrintern.interp_type env0 sigma arityc in
- let evd = Evd.from_env env0 in
- let evd, (_, (_, impls')) = Constrintern.interp_context_evars ~program_mode:false env evd binders in
- let impl = Constrintern.compute_internalization_data env0 evd Constrintern.Recursive arity impls' in
- let open Context.Named.Declaration in
- let r = Sorts.Relevant in (* TODO relevance *)
- (EConstr.push_named (LocalAssum (make_annot recname r,arity)) env, Id.Map.add recname impl impls))
- (env0,Constrintern.empty_internalization_env) lnameargsardef in
- let recdef =
- (* Declare local notations *)
- let f { Vernacexpr.binders; body_def } =
- match body_def with
- | Some body_def ->
- let def = abstract_glob_constr body_def binders in
- interp_casted_constr_with_implicits
- rec_sign sigma rec_impls def
- | None -> user_err ~hdr:"Function" (str "Body of Function must be given")
- in
- States.with_state_protection (List.map f) lnameargsardef
- in
- recdef,rec_impls
-
-let error msg = user_err Pp.(str msg)
-
-(* Checks whether or not the mutual bloc is recursive *)
-let is_rec names =
- let names = List.fold_right Id.Set.add names Id.Set.empty in
- let check_id id names = Id.Set.mem id names in
- let rec lookup names gt = match DAst.get gt with
- | GVar(id) -> check_id id names
- | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ | GInt _ -> false
- | GCast(b,_) -> lookup names b
- | GRec _ -> error "GRec not handled"
- | GIf(b,_,lhs,rhs) ->
- (lookup names b) || (lookup names lhs) || (lookup names rhs)
- | GProd(na,_,t,b) | GLambda(na,_,t,b) ->
- lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b
- | GLetIn(na,b,t,c) ->
- lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c
- | GLetTuple(nal,_,t,b) -> lookup names t ||
- lookup
- (List.fold_left
- (fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc)
- names
- nal
- )
- b
- | GApp(f,args) -> List.exists (lookup names) (f::args)
- | GCases(_,_,el,brl) ->
- List.exists (fun (e,_) -> lookup names e) el ||
- List.exists (lookup_br names) brl
- and lookup_br names {CAst.v=(idl,_,rt)} =
- let new_names = List.fold_right Id.Set.remove idl names in
- lookup new_names rt
- in
- lookup names
-
-let rec local_binders_length = function
- (* Assume that no `{ ... } contexts occur *)
- | [] -> 0
- | Constrexpr.CLocalDef _::bl -> 1 + local_binders_length bl
- | Constrexpr.CLocalAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl
- | Constrexpr.CLocalPattern _::bl -> assert false
-
-let prepare_body { Vernacexpr.binders; rtype } rt =
- let n = local_binders_length binders in
-(* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *)
- let fun_args,rt' = chop_rlambda_n n rt in
- (fun_args,rt')
-
-(* [prove_fun_correct funs_constr graphs_constr schemes lemmas_types_infos i ]
- is the tactic used to prove correctness lemma.
-
- [funs_constr], [graphs_constr] [schemes] [lemmas_types_infos] are the mutually recursive functions
- (resp. graphs of the functions and principles and correctness lemma types) to prove correct.
-
- [i] is the indice of the function to prove correct
-
- The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
- it looks like~:
- [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
- res = f x_1\ldots x_n in, \rightarrow graph\ x_1\ldots x_n\ res]
-
-
- The sketch of the proof is the following one~:
- \begin{enumerate}
- \item intros until $x_n$
- \item $functional\ induction\ (f.(i)\ x_1\ldots x_n)$ using schemes.(i)
- \item for each generated branch intro [res] and [hres :res = f x_1\ldots x_n], rewrite [hres] and the
- apply the corresponding constructor of the corresponding graph inductive.
- \end{enumerate}
-
-*)
-
-let rec generate_fresh_id x avoid i =
- if i == 0
- then []
- else
- let id = Namegen.next_ident_away_in_goal x (Id.Set.of_list avoid) in
- id::(generate_fresh_id x (id::avoid) (pred i))
-
-let make_eq () =
- try EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type"))
- with _ -> assert false
-
-let prove_fun_correct evd funs_constr graphs_constr schemes lemmas_types_infos i : Tacmach.tactic =
- let open Context.Rel.Declaration in
- let open Tacmach in
- let open Tactics in
- let open Tacticals in
- fun g ->
- (* first of all we recreate the lemmas types to be used as predicates of the induction principle
- that is~:
- \[fun (x_1:t_1)\ldots(x_n:t_n)=> fun fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\]
- *)
- (* we the get the definition of the graphs block *)
- let graph_ind,u = destInd evd graphs_constr.(i) in
- let kn = fst graph_ind in
- let mib,_ = Global.lookup_inductive graph_ind in
- (* and the principle to use in this lemma in $\zeta$ normal form *)
- let f_principle,princ_type = schemes.(i) in
- let princ_type = Reductionops.nf_zeta (Global.env ()) evd princ_type in
- let princ_infos = Tactics.compute_elim_sig evd princ_type in
- (* The number of args of the function is then easily computable *)
- let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in
- let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
- let ids = args_names@(pf_ids_of_hyps g) in
- (* Since we cannot ensure that the functional principle is defined in the
- environment and due to the bug #1174, we will need to pose the principle
- using a name
- *)
- let principle_id = Namegen.next_ident_away_in_goal (Id.of_string "princ") (Id.Set.of_list ids) in
- let ids = principle_id :: ids in
- (* We get the branches of the principle *)
- let branches = List.rev princ_infos.Tactics.branches in
- (* and built the intro pattern for each of them *)
- let intro_pats =
- List.map
- (fun decl ->
- List.map
- (fun id -> CAst.make @@ IntroNaming (Namegen.IntroIdentifier id))
- (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl)))))
- )
- branches
- in
- (* before building the full intro pattern for the principle *)
- let eq_ind = make_eq () in
- let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in
- (* The next to referencies will be used to find out which constructor to apply in each branch *)
- let ind_number = ref 0
- and min_constr_number = ref 0 in
- (* The tactic to prove the ith branch of the principle *)
- let prove_branche i g =
- (* We get the identifiers of this branch *)
- let pre_args =
- List.fold_right
- (fun {CAst.v=pat} acc ->
- match pat with
- | IntroNaming (Namegen.IntroIdentifier id) -> id::acc
- | _ -> anomaly (Pp.str "Not an identifier.")
- )
- (List.nth intro_pats (pred i))
- []
- in
- (* and get the real args of the branch by unfolding the defined constant *)
- (*
- We can then recompute the arguments of the constructor.
- For each [hid] introduced by this branch, if [hid] has type
- $forall res, res=fv -> graph.(j)\ x_1\ x_n res$ the corresponding arguments of the constructor are
- [ fv (hid fv (refl_equal fv)) ].
- If [hid] has another type the corresponding argument of the constructor is [hid]
- *)
- let constructor_args g =
- List.fold_right
- (fun hid acc ->
- let type_of_hid = pf_unsafe_type_of g (mkVar hid) in
- let sigma = project g in
- match EConstr.kind sigma type_of_hid with
- | Prod(_,_,t') ->
- begin
- match EConstr.kind sigma t' with
- | Prod(_,t'',t''') ->
- begin
- match EConstr.kind sigma t'',EConstr.kind sigma t''' with
- | App(eq,args), App(graph',_)
- when
- (EConstr.eq_constr sigma eq eq_ind) &&
- Array.exists (EConstr.eq_constr_nounivs sigma graph') graphs_constr ->
- (args.(2)::(mkApp(mkVar hid,[|args.(2);(mkApp(eq_construct,[|args.(0);args.(2)|]))|]))
- ::acc)
- | _ -> mkVar hid :: acc
- end
- | _ -> mkVar hid :: acc
- end
- | _ -> mkVar hid :: acc
- ) pre_args []
- in
- (* in fact we must also add the parameters to the constructor args *)
- let constructor_args g =
- let params_id = fst (List.chop princ_infos.Tactics.nparams args_names) in
- (List.map mkVar params_id)@((constructor_args g))
- in
- (* We then get the constructor corresponding to this branch and
- modifies the references has needed i.e.
- if the constructor is the last one of the current inductive then
- add one the number of the inductive to take and add the number of constructor of the previous
- graph to the minimal constructor number
- *)
- let constructor =
- let constructor_num = i - !min_constr_number in
- let length = Array.length (mib.Declarations.mind_packets.(!ind_number).Declarations.mind_consnames) in
- if constructor_num <= length
- then
- begin
- (kn,!ind_number),constructor_num
- end
- else
- begin
- incr ind_number;
- min_constr_number := !min_constr_number + length ;
- (kn,!ind_number),1
- end
- in
- (* we can then build the final proof term *)
- let app_constructor g = applist((mkConstructU(constructor,u)),constructor_args g) in
- (* an apply the tactic *)
- let res,hres =
- match generate_fresh_id (Id.of_string "z") (ids(* @this_branche_ids *)) 2 with
- | [res;hres] -> res,hres
- | _ -> assert false
- in
- (* observe (str "constructor := " ++ Printer.pr_lconstr_env (pf_env g) app_constructor); *)
- (
- tclTHENLIST
- [
- observe_tac("h_intro_patterns ") (let l = (List.nth intro_pats (pred i)) in
- match l with
- | [] -> tclIDTAC
- | _ -> Proofview.V82.of_tactic (intro_patterns false l));
- (* unfolding of all the defined variables introduced by this branch *)
- (* observe_tac "unfolding" pre_tac; *)
- (* $zeta$ normalizing of the conclusion *)
- Proofview.V82.of_tactic (reduce
- (Genredexpr.Cbv
- { Redops.all_flags with
- Genredexpr.rDelta = false ;
- Genredexpr.rConst = []
- }
- )
- Locusops.onConcl);
- observe_tac ("toto ") tclIDTAC;
-
- (* introducing the result of the graph and the equality hypothesis *)
- observe_tac "introducing" (tclMAP (fun x -> Proofview.V82.of_tactic (Simple.intro x)) [res;hres]);
- (* replacing [res] with its value *)
- observe_tac "rewriting res value" (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar hres)));
- (* Conclusion *)
- observe_tac "exact" (fun g ->
- Proofview.V82.of_tactic (exact_check (app_constructor g)) g)
- ]
- )
- g
- in
- (* end of branche proof *)
- let lemmas =
- Array.map
- (fun ((_,(ctxt,concl))) ->
- match ctxt with
- | [] | [_] | [_;_] -> anomaly (Pp.str "bad context.")
- | hres::res::decl::ctxt ->
- let res = EConstr.it_mkLambda_or_LetIn
- (EConstr.it_mkProd_or_LetIn concl [hres;res])
- (LocalAssum (RelDecl.get_annot decl, RelDecl.get_type decl) :: ctxt)
- in
- res)
- lemmas_types_infos
- in
- let param_names = fst (List.chop princ_infos.nparams args_names) in
- let params = List.map mkVar param_names in
- let lemmas = Array.to_list (Array.map (fun c -> applist(c,params)) lemmas) in
- (* The bindings of the principle
- that is the params of the principle and the different lemma types
- *)
- let bindings =
- let params_bindings,avoid =
- List.fold_left2
- (fun (bindings,avoid) decl p ->
- let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
- p::bindings,id::avoid
- )
- ([],pf_ids_of_hyps g)
- princ_infos.params
- (List.rev params)
- in
- let lemmas_bindings =
- List.rev (fst (List.fold_left2
- (fun (bindings,avoid) decl p ->
- let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
- (Reductionops.nf_zeta (pf_env g) (project g) p)::bindings,id::avoid)
- ([],avoid)
- princ_infos.predicates
- (lemmas)))
- in
- (params_bindings@lemmas_bindings)
- in
- tclTHENLIST
- [
- observe_tac "principle" (Proofview.V82.of_tactic (assert_by
- (Name principle_id)
- princ_type
- (exact_check f_principle)));
- observe_tac "intro args_names" (tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) args_names);
- (* observe_tac "titi" (pose_proof (Name (Id.of_string "__")) (Reductionops.nf_beta Evd.empty ((mkApp (mkVar principle_id,Array.of_list bindings))))); *)
- observe_tac "idtac" tclIDTAC;
- tclTHEN_i
- (observe_tac
- "functional_induction" (
- (fun gl ->
- let term = mkApp (mkVar principle_id,Array.of_list bindings) in
- let gl', _ty = pf_eapply (Typing.type_of ~refresh:true) gl term in
- Proofview.V82.of_tactic (apply term) gl')
- ))
- (fun i g -> observe_tac ("proving branche "^string_of_int i) (prove_branche i) g )
- ]
- g
-
-(**
- [find_induction_principle f] searches and returns the [body] and the [type] of [f_rect]
-
- WARNING: while convertible, [type_of body] and [type] can be non equal
-*)
-let find_induction_principle evd f =
- let f_as_constant,u = match EConstr.kind !evd f with
- | Const c' -> c'
- | _ -> user_err Pp.(str "Must be used with a function")
- in
- let infos = find_Function_infos f_as_constant in
- match infos.rect_lemma with
- | None -> raise Not_found
- | Some rect_lemma ->
- let evd',rect_lemma = Evd.fresh_global (Global.env ()) !evd (GlobRef.ConstRef rect_lemma) in
- let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in
- evd:=evd';
- rect_lemma,typ
-
-(* [generate_type g_to_f f graph i] build the completeness (resp. correctness) lemma type if [g_to_f = true]
- (resp. g_to_f = false) where [graph] is the graph of [f] and is the [i]th function in the block.
-
- [generate_type true f i] returns
- \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
- graph\ x_1\ldots x_n\ res \rightarrow res = fv \] decomposed as the context and the conclusion
-
- [generate_type false f i] returns
- \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
- res = fv \rightarrow graph\ x_1\ldots x_n\ res\] decomposed as the context and the conclusion
- *)
-
-let generate_type evd g_to_f f graph i =
- let open Context.Rel.Declaration in
- let open EConstr.Vars in
- (*i we deduce the number of arguments of the function and its returned type from the graph i*)
- let evd',graph =
- Evd.fresh_global (Global.env ()) !evd (GlobRef.IndRef (fst (destInd !evd graph)))
- in
- evd:=evd';
- let sigma, graph_arity = Typing.type_of (Global.env ()) !evd graph in
- evd := sigma;
- let ctxt,_ = decompose_prod_assum !evd graph_arity in
- let fun_ctxt,res_type =
- match ctxt with
- | [] | [_] -> anomaly (Pp.str "Not a valid context.")
- | decl :: fun_ctxt -> fun_ctxt, RelDecl.get_type decl
- in
- let rec args_from_decl i accu = function
- | [] -> accu
- | LocalDef _ :: l ->
- args_from_decl (succ i) accu l
- | _ :: l ->
- let t = mkRel i in
- args_from_decl (succ i) (t :: accu) l
- in
- (*i We need to name the vars [res] and [fv] i*)
- let filter = fun decl -> match RelDecl.get_name decl with
- | Name id -> Some id
- | Anonymous -> None
- in
- let named_ctxt = Id.Set.of_list (List.map_filter filter fun_ctxt) in
- let res_id = Namegen.next_ident_away_in_goal (Id.of_string "_res") named_ctxt in
- let fv_id = Namegen.next_ident_away_in_goal (Id.of_string "fv") (Id.Set.add res_id named_ctxt) in
- (*i we can then type the argument to be applied to the function [f] i*)
- let args_as_rels = Array.of_list (args_from_decl 1 [] fun_ctxt) in
- (*i
- the hypothesis [res = fv] can then be computed
- We will need to lift it by one in order to use it as a conclusion
- i*)
- let make_eq = make_eq ()
- in
- let res_eq_f_of_args =
- mkApp(make_eq ,[|lift 2 res_type;mkRel 1;mkRel 2|])
- in
- (*i
- The hypothesis [graph\ x_1\ldots x_n\ res] can then be computed
- We will need to lift it by one in order to use it as a conclusion
- i*)
- let args_and_res_as_rels = Array.of_list (args_from_decl 3 [] fun_ctxt) in
- let args_and_res_as_rels = Array.append args_and_res_as_rels [|mkRel 1|] in
- let graph_applied = mkApp(graph, args_and_res_as_rels) in
- (*i The [pre_context] is the defined to be the context corresponding to
- \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, \]
- i*)
- let pre_ctxt =
- LocalAssum (make_annot (Name res_id) Sorts.Relevant, lift 1 res_type) ::
- LocalDef (make_annot (Name fv_id) Sorts.Relevant, mkApp (f,args_as_rels), res_type) :: fun_ctxt
- in
- (*i and we can return the solution depending on which lemma type we are defining i*)
- if g_to_f
- then LocalAssum (make_annot Anonymous Sorts.Relevant,graph_applied)::pre_ctxt,(lift 1 res_eq_f_of_args),graph
- else LocalAssum (make_annot Anonymous Sorts.Relevant,res_eq_f_of_args)::pre_ctxt,(lift 1 graph_applied),graph
-
-(* [prove_fun_complete funs graphs schemes lemmas_types_infos i]
- is the tactic used to prove completeness lemma.
-
- [funcs], [graphs] [schemes] [lemmas_types_infos] are the mutually recursive functions
- (resp. definitions of the graphs of the functions, principles and correctness lemma types) to prove correct.
-
- [i] is the indice of the function to prove complete
-
- The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
- it looks like~:
- [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
- graph\ x_1\ldots x_n\ res, \rightarrow res = f x_1\ldots x_n in]
-
-
- The sketch of the proof is the following one~:
- \begin{enumerate}
- \item intros until $H:graph\ x_1\ldots x_n\ res$
- \item $elim\ H$ using schemes.(i)
- \item for each generated branch, intro the news hyptohesis, for each such hyptohesis [h], if [h] has
- type [x=?] with [x] a variable, then subst [x],
- if [h] has type [t=?] with [t] not a variable then rewrite [t] in the subterms, else
- if [h] is a match then destruct it, else do just introduce it,
- after all intros, the conclusion should be a reflexive equality.
- \end{enumerate}
-
-*)
-
-let thin ids gl = Proofview.V82.of_tactic (Tactics.clear ids) gl
-
-(* [intros_with_rewrite] do the intros in each branch and treat each new hypothesis
- (unfolding, substituting, destructing cases \ldots)
- *)
-let tauto =
- let open Ltac_plugin in
- let dp = List.map Id.of_string ["Tauto" ; "Init"; "Coq"] in
- let mp = ModPath.MPfile (DirPath.make dp) in
- let kn = KerName.make mp (Label.make "tauto") in
- Proofview.tclBIND (Proofview.tclUNIT ()) begin fun () ->
- let body = Tacenv.interp_ltac kn in
- Tacinterp.eval_tactic body
- end
-
-(* [generalize_dependent_of x hyp g]
- generalize every hypothesis which depends of [x] but [hyp]
-*)
-let generalize_dependent_of x hyp g =
- let open Context.Named.Declaration in
- let open Tacmach in
- let open Tacticals in
- tclMAP
- (function
- | LocalAssum ({binder_name=id},t) when not (Id.equal id hyp) &&
- (Termops.occur_var (pf_env g) (project g) x t) -> tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [mkVar id])) (thin [id])
- | _ -> tclIDTAC
- )
- (pf_hyps g)
- g
-
-let rec intros_with_rewrite g =
- observe_tac "intros_with_rewrite" intros_with_rewrite_aux g
-and intros_with_rewrite_aux : Tacmach.tactic =
- let open Tacmach in
- let open Tactics in
- let open Tacticals in
- fun g ->
- let eq_ind = make_eq () in
- let sigma = project g in
- match EConstr.kind sigma (pf_concl g) with
- | Prod(_,t,t') ->
- begin
- match EConstr.kind sigma t with
- | App(eq,args) when (EConstr.eq_constr sigma eq eq_ind) ->
- if Reductionops.is_conv (pf_env g) (project g) args.(1) args.(2)
- then
- let id = pf_get_new_id (Id.of_string "y") g in
- tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); thin [id]; intros_with_rewrite ] g
- else if isVar sigma args.(1) && (Environ.evaluable_named (destVar sigma args.(1)) (pf_env g))
- then tclTHENLIST[
- Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))]);
- tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))] ((destVar sigma args.(1)),Locus.InHyp) )))
- (pf_ids_of_hyps g);
- intros_with_rewrite
- ] g
- else if isVar sigma args.(2) && (Environ.evaluable_named (destVar sigma args.(2)) (pf_env g))
- then tclTHENLIST[
- Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))]);
- tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))] ((destVar sigma args.(2)),Locus.InHyp) )))
- (pf_ids_of_hyps g);
- intros_with_rewrite
- ] g
- else if isVar sigma args.(1)
- then
- let id = pf_get_new_id (Id.of_string "y") g in
- tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
- generalize_dependent_of (destVar sigma args.(1)) id;
- tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
- intros_with_rewrite
- ]
- g
- else if isVar sigma args.(2)
- then
- let id = pf_get_new_id (Id.of_string "y") g in
- tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
- generalize_dependent_of (destVar sigma args.(2)) id;
- tclTRY (Proofview.V82.of_tactic (Equality.rewriteRL (mkVar id)));
- intros_with_rewrite
- ]
- g
- else
- begin
- let id = pf_get_new_id (Id.of_string "y") g in
- tclTHENLIST[
- Proofview.V82.of_tactic (Simple.intro id);
- tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
- intros_with_rewrite
- ] g
- end
- | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr (UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.False.type")) ->
- Proofview.V82.of_tactic tauto g
- | Case(_,_,v,_) ->
- tclTHENLIST[
- Proofview.V82.of_tactic (simplest_case v);
- intros_with_rewrite
- ] g
- | LetIn _ ->
- tclTHENLIST[
- Proofview.V82.of_tactic (reduce
- (Genredexpr.Cbv
- {Redops.all_flags
- with Genredexpr.rDelta = false;
- })
- Locusops.onConcl)
- ;
- intros_with_rewrite
- ] g
- | _ ->
- let id = pf_get_new_id (Id.of_string "y") g in
- tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);intros_with_rewrite] g
- end
- | LetIn _ ->
- tclTHENLIST[
- Proofview.V82.of_tactic (reduce
- (Genredexpr.Cbv
- {Redops.all_flags
- with Genredexpr.rDelta = false;
- })
- Locusops.onConcl)
- ;
- intros_with_rewrite
- ] g
- | _ -> tclIDTAC g
-
-let rec reflexivity_with_destruct_cases g =
- let open Tacmach in
- let open Tactics in
- let open Tacticals in
- let destruct_case () =
- try
- match EConstr.kind (project g) (snd (destApp (project g) (pf_concl g))).(2) with
- | Case(_,_,v,_) ->
- tclTHENLIST[
- Proofview.V82.of_tactic (simplest_case v);
- Proofview.V82.of_tactic intros;
- observe_tac "reflexivity_with_destruct_cases" reflexivity_with_destruct_cases
- ]
- | _ -> Proofview.V82.of_tactic reflexivity
- with e when CErrors.noncritical e -> Proofview.V82.of_tactic reflexivity
- in
- let eq_ind = make_eq () in
- let my_inj_flags = Some {
- Equality.keep_proof_equalities = false;
- injection_in_context = false; (* for compatibility, necessary *)
- injection_pattern_l2r_order = false; (* probably does not matter; except maybe with dependent hyps *)
- } in
- let discr_inject =
- Tacticals.onAllHypsAndConcl (
- fun sc g ->
- match sc with
- None -> tclIDTAC g
- | Some id ->
- match EConstr.kind (project g) (pf_unsafe_type_of g (mkVar id)) with
- | App(eq,[|_;t1;t2|]) when EConstr.eq_constr (project g) eq eq_ind ->
- if Equality.discriminable (pf_env g) (project g) t1 t2
- then Proofview.V82.of_tactic (Equality.discrHyp id) g
- else if Equality.injectable (pf_env g) (project g) ~keep_proofs:None t1 t2
- then tclTHENLIST [Proofview.V82.of_tactic (Equality.injHyp my_inj_flags None id);thin [id];intros_with_rewrite] g
- else tclIDTAC g
- | _ -> tclIDTAC g
- )
- in
- (tclFIRST
- [ observe_tac "reflexivity_with_destruct_cases : reflexivity" (Proofview.V82.of_tactic reflexivity);
- observe_tac "reflexivity_with_destruct_cases : destruct_case" ((destruct_case ()));
- (* We reach this point ONLY if
- the same value is matched (at least) two times
- along binding path.
- In this case, either we have a discriminable hypothesis and we are done,
- either at least an injectable one and we do the injection before continuing
- *)
- observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases)
- ])
- g
-
-let prove_fun_complete funcs graphs schemes lemmas_types_infos i : Tacmach.tactic =
- let open Tacmach in
- let open Tactics in
- let open Tacticals in
- fun g ->
- (* We compute the types of the different mutually recursive lemmas
- in $\zeta$ normal form
- *)
- let lemmas =
- Array.map
- (fun (_,(ctxt,concl)) -> Reductionops.nf_zeta (pf_env g) (project g) (EConstr.it_mkLambda_or_LetIn concl ctxt))
- lemmas_types_infos
- in
- (* We get the constant and the principle corresponding to this lemma *)
- let f = funcs.(i) in
- let graph_principle = Reductionops.nf_zeta (pf_env g) (project g) (EConstr.of_constr schemes.(i)) in
- let princ_type = pf_unsafe_type_of g graph_principle in
- let princ_infos = Tactics.compute_elim_sig (project g) princ_type in
- (* Then we get the number of argument of the function
- and compute a fresh name for each of them
- *)
- let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in
- let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
- let ids = args_names@(pf_ids_of_hyps g) in
- (* and fresh names for res H and the principle (cf bug bug #1174) *)
- let res,hres,graph_principle_id =
- match generate_fresh_id (Id.of_string "z") ids 3 with
- | [res;hres;graph_principle_id] -> res,hres,graph_principle_id
- | _ -> assert false
- in
- let ids = res::hres::graph_principle_id::ids in
- (* we also compute fresh names for each hyptohesis of each branch
- of the principle *)
- let branches = List.rev princ_infos.branches in
- let intro_pats =
- List.map
- (fun decl ->
- List.map
- (fun id -> id)
- (generate_fresh_id (Id.of_string "y") ids (Termops.nb_prod (project g) (RelDecl.get_type decl)))
- )
- branches
- in
- (* We will need to change the function by its body
- using [f_equation] if it is recursive (that is the graph is infinite
- or unfold if the graph is finite
- *)
- let rewrite_tac j ids : Tacmach.tactic =
- let graph_def = graphs.(j) in
- let infos =
- try find_Function_infos (fst (destConst (project g) funcs.(j)))
- with Not_found -> user_err Pp.(str "No graph found")
- in
- if infos.is_general
- || Rtree.is_infinite Declareops.eq_recarg graph_def.mind_recargs
- then
- let eq_lemma =
- try Option.get (infos).equation_lemma
- with Option.IsNone -> anomaly (Pp.str "Cannot find equation lemma.")
- in
- tclTHENLIST[
- tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) ids;
- Proofview.V82.of_tactic (Equality.rewriteLR (mkConst eq_lemma));
- (* Don't forget to $\zeta$ normlize the term since the principles
- have been $\zeta$-normalized *)
- Proofview.V82.of_tactic (reduce
- (Genredexpr.Cbv
- {Redops.all_flags
- with Genredexpr.rDelta = false;
- })
- Locusops.onConcl)
- ;
- Proofview.V82.of_tactic (generalize (List.map mkVar ids));
- thin ids
- ]
- else
- Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst (project g) f)))])
- in
- (* The proof of each branche itself *)
- let ind_number = ref 0 in
- let min_constr_number = ref 0 in
- let prove_branche i g =
- (* we fist compute the inductive corresponding to the branch *)
- let this_ind_number =
- let constructor_num = i - !min_constr_number in
- let length = Array.length (graphs.(!ind_number).Declarations.mind_consnames) in
- if constructor_num <= length
- then !ind_number
- else
- begin
- incr ind_number;
- min_constr_number := !min_constr_number + length;
- !ind_number
- end
- in
- let this_branche_ids = List.nth intro_pats (pred i) in
- tclTHENLIST[
- (* we expand the definition of the function *)
- observe_tac "rewrite_tac" (rewrite_tac this_ind_number this_branche_ids);
- (* introduce hypothesis with some rewrite *)
- observe_tac "intros_with_rewrite (all)" intros_with_rewrite;
- (* The proof is (almost) complete *)
- observe_tac "reflexivity" (reflexivity_with_destruct_cases)
- ]
- g
- in
- let params_names = fst (List.chop princ_infos.nparams args_names) in
- let open EConstr in
- let params = List.map mkVar params_names in
- tclTHENLIST
- [ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) (args_names@[res;hres]);
- observe_tac "h_generalize"
- (Proofview.V82.of_tactic (generalize [mkApp(applist(graph_principle,params),Array.map (fun c -> applist(c,params)) lemmas)]));
- Proofview.V82.of_tactic (Simple.intro graph_principle_id);
- observe_tac "" (tclTHEN_i
- (observe_tac "elim" (Proofview.V82.of_tactic (elim false None (mkVar hres,NoBindings) (Some (mkVar graph_principle_id,NoBindings)))))
- (fun i g -> observe_tac "prove_branche" (prove_branche i) g ))
- ]
- g
-
-(* [derive_correctness make_scheme funs graphs] create correctness and completeness
- lemmas for each function in [funs] w.r.t. [graphs]
-
- [make_scheme] is Functional_principle_types.make_scheme (dependency pb) and
-*)
-
-let derive_correctness (funs: pconstant list) (graphs:inductive list) =
- assert (funs <> []);
- assert (graphs <> []);
- let funs = Array.of_list funs and graphs = Array.of_list graphs in
- let map (c, u) = mkConstU (c, EInstance.make u) in
- let funs_constr = Array.map map funs in
- (* XXX STATE Why do we need this... why is the toplevel protection not enough *)
- funind_purify
- (fun () ->
- let env = Global.env () in
- let evd = ref (Evd.from_env env) in
- let graphs_constr = Array.map mkInd graphs in
- let lemmas_types_infos =
- Util.Array.map2_i
- (fun i f_constr graph ->
- (* let const_of_f,u = destConst f_constr in *)
- let (type_of_lemma_ctxt,type_of_lemma_concl,graph) =
- generate_type evd false f_constr graph i
- in
- let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
- graphs_constr.(i) <- graph;
- let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
- let sigma, _ = Typing.type_of (Global.env ()) !evd type_of_lemma in
- evd := sigma;
- let type_of_lemma = Reductionops.nf_zeta (Global.env ()) !evd type_of_lemma in
- observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma);
- type_of_lemma,type_info
- )
- funs_constr
- graphs_constr
- in
- let schemes =
- (* The functional induction schemes are computed and not saved if there is more that one function
- if the block contains only one function we can safely reuse [f_rect]
- *)
- try
- if not (Int.equal (Array.length funs_constr) 1) then raise Not_found;
- [| find_induction_principle evd funs_constr.(0) |]
- with Not_found ->
- (
-
- Array.of_list
- (List.map
- (fun entry ->
- (EConstr.of_constr (fst (fst(Future.force entry.Proof_global.proof_entry_body))), EConstr.of_constr (Option.get entry.Proof_global.proof_entry_type ))
- )
- (Functional_principles_types.make_scheme evd (Array.map_to_list (fun const -> const,Sorts.InType) funs))
- )
- )
- in
- let proving_tac =
- prove_fun_correct !evd funs_constr graphs_constr schemes lemmas_types_infos
- in
- Array.iteri
- (fun i f_as_constant ->
- let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
- (*i The next call to mk_correct_id is valid since we are constructing the lemma
- Ensures by: obvious
- i*)
- let lem_id = mk_correct_id f_id in
- let (typ,_) = lemmas_types_infos.(i) in
- let info = Lemmas.Info.make
- ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
- ~kind:(Decls.(IsProof Theorem)) () in
- let lemma = Lemmas.start_lemma
- ~name:lem_id
- ~poly:false
- ~info
- !evd
- typ in
- let lemma = fst @@ Lemmas.by
- (Proofview.V82.tactic (proving_tac i)) lemma in
- let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in
- let finfo = find_Function_infos (fst f_as_constant) in
- (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *)
- let _,lem_cst_constr = Evd.fresh_global
- (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
- let (lem_cst,_) = destConst !evd lem_cst_constr in
- update_Function {finfo with correctness_lemma = Some lem_cst};
-
- )
- funs;
- let lemmas_types_infos =
- Util.Array.map2_i
- (fun i f_constr graph ->
- let (type_of_lemma_ctxt,type_of_lemma_concl,graph) =
- generate_type evd true f_constr graph i
- in
- let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
- graphs_constr.(i) <- graph;
- let type_of_lemma =
- EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt
- in
- let type_of_lemma = Reductionops.nf_zeta env !evd type_of_lemma in
- observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env env !evd type_of_lemma);
- type_of_lemma,type_info
- )
- funs_constr
- graphs_constr
- in
-
- let (kn,_) as graph_ind,u = (destInd !evd graphs_constr.(0)) in
- let mib,mip = Global.lookup_inductive graph_ind in
- let sigma, scheme =
- (Indrec.build_mutual_induction_scheme (Global.env ()) !evd
- (Array.to_list
- (Array.mapi
- (fun i _ -> ((kn,i), EInstance.kind !evd u),true,InType)
- mib.Declarations.mind_packets
- )
- )
- )
- in
- let schemes =
- Array.of_list scheme
- in
- let proving_tac =
- prove_fun_complete funs_constr mib.Declarations.mind_packets schemes lemmas_types_infos
- in
- Array.iteri
- (fun i f_as_constant ->
- let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
- (*i The next call to mk_complete_id is valid since we are constructing the lemma
- Ensures by: obvious
- i*)
- let lem_id = mk_complete_id f_id in
- let info = Lemmas.Info.make
- ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
- ~kind:Decls.(IsProof Theorem) () in
- let lemma = Lemmas.start_lemma ~name:lem_id ~poly:false ~info
- sigma (fst lemmas_types_infos.(i)) in
- let lemma = fst (Lemmas.by
- (Proofview.V82.tactic (observe_tac ("prove completeness ("^(Id.to_string f_id)^")")
- (proving_tac i))) lemma) in
- let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in
- let finfo = find_Function_infos (fst f_as_constant) in
- let _,lem_cst_constr = Evd.fresh_global
- (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
- let (lem_cst,_) = destConst !evd lem_cst_constr in
- update_Function {finfo with completeness_lemma = Some lem_cst}
- )
- funs)
- ()
-
-let warn_funind_cannot_build_inversion =
- CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind"
- (fun e' -> strbrk "Cannot build inversion information" ++
- if do_observe () then (fnl() ++ CErrors.print e') else mt ())
-
-let derive_inversion fix_names =
- try
- let evd' = Evd.from_env (Global.env ()) in
- (* we first transform the fix_names identifier into their corresponding constant *)
- let evd',fix_names_as_constant =
- List.fold_right
- (fun id (evd,l) ->
- let evd,c =
- Evd.fresh_global
- (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in
- let (cst, u) = destConst evd c in
- evd, (cst, EInstance.kind evd u) :: l
- )
- fix_names
- (evd',[])
- in
- (*
- Then we check that the graphs have been defined
- If one of the graphs haven't been defined
- we do nothing
- *)
- List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ;
- try
- let evd', lind =
- List.fold_right
- (fun id (evd,l) ->
- let evd,id =
- Evd.fresh_global
- (Global.env ()) evd
- (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id)))
- in
- evd,(fst (destInd evd id))::l
- )
- fix_names
- (evd',[])
- in
- derive_correctness
- fix_names_as_constant
- lind;
- with e when CErrors.noncritical e ->
- warn_funind_cannot_build_inversion e
- with e when CErrors.noncritical e ->
- warn_funind_cannot_build_inversion e
-
-let warn_cannot_define_graph =
- CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind"
- (fun (names,error) -> strbrk "Cannot define graph(s) for " ++
- h 1 names ++ error)
-
-let warn_cannot_define_principle =
- CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind"
- (fun (names,error) -> strbrk "Cannot define induction principle(s) for "++
- h 1 names ++ error)
-
-let warning_error names e =
- let e_explain e =
- match e with
- | ToShow e ->
- spc () ++ CErrors.print e
- | _ ->
- if do_observe ()
- then (spc () ++ CErrors.print e)
- else mt ()
- in
- match e with
- | Building_graph e ->
- let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in
- warn_cannot_define_graph (names,e_explain e)
- | Defining_principle e ->
- let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in
- warn_cannot_define_principle (names,e_explain e)
- | _ -> raise e
-
-let error_error names e =
- let e_explain e =
- match e with
- | ToShow e -> spc () ++ CErrors.print e
- | _ -> if do_observe () then (spc () ++ CErrors.print e) else mt ()
- in
- match e with
- | Building_graph e ->
- user_err
- (str "Cannot define graph(s) for " ++
- h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++
- e_explain e)
- | _ -> raise e
-
-let generate_principle (evd:Evd.evar_map ref) pconstants on_error
- is_general do_built (fix_rec_l : Vernacexpr.fixpoint_expr list) recdefs interactive_proof
- (continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int ->
- Tacmach.tactic) : unit =
- let names = List.map (function { Vernacexpr.fname = {CAst.v=name} } -> name) fix_rec_l in
- let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in
- let funs_args = List.map fst fun_bodies in
- let funs_types = List.map (function { Vernacexpr.rtype } -> rtype) fix_rec_l in
- try
- (* We then register the Inductive graphs of the functions *)
- Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs;
- if do_built
- then
- begin
- (*i The next call to mk_rel_id is valid since we have just construct the graph
- Ensures by : do_built
- i*)
- let f_R_mut = qualid_of_ident @@ mk_rel_id (List.nth names 0) in
- let ind_kn =
- fst (locate_with_msg
- (pr_qualid f_R_mut++str ": Not an inductive type!")
- locate_ind
- f_R_mut)
- in
- let fname_kn { Vernacexpr.fname } =
- let f_ref = qualid_of_ident ?loc:fname.CAst.loc fname.CAst.v in
- locate_with_msg
- (pr_qualid f_ref++str ": Not an inductive type!")
- locate_constant
- f_ref
- in
- let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in
- let _ =
- List.map_i
- (fun i x ->
- let env = Global.env () in
- let princ = Indrec.lookup_eliminator env (ind_kn,i) (InProp) in
- let evd = ref (Evd.from_env env) in
- let evd',uprinc = Evd.fresh_global env !evd princ in
- let _ = evd := evd' in
- let sigma, princ_type = Typing.type_of ~refresh:true env !evd uprinc in
- evd := sigma;
- let princ_type = EConstr.Unsafe.to_constr princ_type in
- Functional_principles_types.generate_functional_principle
- evd
- interactive_proof
- princ_type
- None
- None
- (Array.of_list pconstants)
- (* funs_kn *)
- i
- (continue_proof 0 [|funs_kn.(i)|])
- )
- 0
- fix_rec_l
- in
- Array.iter (add_Function is_general) funs_kn;
- ()
- end
- with e when CErrors.noncritical e ->
- on_error names e
-
-let register_struct is_rec (fixpoint_exprl: Vernacexpr.fixpoint_expr list) =
- match fixpoint_exprl with
- | [ { Vernacexpr.fname; univs; binders; rtype; body_def } ] when not is_rec ->
- let body = match body_def with
- | Some body -> body
- | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in
- ComDefinition.do_definition
- ~program_mode:false
- ~name:fname.CAst.v
- ~poly:false
- ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
- ~kind:Decls.Definition univs
- binders None body (Some rtype);
- let evd,rev_pconstants =
- List.fold_left
- (fun (evd,l) { Vernacexpr.fname } ->
- let evd,c =
- Evd.fresh_global
- (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in
- let (cst, u) = destConst evd c in
- let u = EInstance.kind evd u in
- evd,((cst, u) :: l)
- )
- (Evd.from_env (Global.env ()),[])
- fixpoint_exprl
- in
- None, evd,List.rev rev_pconstants
- | _ ->
- ComFixpoint.do_fixpoint ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) ~poly:false fixpoint_exprl;
- let evd,rev_pconstants =
- List.fold_left
- (fun (evd,l) { Vernacexpr.fname } ->
- let evd,c =
- Evd.fresh_global
- (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in
- let (cst, u) = destConst evd c in
- let u = EInstance.kind evd u in
- evd,((cst, u) :: l)
- )
- (Evd.from_env (Global.env ()),[])
- fixpoint_exprl
- in
- None,evd,List.rev rev_pconstants
-
-
-let generate_correction_proof_wf f_ref tcc_lemma_ref
- is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
- (_: int) (_:Names.Constant.t array) (_:EConstr.constr array) (_:int) : Tacmach.tactic =
- Functional_principles_proofs.prove_principle_for_gen
- (f_ref,functional_ref,eq_ref)
- tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation
-
-
-let register_wf interactive_proof ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body
- pre_hook
- =
- let type_of_f = Constrexpr_ops.mkCProdN args ret_type in
- let rec_arg_num =
- let names =
- List.map
- CAst.(with_val (fun x -> x))
- (Constrexpr_ops.names_of_local_assums args)
- in
- List.index Name.equal (Name wf_arg) names
- in
- let unbounded_eq =
- let f_app_args =
- CAst.make @@ Constrexpr.CAppExpl(
- (None,qualid_of_ident fname.CAst.v,None) ,
- (List.map
- (function
- | {CAst.v=Anonymous} -> assert false
- | {CAst.v=Name e} -> (Constrexpr_ops.mkIdentC e)
- )
- (Constrexpr_ops.names_of_local_assums args)
- )
- )
- in
- CAst.make @@ Constrexpr.CApp ((None,Constrexpr_ops.mkRefC (qualid_of_string "Logic.eq")),
- [(f_app_args,None);(body,None)])
- in
- let eq = Constrexpr_ops.mkCProdN args unbounded_eq in
- let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type
- nb_args relation =
- try
- pre_hook [fconst]
- (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes
- functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
- );
- derive_inversion [fname.CAst.v]
- with e when CErrors.noncritical e ->
- (* No proof done *)
- ()
- in
- Recdef.recursive_definition ~interactive_proof
- ~is_mes fname.CAst.v rec_impls
- type_of_f
- wf_rel_expr
- rec_arg_num
- eq
- hook
- using_lemmas
-
-
-let register_mes interactive_proof fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body =
- let wf_arg_type,wf_arg =
- match wf_arg with
- | None ->
- begin
- match args with
- | [Constrexpr.CLocalAssum ([{CAst.v=Name x}],k,t)] -> t,x
- | _ -> error "Recursive argument must be specified"
- end
- | Some wf_args ->
- try
- match
- List.find
- (function
- | Constrexpr.CLocalAssum(l,k,t) ->
- List.exists
- (function {CAst.v=Name id} -> Id.equal id wf_args | _ -> false)
- l
- | _ -> false
- )
- args
- with
- | Constrexpr.CLocalAssum(_,k,t) -> t,wf_args
- | _ -> assert false
- with Not_found -> assert false
- in
- let wf_rel_from_mes,is_mes =
- match wf_rel_expr_opt with
- | None ->
- let ltof =
- let make_dir l = DirPath.make (List.rev_map Id.of_string l) in
- Libnames.qualid_of_path
- (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof"))
- in
- let fun_from_mes =
- let applied_mes =
- Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in
- Constrexpr_ops.mkLambdaC ([CAst.make @@ Name wf_arg],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes)
- in
- let wf_rel_from_mes =
- Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes])
- in
- wf_rel_from_mes,true
- | Some wf_rel_expr ->
- let wf_rel_with_mes =
- let a = Names.Id.of_string "___a" in
- let b = Names.Id.of_string "___b" in
- Constrexpr_ops.mkLambdaC(
- [CAst.make @@ Name a; CAst.make @@ Name b],
- Constrexpr.Default Explicit,
- wf_arg_type,
- Constrexpr_ops.mkAppC(wf_rel_expr,
- [
- Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]);
- Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b])
- ])
- )
- in
- wf_rel_with_mes,false
- in
- register_wf interactive_proof ~is_mes:is_mes fname rec_impls wf_rel_from_mes wf_arg
- using_lemmas args ret_type body
-
-let map_option f = function
- | None -> None
- | Some v -> Some (f v)
-
-open Constrexpr
-
-let rec rebuild_bl aux bl typ =
- match bl,typ with
- | [], _ -> List.rev aux,typ
- | (CLocalAssum(nal,bk,_))::bl',typ ->
- rebuild_nal aux bk bl' nal typ
- | (CLocalDef(na,_,_))::bl',{ CAst.v = CLetIn(_,nat,ty,typ') } ->
- rebuild_bl (Constrexpr.CLocalDef(na,nat,ty)::aux)
- bl' typ'
- | _ -> assert false
-and rebuild_nal aux bk bl' nal typ =
- match nal,typ with
- | _,{ CAst.v = CProdN([],typ) } -> rebuild_nal aux bk bl' nal typ
- | [], _ -> rebuild_bl aux bl' typ
- | na::nal,{ CAst.v = CProdN(CLocalAssum(na'::nal',bk',nal't)::rest,typ') } ->
- if Name.equal (na.CAst.v) (na'.CAst.v) || Name.is_anonymous (na'.CAst.v)
- then
- let assum = CLocalAssum([na],bk,nal't) in
- let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in
- rebuild_nal
- (assum::aux)
- bk
- bl'
- nal
- (CAst.make @@ CProdN(new_rest,typ'))
- else
- let assum = CLocalAssum([na'],bk,nal't) in
- let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in
- rebuild_nal
- (assum::aux)
- bk
- bl'
- (na::nal)
- (CAst.make @@ CProdN(new_rest,typ'))
- | _ ->
- assert false
-
-let rebuild_bl aux bl typ = rebuild_bl aux bl typ
-
-let recompute_binder_list fixpoint_exprl =
- let fixl =
- List.map (fun fix -> Vernacexpr.{
- fix
- with rec_order = ComFixpoint.adjust_rec_order ~structonly:false fix.binders fix.rec_order }) fixpoint_exprl in
- let ((_,_,_,typel),_,ctx,_) = ComFixpoint.interp_fixpoint ~cofix:false fixl in
- let constr_expr_typel =
- with_full_print (List.map (fun c -> Constrextern.extern_constr false (Global.env ()) (Evd.from_ctx ctx) (EConstr.of_constr c))) typel in
- let fixpoint_exprl_with_new_bl =
- List.map2 (fun ({ Vernacexpr.binders } as fp) fix_typ ->
- let binders, rtype = rebuild_bl [] binders fix_typ in
- { fp with Vernacexpr.binders; rtype }
- ) fixpoint_exprl constr_expr_typel
- in
- fixpoint_exprl_with_new_bl
-
-
-let do_generate_principle_aux pconstants on_error register_built interactive_proof
- (fixpoint_exprl : Vernacexpr.fixpoint_expr list) : Lemmas.t option =
- List.iter (fun { Vernacexpr.notations } ->
- if not (List.is_empty notations)
- then error "Function does not support notations for now") fixpoint_exprl;
- let lemma, _is_struct =
- match fixpoint_exprl with
- | [{ Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CWfRec (wf_x,wf_rel)} } as fixpoint_expr] ->
- let { Vernacexpr.fname; univs; binders; rtype; body_def } as fixpoint_expr =
- match recompute_binder_list [fixpoint_expr] with
- | [e] -> e
- | _ -> assert false
- in
- let fixpoint_exprl = [fixpoint_expr] in
- let body = match body_def with
- | Some body -> body
- | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in
- let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
- let using_lemmas = [] in
- let pre_hook pconstants =
- generate_principle
- (ref (Evd.from_env (Global.env ())))
- pconstants
- on_error
- true
- register_built
- fixpoint_exprl
- recdefs
- true
- in
- if register_built
- then register_wf interactive_proof fname rec_impls wf_rel wf_x.CAst.v using_lemmas binders rtype body pre_hook, false
- else None, false
- |[{ Vernacexpr.rec_order=Some {CAst.v = Constrexpr.CMeasureRec(wf_x,wf_mes,wf_rel_opt)} } as fixpoint_expr] ->
- let { Vernacexpr.fname; univs; binders; rtype; body_def} as fixpoint_expr =
- match recompute_binder_list [fixpoint_expr] with
- | [e] -> e
- | _ -> assert false
- in
- let fixpoint_exprl = [fixpoint_expr] in
- let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
- let using_lemmas = [] in
- let body = match body_def with
- | Some body -> body
- | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in
- let pre_hook pconstants =
- generate_principle
- (ref (Evd.from_env (Global.env ())))
- pconstants
- on_error
- true
- register_built
- fixpoint_exprl
- recdefs
- true
- in
- if register_built
- then register_mes interactive_proof fname rec_impls wf_mes wf_rel_opt (map_option (fun x -> x.CAst.v) wf_x) using_lemmas binders rtype body pre_hook, true
- else None, true
- | _ ->
- List.iter (function { Vernacexpr.rec_order } ->
- match rec_order with
- | Some { CAst.v = (Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _) } ->
- error
- ("Cannot use mutual definition with well-founded recursion or measure")
- | _ -> ()
- )
- fixpoint_exprl;
- let fixpoint_exprl = recompute_binder_list fixpoint_exprl in
- let fix_names = List.map (function { Vernacexpr.fname } -> fname.CAst.v) fixpoint_exprl in
- (* ok all the expressions are structural *)
- let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
- let is_rec = List.exists (is_rec fix_names) recdefs in
- let lemma,evd,pconstants =
- if register_built
- then register_struct is_rec fixpoint_exprl
- else None, Evd.from_env (Global.env ()), pconstants
- in
- let evd = ref evd in
- generate_principle
- (ref !evd)
- pconstants
- on_error
- false
- register_built
- fixpoint_exprl
- recdefs
- interactive_proof
- (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof);
- if register_built then
- begin derive_inversion fix_names; end;
- lemma, true
- in
- lemma
-
-let rec add_args id new_args = CAst.map (function
- | CRef (qid,_) as b ->
- if qualid_is_ident qid && Id.equal (qualid_basename qid) id then
- CAppExpl((None,qid,None),new_args)
- else b
- | CFix _ | CCoFix _ -> anomaly ~label:"add_args " (Pp.str "todo.")
- | CProdN(nal,b1) ->
- CProdN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2)
- | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t)
- | CLocalPattern _ -> user_err (Pp.str "pattern with quote not allowed here.")) nal,
- add_args id new_args b1)
- | CLambdaN(nal,b1) ->
- CLambdaN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2)
- | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t)
- | CLocalPattern _ -> user_err (Pp.str "pattern with quote not allowed here.")) nal,
- add_args id new_args b1)
- | CLetIn(na,b1,t,b2) ->
- CLetIn(na,add_args id new_args b1,Option.map (add_args id new_args) t,add_args id new_args b2)
- | CAppExpl((pf,qid,us),exprl) ->
- if qualid_is_ident qid && Id.equal (qualid_basename qid) id then
- CAppExpl((pf,qid,us),new_args@(List.map (add_args id new_args) exprl))
- else CAppExpl((pf,qid,us),List.map (add_args id new_args) exprl)
- | CApp((pf,b),bl) ->
- CApp((pf,add_args id new_args b),
- List.map (fun (e,o) -> add_args id new_args e,o) bl)
- | CCases(sty,b_option,cel,cal) ->
- CCases(sty,Option.map (add_args id new_args) b_option,
- List.map (fun (b,na,b_option) ->
- add_args id new_args b,
- na, b_option) cel,
- List.map CAst.(map (fun (cpl,e) -> (cpl,add_args id new_args e))) cal
- )
- | CLetTuple(nal,(na,b_option),b1,b2) ->
- CLetTuple(nal,(na,Option.map (add_args id new_args) b_option),
- add_args id new_args b1,
- add_args id new_args b2
- )
-
- | CIf(b1,(na,b_option),b2,b3) ->
- CIf(add_args id new_args b1,
- (na,Option.map (add_args id new_args) b_option),
- add_args id new_args b2,
- add_args id new_args b3
- )
- | CHole _
- | CPatVar _
- | CEvar _
- | CPrim _
- | CSort _ as b -> b
- | CCast(b1,b2) ->
- CCast(add_args id new_args b1,
- Glob_ops.map_cast_type (add_args id new_args) b2)
- | CRecord pars ->
- CRecord (List.map (fun (e,o) -> e, add_args id new_args o) pars)
- | CNotation _ -> anomaly ~label:"add_args " (Pp.str "CNotation.")
- | CGeneralization _ -> anomaly ~label:"add_args " (Pp.str "CGeneralization.")
- | CDelimiters _ -> anomaly ~label:"add_args " (Pp.str "CDelimiters.")
- )
-exception Stop of Constrexpr.constr_expr
-
-
-(* [chop_n_arrow n t] chops the [n] first arrows in [t]
- Acts on Constrexpr.constr_expr
-*)
-let rec chop_n_arrow n t =
- if n <= 0
- then t (* If we have already removed all the arrows then return the type *)
- else (* If not we check the form of [t] *)
- match t.CAst.v with
- | Constrexpr.CProdN(nal_ta',t') -> (* If we have a forall, two results are possible :
- either we need to discard more than the number of arrows contained
- in this product declaration then we just recall [chop_n_arrow] on
- the remaining number of arrow to chop and [t'] we discard it and
- recall [chop_n_arrow], either this product contains more arrows
- than the number we need to chop and then we return the new type
- *)
- begin
- try
- let new_n =
- let rec aux (n:int) = function
- [] -> n
- | CLocalAssum(nal,k,t'')::nal_ta' ->
- let nal_l = List.length nal in
- if n >= nal_l
- then
- aux (n - nal_l) nal_ta'
- else
- let new_t' = CAst.make @@
- Constrexpr.CProdN(
- CLocalAssum((snd (List.chop n nal)),k,t'')::nal_ta',t')
- in
- raise (Stop new_t')
- | _ -> anomaly (Pp.str "Not enough products.")
- in
- aux n nal_ta'
- in
- chop_n_arrow new_n t'
- with Stop t -> t
- end
- | _ -> anomaly (Pp.str "Not enough products.")
-
-
-let rec get_args b t : Constrexpr.local_binder_expr list *
- Constrexpr.constr_expr * Constrexpr.constr_expr =
- match b.CAst.v with
- | Constrexpr.CLambdaN (CLocalAssum(nal,k,ta) as d::rest, b') ->
- begin
- let n = List.length nal in
- let nal_tas,b'',t'' = get_args (CAst.make ?loc:b.CAst.loc @@ Constrexpr.CLambdaN (rest,b')) (chop_n_arrow n t) in
- d :: nal_tas, b'',t''
- end
- | Constrexpr.CLambdaN ([], b) -> [],b,t
- | _ -> [],b,t
-
-
-let make_graph (f_ref : GlobRef.t) =
- let env = Global.env() in
- let sigma = Evd.from_env env in
- let c,c_body =
- match f_ref with
- | GlobRef.ConstRef c ->
- begin try c,Global.lookup_constant c
- with Not_found ->
- raise (UserError (None,str "Cannot find " ++ Printer.pr_leconstr_env env sigma (mkConst c)) )
- end
- | _ -> raise (UserError (None, str "Not a function reference") )
- in
- (match Global.body_of_constant_body Library.indirect_accessor c_body with
- | None -> error "Cannot build a graph over an axiom!"
- | Some (body, _, _) ->
- let env = Global.env () in
- let extern_body,extern_type =
- with_full_print (fun () ->
- (Constrextern.extern_constr false env sigma (EConstr.of_constr body),
- Constrextern.extern_type false env sigma
- (EConstr.of_constr (*FIXME*) c_body.const_type)
- )
- ) ()
- in
- let (nal_tas,b,t) = get_args extern_body extern_type in
- let expr_list =
- match b.CAst.v with
- | Constrexpr.CFix(l_id,fixexprl) ->
- let l =
- List.map
- (fun (id,recexp,bl,t,b) ->
- let { CAst.loc; v=rec_id } = match Option.get recexp with
- | { CAst.v = CStructRec id } -> id
- | { CAst.v = CWfRec (id,_) } -> id
- | { CAst.v = CMeasureRec (oid,_,_) } -> Option.get oid
- in
- let new_args =
- List.flatten
- (List.map
- (function
- | Constrexpr.CLocalDef (na,_,_)-> []
- | Constrexpr.CLocalAssum (nal,_,_) ->
- List.map
- (fun {CAst.loc;v=n} -> CAst.make ?loc @@
- CRef(Libnames.qualid_of_ident ?loc @@ Nameops.Name.get_id n,None))
- nal
- | Constrexpr.CLocalPattern _ -> assert false
- )
- nal_tas
- )
- in
- let b' = add_args id.CAst.v new_args b in
- { Vernacexpr.fname=id; univs=None
- ; rec_order = Some (CAst.make (CStructRec (CAst.make rec_id)))
- ; binders = nal_tas@bl; rtype=t; body_def=Some b'; notations = []}
- ) fixexprl in
- l
- | _ ->
- let fname = CAst.make (Label.to_id (Constant.label c)) in
- [{ Vernacexpr.fname; univs=None; rec_order = None; binders=nal_tas; rtype=t; body_def=Some b; notations=[]}]
- in
- let mp = Constant.modpath c in
- let pstate = do_generate_principle_aux [c,Univ.Instance.empty] error_error false false expr_list in
- assert (Option.is_empty pstate);
- (* We register the infos *)
- List.iter
- (fun { Vernacexpr.fname= {CAst.v=id} } ->
- add_Function false (Constant.make2 mp (Label.of_id id)))
- expr_list)
-
-(* *************** statically typed entrypoints ************************* *)
-
-let do_generate_principle_interactive fixl : Lemmas.t =
- match
- do_generate_principle_aux [] warning_error true true fixl
- with
- | Some lemma -> lemma
- | None ->
- CErrors.anomaly
- (Pp.str"indfun: leaving no open proof in interactive mode")
-
-let do_generate_principle fixl : unit =
- match do_generate_principle_aux [] warning_error true false fixl with
- | Some _lemma ->
- CErrors.anomaly
- (Pp.str"indfun: leaving a goal open in non-interactive mode")
- | None -> ()
diff --git a/plugins/funind/indfun.mli b/plugins/funind/indfun.mli
index bfc9686ae5..97a840e950 100644
--- a/plugins/funind/indfun.mli
+++ b/plugins/funind/indfun.mli
@@ -1,19 +1,16 @@
-open Names
-open Tactypes
-
-val warn_cannot_define_graph : ?loc:Loc.t -> Pp.t * Pp.t -> unit
-
-val warn_cannot_define_principle : ?loc:Loc.t -> Pp.t * Pp.t -> unit
-
-val do_generate_principle : Vernacexpr.fixpoint_expr list -> unit
-
-val do_generate_principle_interactive : Vernacexpr.fixpoint_expr list -> Lemmas.t
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
val functional_induction :
bool ->
EConstr.constr ->
- (EConstr.constr * EConstr.constr bindings) option ->
+ (EConstr.constr * EConstr.constr Tactypes.bindings) option ->
Ltac_plugin.Tacexpr.or_and_intro_pattern option ->
Goal.goal Evd.sigma -> Goal.goal list Evd.sigma
-
-val make_graph : GlobRef.t -> unit
diff --git a/plugins/funind/indfun_common.ml b/plugins/funind/indfun_common.ml
index a119586f7b..2d8d10a1f2 100644
--- a/plugins/funind/indfun_common.ml
+++ b/plugins/funind/indfun_common.ml
@@ -10,8 +10,7 @@ let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct"
let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete"
let mk_equation_id id = Nameops.add_suffix id "_equation"
-let msgnl m =
- ()
+let msgnl m = ()
let fresh_id avoid s = Namegen.next_ident_away_in_goal (Id.of_string s) (Id.Set.of_list avoid)
diff --git a/plugins/funind/recdef_plugin.mlpack b/plugins/funind/recdef_plugin.mlpack
index 755fa4f879..2adcfddd0a 100644
--- a/plugins/funind/recdef_plugin.mlpack
+++ b/plugins/funind/recdef_plugin.mlpack
@@ -6,4 +6,5 @@ Functional_principles_proofs
Functional_principles_types
Invfun
Indfun
+Gen_principle
G_indfun