diff options
| author | Emilio Jesus Gallego Arias | 2019-07-17 07:11:41 +0200 |
|---|---|---|
| committer | Emilio Jesus Gallego Arias | 2019-07-31 11:13:04 +0200 |
| commit | 105269d6799356eb52f289e191217b153c3bdade (patch) | |
| tree | e62ad76ebf11c0af3f53263e2304844a2dff0fa1 /plugins/funind | |
| parent | 7864ae92065ecb787c72cdd8eca2b3aeb6604dbe (diff) | |
[funind] Move principle generation to its own file.
Diffstat (limited to 'plugins/funind')
| -rw-r--r-- | plugins/funind/g_indfun.mlg | 26 | ||||
| -rw-r--r-- | plugins/funind/gen_principle.ml | 1654 | ||||
| -rw-r--r-- | plugins/funind/gen_principle.mli | 17 | ||||
| -rw-r--r-- | plugins/funind/glob_term_to_relation.ml | 2 | ||||
| -rw-r--r-- | plugins/funind/indfun.ml | 1626 | ||||
| -rw-r--r-- | plugins/funind/indfun.mli | 23 | ||||
| -rw-r--r-- | plugins/funind/indfun_common.ml | 3 | ||||
| -rw-r--r-- | plugins/funind/recdef_plugin.mlpack | 1 |
8 files changed, 1696 insertions, 1656 deletions
diff --git a/plugins/funind/g_indfun.mlg b/plugins/funind/g_indfun.mlg index 1b75d3d966..430fb2dee3 100644 --- a/plugins/funind/g_indfun.mlg +++ b/plugins/funind/g_indfun.mlg @@ -202,10 +202,10 @@ VERNAC COMMAND EXTEND Function STATE CUSTOM -> { if is_interactive recsl then Vernacextend.VtOpenProof (fun () -> - do_generate_principle_interactive (List.map snd recsl)) + Gen_principle.do_generate_principle_interactive (List.map snd recsl)) else Vernacextend.VtDefault (fun () -> - do_generate_principle (List.map snd recsl)) } + Gen_principle.do_generate_principle (List.map snd recsl)) } END { @@ -226,15 +226,15 @@ END let warning_error names e = match e with - | Building_graph e -> - let names = pr_enum Libnames.pr_qualid names in - let error = if do_observe () then (spc () ++ CErrors.print e) else mt () in - warn_cannot_define_graph (names,error) - | Defining_principle e -> - let names = pr_enum Libnames.pr_qualid names in - let error = if do_observe () then CErrors.print e else mt () in - warn_cannot_define_principle (names,error) - | _ -> raise e + | Building_graph e -> + let names = pr_enum Libnames.pr_qualid names in + let error = if do_observe () then (spc () ++ CErrors.print e) else mt () in + Gen_principle.warn_cannot_define_graph (names,error) + | Defining_principle e -> + let names = pr_enum Libnames.pr_qualid names in + let error = if do_observe () then CErrors.print e else mt () in + Gen_principle.warn_cannot_define_principle (names,error) + | _ -> raise e } @@ -251,7 +251,7 @@ VERNAC COMMAND EXTEND NewFunctionalScheme match fas with | (_,fun_name,_)::_ -> begin - make_graph (Smartlocate.global_with_alias fun_name); + Gen_principle.make_graph (Smartlocate.global_with_alias fun_name); try Functional_principles_types.build_scheme fas with | Functional_principles_types.No_graph_found -> @@ -279,5 +279,5 @@ END (***** debug only ***) VERNAC COMMAND EXTEND GenerateGraph CLASSIFIED AS QUERY | ["Generate" "graph" "for" reference(c)] -> - { make_graph (Smartlocate.global_with_alias c) } + { Gen_principle.make_graph (Smartlocate.global_with_alias c) } END diff --git a/plugins/funind/gen_principle.ml b/plugins/funind/gen_principle.ml new file mode 100644 index 0000000000..a6c5e63ecf --- /dev/null +++ b/plugins/funind/gen_principle.ml @@ -0,0 +1,1654 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +open Util +open Names + +open Indfun_common + +module RelDecl = Context.Rel.Declaration + +let make_eq () = + try EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type")) + with _ -> assert false + +(* Move to common *) +let observe strm = + if do_observe () + then Feedback.msg_debug strm + else () + +let do_observe_tac s tac g = + let goal = + try Printer.pr_goal g + with e when CErrors.noncritical e -> assert false + in + try + let v = tac g in + msgnl Pp.(goal ++ fnl () ++ s ++(str " ")++(str "finished")); v + with reraise -> + let reraise = CErrors.push reraise in + observe Pp.(hov 0 (str "observation "++ s++str " raised exception " ++ + CErrors.iprint reraise ++ str " on goal" ++ fnl() ++ goal )); + iraise reraise;; + +let observe_tac s tac g = + if do_observe () + then do_observe_tac (Pp.str s) tac g + else tac g + +(* + Construct a fixpoint as a Glob_term + and not as a constr +*) +let rec abstract_glob_constr c = function + | [] -> c + | Constrexpr.CLocalDef (x,b,t)::bl -> Constrexpr_ops.mkLetInC(x,b,t,abstract_glob_constr c bl) + | Constrexpr.CLocalAssum (idl,k,t)::bl -> + List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl + (abstract_glob_constr c bl) + | Constrexpr.CLocalPattern _::bl -> assert false + +let interp_casted_constr_with_implicits env sigma impls c = + Constrintern.intern_gen Pretyping.WithoutTypeConstraint env sigma ~impls c + +let build_newrecursive lnameargsardef = + let env0 = Global.env() in + let sigma = Evd.from_env env0 in + let (rec_sign,rec_impls) = + List.fold_left + (fun (env,impls) { Vernacexpr.fname={CAst.v=recname}; binders; rtype } -> + let arityc = Constrexpr_ops.mkCProdN binders rtype in + let arity,ctx = Constrintern.interp_type env0 sigma arityc in + let evd = Evd.from_env env0 in + let evd, (_, (_, impls')) = Constrintern.interp_context_evars ~program_mode:false env evd binders in + let impl = Constrintern.compute_internalization_data env0 evd Constrintern.Recursive arity impls' in + let open Context.Named.Declaration in + let r = Sorts.Relevant in (* TODO relevance *) + (EConstr.push_named (LocalAssum (Context.make_annot recname r,arity)) env, Id.Map.add recname impl impls)) + (env0,Constrintern.empty_internalization_env) lnameargsardef in + let recdef = + (* Declare local notations *) + let f { Vernacexpr.binders; body_def } = + match body_def with + | Some body_def -> + let def = abstract_glob_constr body_def binders in + interp_casted_constr_with_implicits + rec_sign sigma rec_impls def + | None -> CErrors.user_err ~hdr:"Function" (Pp.str "Body of Function must be given") + in + States.with_state_protection (List.map f) lnameargsardef + in + recdef,rec_impls + +(* Checks whether or not the mutual bloc is recursive *) +let is_rec names = + let open Glob_term in + let names = List.fold_right Id.Set.add names Id.Set.empty in + let check_id id names = Id.Set.mem id names in + let rec lookup names gt = match DAst.get gt with + | GVar(id) -> check_id id names + | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ | GInt _ -> false + | GCast(b,_) -> lookup names b + | GRec _ -> CErrors.user_err (Pp.str "GRec not handled") + | GIf(b,_,lhs,rhs) -> + (lookup names b) || (lookup names lhs) || (lookup names rhs) + | GProd(na,_,t,b) | GLambda(na,_,t,b) -> + lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b + | GLetIn(na,b,t,c) -> + lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c + | GLetTuple(nal,_,t,b) -> lookup names t || + lookup + (List.fold_left + (fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc) + names + nal + ) + b + | GApp(f,args) -> List.exists (lookup names) (f::args) + | GCases(_,_,el,brl) -> + List.exists (fun (e,_) -> lookup names e) el || + List.exists (lookup_br names) brl + and lookup_br names {CAst.v=(idl,_,rt)} = + let new_names = List.fold_right Id.Set.remove idl names in + lookup new_names rt + in + lookup names + +let rec rebuild_bl aux bl typ = + let open Constrexpr in + match bl,typ with + | [], _ -> List.rev aux,typ + | (CLocalAssum(nal,bk,_))::bl',typ -> + rebuild_nal aux bk bl' nal typ + | (CLocalDef(na,_,_))::bl',{ CAst.v = CLetIn(_,nat,ty,typ') } -> + rebuild_bl (Constrexpr.CLocalDef(na,nat,ty)::aux) + bl' typ' + | _ -> assert false +and rebuild_nal aux bk bl' nal typ = + let open Constrexpr in + match nal,typ with + | _,{ CAst.v = CProdN([],typ) } -> rebuild_nal aux bk bl' nal typ + | [], _ -> rebuild_bl aux bl' typ + | na::nal,{ CAst.v = CProdN(CLocalAssum(na'::nal',bk',nal't)::rest,typ') } -> + if Name.equal (na.CAst.v) (na'.CAst.v) || Name.is_anonymous (na'.CAst.v) + then + let assum = CLocalAssum([na],bk,nal't) in + let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in + rebuild_nal + (assum::aux) + bk + bl' + nal + (CAst.make @@ CProdN(new_rest,typ')) + else + let assum = CLocalAssum([na'],bk,nal't) in + let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in + rebuild_nal + (assum::aux) + bk + bl' + (na::nal) + (CAst.make @@ CProdN(new_rest,typ')) + | _ -> + assert false + +let rebuild_bl aux bl typ = rebuild_bl aux bl typ + +let recompute_binder_list fixpoint_exprl = + let fixl = + List.map (fun fix -> Vernacexpr.{ + fix + with rec_order = ComFixpoint.adjust_rec_order ~structonly:false fix.binders fix.rec_order }) fixpoint_exprl in + let ((_,_,_,typel),_,ctx,_) = ComFixpoint.interp_fixpoint ~cofix:false fixl in + let constr_expr_typel = + with_full_print (List.map (fun c -> Constrextern.extern_constr false (Global.env ()) (Evd.from_ctx ctx) (EConstr.of_constr c))) typel in + let fixpoint_exprl_with_new_bl = + List.map2 (fun ({ Vernacexpr.binders } as fp) fix_typ -> + let binders, rtype = rebuild_bl [] binders fix_typ in + { fp with Vernacexpr.binders; rtype } + ) fixpoint_exprl constr_expr_typel + in + fixpoint_exprl_with_new_bl + +let rec local_binders_length = function + (* Assume that no `{ ... } contexts occur *) + | [] -> 0 + | Constrexpr.CLocalDef _::bl -> 1 + local_binders_length bl + | Constrexpr.CLocalAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl + | Constrexpr.CLocalPattern _::bl -> assert false + +let prepare_body { Vernacexpr.binders } rt = + let n = local_binders_length binders in + (* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *) + let fun_args,rt' = chop_rlambda_n n rt in + (fun_args,rt') + +let generate_principle (evd:Evd.evar_map ref) pconstants on_error + is_general do_built fix_rec_l recdefs interactive_proof + (continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int -> + Tacmach.tactic) : unit = + let names = List.map (function { Vernacexpr.fname = {CAst.v=name} } -> name) fix_rec_l in + let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in + let funs_args = List.map fst fun_bodies in + let funs_types = List.map (function { Vernacexpr.rtype } -> rtype) fix_rec_l in + try + (* We then register the Inductive graphs of the functions *) + Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs; + if do_built + then + begin + (*i The next call to mk_rel_id is valid since we have just construct the graph + Ensures by : do_built + i*) + let f_R_mut = Libnames.qualid_of_ident @@ mk_rel_id (List.nth names 0) in + let ind_kn = + fst (locate_with_msg + Pp.(Libnames.pr_qualid f_R_mut ++ str ": Not an inductive type!") + locate_ind + f_R_mut) + in + let fname_kn { Vernacexpr.fname } = + let f_ref = Libnames.qualid_of_ident ?loc:fname.CAst.loc fname.CAst.v in + locate_with_msg + Pp.(Libnames.pr_qualid f_ref++str ": Not an inductive type!") + locate_constant + f_ref + in + let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in + let _ = + List.map_i + (fun i x -> + let env = Global.env () in + let princ = Indrec.lookup_eliminator env (ind_kn,i) (Sorts.InProp) in + let evd = ref (Evd.from_env env) in + let evd',uprinc = Evd.fresh_global env !evd princ in + let _ = evd := evd' in + let sigma, princ_type = Typing.type_of ~refresh:true env !evd uprinc in + evd := sigma; + let princ_type = EConstr.Unsafe.to_constr princ_type in + Functional_principles_types.generate_functional_principle + evd + interactive_proof + princ_type + None + None + (Array.of_list pconstants) + (* funs_kn *) + i + (continue_proof 0 [|funs_kn.(i)|]) + ) + 0 + fix_rec_l + in + Array.iter (add_Function is_general) funs_kn; + () + end + with e when CErrors.noncritical e -> + on_error names e + +let register_struct is_rec fixpoint_exprl = + let open EConstr in + match fixpoint_exprl with + | [{ Vernacexpr.fname; univs; binders; rtype; body_def }] when not is_rec -> + let body = + match body_def with + | Some body -> body + | None -> + CErrors.user_err ~hdr:"Function" Pp.(str "Body of Function must be given") in + ComDefinition.do_definition + ~program_mode:false + ~name:fname.CAst.v + ~poly:false + ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) + ~kind:Decls.Definition univs + binders None body (Some rtype); + let evd,rev_pconstants = + List.fold_left + (fun (evd,l) { Vernacexpr.fname } -> + let evd,c = + Evd.fresh_global + (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in + let (cst, u) = destConst evd c in + let u = EInstance.kind evd u in + evd,((cst, u) :: l) + ) + (Evd.from_env (Global.env ()),[]) + fixpoint_exprl + in + None, evd,List.rev rev_pconstants + | _ -> + ComFixpoint.do_fixpoint ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) ~poly:false fixpoint_exprl; + let evd,rev_pconstants = + List.fold_left + (fun (evd,l) { Vernacexpr.fname } -> + let evd,c = + Evd.fresh_global + (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in + let (cst, u) = destConst evd c in + let u = EInstance.kind evd u in + evd,((cst, u) :: l) + ) + (Evd.from_env (Global.env ()),[]) + fixpoint_exprl + in + None,evd,List.rev rev_pconstants + +let generate_correction_proof_wf f_ref tcc_lemma_ref + is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation + (_: int) (_:Names.Constant.t array) (_:EConstr.constr array) (_:int) : Tacmach.tactic = + Functional_principles_proofs.prove_principle_for_gen + (f_ref,functional_ref,eq_ref) + tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation + +(* [generate_type g_to_f f graph i] build the completeness (resp. correctness) lemma type if [g_to_f = true] + (resp. g_to_f = false) where [graph] is the graph of [f] and is the [i]th function in the block. + + [generate_type true f i] returns + \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, + graph\ x_1\ldots x_n\ res \rightarrow res = fv \] decomposed as the context and the conclusion + + [generate_type false f i] returns + \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, + res = fv \rightarrow graph\ x_1\ldots x_n\ res\] decomposed as the context and the conclusion +*) + +let generate_type evd g_to_f f graph i = + let open Context.Rel.Declaration in + let open EConstr in + let open EConstr.Vars in + (*i we deduce the number of arguments of the function and its returned type from the graph i*) + let evd',graph = + Evd.fresh_global (Global.env ()) !evd (GlobRef.IndRef (fst (destInd !evd graph))) + in + evd:=evd'; + let sigma, graph_arity = Typing.type_of (Global.env ()) !evd graph in + evd := sigma; + let ctxt,_ = decompose_prod_assum !evd graph_arity in + let fun_ctxt,res_type = + match ctxt with + | [] | [_] -> CErrors.anomaly (Pp.str "Not a valid context.") + | decl :: fun_ctxt -> fun_ctxt, RelDecl.get_type decl + in + let rec args_from_decl i accu = function + | [] -> accu + | LocalDef _ :: l -> + args_from_decl (succ i) accu l + | _ :: l -> + let t = mkRel i in + args_from_decl (succ i) (t :: accu) l + in + (*i We need to name the vars [res] and [fv] i*) + let filter = fun decl -> match RelDecl.get_name decl with + | Name id -> Some id + | Anonymous -> None + in + let named_ctxt = Id.Set.of_list (List.map_filter filter fun_ctxt) in + let res_id = Namegen.next_ident_away_in_goal (Id.of_string "_res") named_ctxt in + let fv_id = Namegen.next_ident_away_in_goal (Id.of_string "fv") (Id.Set.add res_id named_ctxt) in + (*i we can then type the argument to be applied to the function [f] i*) + let args_as_rels = Array.of_list (args_from_decl 1 [] fun_ctxt) in + (*i + the hypothesis [res = fv] can then be computed + We will need to lift it by one in order to use it as a conclusion + i*) + let make_eq = make_eq () in + let res_eq_f_of_args = + mkApp(make_eq ,[|lift 2 res_type;mkRel 1;mkRel 2|]) + in + (*i + The hypothesis [graph\ x_1\ldots x_n\ res] can then be computed + We will need to lift it by one in order to use it as a conclusion + i*) + let args_and_res_as_rels = Array.of_list (args_from_decl 3 [] fun_ctxt) in + let args_and_res_as_rels = Array.append args_and_res_as_rels [|mkRel 1|] in + let graph_applied = mkApp(graph, args_and_res_as_rels) in + (*i The [pre_context] is the defined to be the context corresponding to + \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, \] + i*) + let pre_ctxt = + LocalAssum (Context.make_annot (Name res_id) Sorts.Relevant, lift 1 res_type) :: + LocalDef (Context.make_annot (Name fv_id) Sorts.Relevant, mkApp (f,args_as_rels), res_type) :: fun_ctxt + in + (*i and we can return the solution depending on which lemma type we are defining i*) + if g_to_f + then LocalAssum (Context.make_annot Anonymous Sorts.Relevant,graph_applied)::pre_ctxt,(lift 1 res_eq_f_of_args),graph + else LocalAssum (Context.make_annot Anonymous Sorts.Relevant,res_eq_f_of_args)::pre_ctxt,(lift 1 graph_applied),graph + +(** + [find_induction_principle f] searches and returns the [body] and the [type] of [f_rect] + + WARNING: while convertible, [type_of body] and [type] can be non equal +*) +let find_induction_principle evd f = + let f_as_constant,u = match EConstr.kind !evd f with + | Constr.Const c' -> c' + | _ -> CErrors.user_err Pp.(str "Must be used with a function") + in + let infos = find_Function_infos f_as_constant in + match infos.rect_lemma with + | None -> raise Not_found + | Some rect_lemma -> + let evd',rect_lemma = Evd.fresh_global (Global.env ()) !evd (GlobRef.ConstRef rect_lemma) in + let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in + evd:=evd'; + rect_lemma,typ + +(* [prove_fun_correct funs_constr graphs_constr schemes lemmas_types_infos i ] + is the tactic used to prove correctness lemma. + + [funs_constr], [graphs_constr] [schemes] [lemmas_types_infos] are the mutually recursive functions + (resp. graphs of the functions and principles and correctness lemma types) to prove correct. + + [i] is the indice of the function to prove correct + + The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is + it looks like~: + [\forall (x_1:t_1)\ldots(x_n:t_n), forall res, + res = f x_1\ldots x_n in, \rightarrow graph\ x_1\ldots x_n\ res] + + + The sketch of the proof is the following one~: + \begin{enumerate} + \item intros until $x_n$ + \item $functional\ induction\ (f.(i)\ x_1\ldots x_n)$ using schemes.(i) + \item for each generated branch intro [res] and [hres :res = f x_1\ldots x_n], rewrite [hres] and the + apply the corresponding constructor of the corresponding graph inductive. + \end{enumerate} + +*) + +let rec generate_fresh_id x avoid i = + if i == 0 + then [] + else + let id = Namegen.next_ident_away_in_goal x (Id.Set.of_list avoid) in + id::(generate_fresh_id x (id::avoid) (pred i)) + +let prove_fun_correct evd funs_constr graphs_constr schemes lemmas_types_infos i : Tacmach.tactic = + let open Constr in + let open EConstr in + let open Context.Rel.Declaration in + let open Tacmach in + let open Tactics in + let open Tacticals in + fun g -> + (* first of all we recreate the lemmas types to be used as predicates of the induction principle + that is~: + \[fun (x_1:t_1)\ldots(x_n:t_n)=> fun fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\] + *) + (* we the get the definition of the graphs block *) + let graph_ind,u = destInd evd graphs_constr.(i) in + let kn = fst graph_ind in + let mib,_ = Global.lookup_inductive graph_ind in + (* and the principle to use in this lemma in $\zeta$ normal form *) + let f_principle,princ_type = schemes.(i) in + let princ_type = Reductionops.nf_zeta (Global.env ()) evd princ_type in + let princ_infos = Tactics.compute_elim_sig evd princ_type in + (* The number of args of the function is then easily computable *) + let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in + let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in + let ids = args_names@(pf_ids_of_hyps g) in + (* Since we cannot ensure that the functional principle is defined in the + environment and due to the bug #1174, we will need to pose the principle + using a name + *) + let principle_id = Namegen.next_ident_away_in_goal (Id.of_string "princ") (Id.Set.of_list ids) in + let ids = principle_id :: ids in + (* We get the branches of the principle *) + let branches = List.rev princ_infos.Tactics.branches in + (* and built the intro pattern for each of them *) + let intro_pats = + List.map + (fun decl -> + List.map + (fun id -> CAst.make @@ Tactypes.IntroNaming (Namegen.IntroIdentifier id)) + (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl))))) + ) + branches + in + (* before building the full intro pattern for the principle *) + let eq_ind = make_eq () in + let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in + (* The next to referencies will be used to find out which constructor to apply in each branch *) + let ind_number = ref 0 + and min_constr_number = ref 0 in + (* The tactic to prove the ith branch of the principle *) + let prove_branche i g = + (* We get the identifiers of this branch *) + let pre_args = + List.fold_right + (fun {CAst.v=pat} acc -> + match pat with + | Tactypes.IntroNaming (Namegen.IntroIdentifier id) -> id::acc + | _ -> CErrors.anomaly (Pp.str "Not an identifier.") + ) + (List.nth intro_pats (pred i)) + [] + in + (* and get the real args of the branch by unfolding the defined constant *) + (* + We can then recompute the arguments of the constructor. + For each [hid] introduced by this branch, if [hid] has type + $forall res, res=fv -> graph.(j)\ x_1\ x_n res$ the corresponding arguments of the constructor are + [ fv (hid fv (refl_equal fv)) ]. + If [hid] has another type the corresponding argument of the constructor is [hid] + *) + let constructor_args g = + List.fold_right + (fun hid acc -> + let type_of_hid = pf_unsafe_type_of g (mkVar hid) in + let sigma = project g in + match EConstr.kind sigma type_of_hid with + | Prod(_,_,t') -> + begin + match EConstr.kind sigma t' with + | Prod(_,t'',t''') -> + begin + match EConstr.kind sigma t'',EConstr.kind sigma t''' with + | App(eq,args), App(graph',_) + when + (EConstr.eq_constr sigma eq eq_ind) && + Array.exists (EConstr.eq_constr_nounivs sigma graph') graphs_constr -> + (args.(2)::(mkApp(mkVar hid,[|args.(2);(mkApp(eq_construct,[|args.(0);args.(2)|]))|])) + ::acc) + | _ -> mkVar hid :: acc + end + | _ -> mkVar hid :: acc + end + | _ -> mkVar hid :: acc + ) pre_args [] + in + (* in fact we must also add the parameters to the constructor args *) + let constructor_args g = + let params_id = fst (List.chop princ_infos.Tactics.nparams args_names) in + (List.map mkVar params_id)@((constructor_args g)) + in + (* We then get the constructor corresponding to this branch and + modifies the references has needed i.e. + if the constructor is the last one of the current inductive then + add one the number of the inductive to take and add the number of constructor of the previous + graph to the minimal constructor number + *) + let constructor = + let constructor_num = i - !min_constr_number in + let length = Array.length (mib.Declarations.mind_packets.(!ind_number).Declarations.mind_consnames) in + if constructor_num <= length + then + begin + (kn,!ind_number),constructor_num + end + else + begin + incr ind_number; + min_constr_number := !min_constr_number + length ; + (kn,!ind_number),1 + end + in + (* we can then build the final proof term *) + let app_constructor g = applist((mkConstructU(constructor,u)),constructor_args g) in + (* an apply the tactic *) + let res,hres = + match generate_fresh_id (Id.of_string "z") (ids(* @this_branche_ids *)) 2 with + | [res;hres] -> res,hres + | _ -> assert false + in + (* observe (str "constructor := " ++ Printer.pr_lconstr_env (pf_env g) app_constructor); *) + ( + tclTHENLIST + [ + observe_tac ("h_intro_patterns ") (let l = (List.nth intro_pats (pred i)) in + match l with + | [] -> tclIDTAC + | _ -> Proofview.V82.of_tactic (intro_patterns false l)); + (* unfolding of all the defined variables introduced by this branch *) + (* observe_tac "unfolding" pre_tac; *) + (* $zeta$ normalizing of the conclusion *) + Proofview.V82.of_tactic (reduce + (Genredexpr.Cbv + { Redops.all_flags with + Genredexpr.rDelta = false ; + Genredexpr.rConst = [] + } + ) + Locusops.onConcl); + observe_tac ("toto ") tclIDTAC; + + (* introducing the result of the graph and the equality hypothesis *) + observe_tac "introducing" (tclMAP (fun x -> Proofview.V82.of_tactic (Simple.intro x)) [res;hres]); + (* replacing [res] with its value *) + observe_tac "rewriting res value" (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar hres))); + (* Conclusion *) + observe_tac "exact" (fun g -> + Proofview.V82.of_tactic (exact_check (app_constructor g)) g) + ] + ) + g + in + (* end of branche proof *) + let lemmas = + Array.map + (fun ((_,(ctxt,concl))) -> + match ctxt with + | [] | [_] | [_;_] -> CErrors.anomaly (Pp.str "bad context.") + | hres::res::decl::ctxt -> + let res = EConstr.it_mkLambda_or_LetIn + (EConstr.it_mkProd_or_LetIn concl [hres;res]) + (LocalAssum (RelDecl.get_annot decl, RelDecl.get_type decl) :: ctxt) + in + res) + lemmas_types_infos + in + let param_names = fst (List.chop princ_infos.nparams args_names) in + let params = List.map mkVar param_names in + let lemmas = Array.to_list (Array.map (fun c -> applist(c,params)) lemmas) in + (* The bindings of the principle + that is the params of the principle and the different lemma types + *) + let bindings = + let params_bindings,avoid = + List.fold_left2 + (fun (bindings,avoid) decl p -> + let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in + p::bindings,id::avoid + ) + ([],pf_ids_of_hyps g) + princ_infos.params + (List.rev params) + in + let lemmas_bindings = + List.rev (fst (List.fold_left2 + (fun (bindings,avoid) decl p -> + let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in + (Reductionops.nf_zeta (pf_env g) (project g) p)::bindings,id::avoid) + ([],avoid) + princ_infos.predicates + (lemmas))) + in + (params_bindings@lemmas_bindings) + in + tclTHENLIST + [ + observe_tac "principle" (Proofview.V82.of_tactic (assert_by + (Name principle_id) + princ_type + (exact_check f_principle))); + observe_tac "intro args_names" (tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) args_names); + (* observe_tac "titi" (pose_proof (Name (Id.of_string "__")) (Reductionops.nf_beta Evd.empty ((mkApp (mkVar principle_id,Array.of_list bindings))))); *) + observe_tac "idtac" tclIDTAC; + tclTHEN_i + (observe_tac + "functional_induction" ( + (fun gl -> + let term = mkApp (mkVar principle_id,Array.of_list bindings) in + let gl', _ty = pf_eapply (Typing.type_of ~refresh:true) gl term in + Proofview.V82.of_tactic (apply term) gl') + )) + (fun i g -> observe_tac ("proving branche "^string_of_int i) (prove_branche i) g ) + ] + g + +(* [prove_fun_complete funs graphs schemes lemmas_types_infos i] + is the tactic used to prove completeness lemma. + + [funcs], [graphs] [schemes] [lemmas_types_infos] are the mutually recursive functions + (resp. definitions of the graphs of the functions, principles and correctness lemma types) to prove correct. + + [i] is the indice of the function to prove complete + + The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is + it looks like~: + [\forall (x_1:t_1)\ldots(x_n:t_n), forall res, + graph\ x_1\ldots x_n\ res, \rightarrow res = f x_1\ldots x_n in] + + + The sketch of the proof is the following one~: + \begin{enumerate} + \item intros until $H:graph\ x_1\ldots x_n\ res$ + \item $elim\ H$ using schemes.(i) + \item for each generated branch, intro the news hyptohesis, for each such hyptohesis [h], if [h] has + type [x=?] with [x] a variable, then subst [x], + if [h] has type [t=?] with [t] not a variable then rewrite [t] in the subterms, else + if [h] is a match then destruct it, else do just introduce it, + after all intros, the conclusion should be a reflexive equality. + \end{enumerate} + +*) + +let thin ids gl = Proofview.V82.of_tactic (Tactics.clear ids) gl + +(* [intros_with_rewrite] do the intros in each branch and treat each new hypothesis + (unfolding, substituting, destructing cases \ldots) +*) +let tauto = + let open Ltac_plugin in + let dp = List.map Id.of_string ["Tauto" ; "Init"; "Coq"] in + let mp = ModPath.MPfile (DirPath.make dp) in + let kn = KerName.make mp (Label.make "tauto") in + Proofview.tclBIND (Proofview.tclUNIT ()) begin fun () -> + let body = Tacenv.interp_ltac kn in + Tacinterp.eval_tactic body + end + +(* [generalize_dependent_of x hyp g] + generalize every hypothesis which depends of [x] but [hyp] +*) +let generalize_dependent_of x hyp g = + let open Context.Named.Declaration in + let open Tacmach in + let open Tacticals in + tclMAP + (function + | LocalAssum ({Context.binder_name=id},t) when not (Id.equal id hyp) && + (Termops.occur_var (pf_env g) (project g) x t) -> + tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [EConstr.mkVar id])) (thin [id]) + | _ -> tclIDTAC + ) + (pf_hyps g) + g + +let rec intros_with_rewrite g = + observe_tac "intros_with_rewrite" intros_with_rewrite_aux g +and intros_with_rewrite_aux : Tacmach.tactic = + let open Constr in + let open EConstr in + let open Tacmach in + let open Tactics in + let open Tacticals in + fun g -> + let eq_ind = make_eq () in + let sigma = project g in + match EConstr.kind sigma (pf_concl g) with + | Prod(_,t,t') -> + begin + match EConstr.kind sigma t with + | App(eq,args) when (EConstr.eq_constr sigma eq eq_ind) -> + if Reductionops.is_conv (pf_env g) (project g) args.(1) args.(2) + then + let id = pf_get_new_id (Id.of_string "y") g in + tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); thin [id]; intros_with_rewrite ] g + else if isVar sigma args.(1) && (Environ.evaluable_named (destVar sigma args.(1)) (pf_env g)) + then tclTHENLIST[ + Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))]); + tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))] ((destVar sigma args.(1)),Locus.InHyp) ))) + (pf_ids_of_hyps g); + intros_with_rewrite + ] g + else if isVar sigma args.(2) && (Environ.evaluable_named (destVar sigma args.(2)) (pf_env g)) + then tclTHENLIST[ + Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))]); + tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))] ((destVar sigma args.(2)),Locus.InHyp) ))) + (pf_ids_of_hyps g); + intros_with_rewrite + ] g + else if isVar sigma args.(1) + then + let id = pf_get_new_id (Id.of_string "y") g in + tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); + generalize_dependent_of (destVar sigma args.(1)) id; + tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id))); + intros_with_rewrite + ] + g + else if isVar sigma args.(2) + then + let id = pf_get_new_id (Id.of_string "y") g in + tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); + generalize_dependent_of (destVar sigma args.(2)) id; + tclTRY (Proofview.V82.of_tactic (Equality.rewriteRL (mkVar id))); + intros_with_rewrite + ] + g + else + begin + let id = pf_get_new_id (Id.of_string "y") g in + tclTHENLIST[ + Proofview.V82.of_tactic (Simple.intro id); + tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id))); + intros_with_rewrite + ] g + end + | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr (UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.False.type")) -> + Proofview.V82.of_tactic tauto g + | Case(_,_,v,_) -> + tclTHENLIST[ + Proofview.V82.of_tactic (simplest_case v); + intros_with_rewrite + ] g + | LetIn _ -> + tclTHENLIST[ + Proofview.V82.of_tactic (reduce + (Genredexpr.Cbv + {Redops.all_flags + with Genredexpr.rDelta = false; + }) + Locusops.onConcl) + ; + intros_with_rewrite + ] g + | _ -> + let id = pf_get_new_id (Id.of_string "y") g in + tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);intros_with_rewrite] g + end + | LetIn _ -> + tclTHENLIST[ + Proofview.V82.of_tactic (reduce + (Genredexpr.Cbv + {Redops.all_flags + with Genredexpr.rDelta = false; + }) + Locusops.onConcl) + ; + intros_with_rewrite + ] g + | _ -> tclIDTAC g + +let rec reflexivity_with_destruct_cases g = + let open Constr in + let open EConstr in + let open Tacmach in + let open Tactics in + let open Tacticals in + let destruct_case () = + try + match EConstr.kind (project g) (snd (destApp (project g) (pf_concl g))).(2) with + | Case(_,_,v,_) -> + tclTHENLIST[ + Proofview.V82.of_tactic (simplest_case v); + Proofview.V82.of_tactic intros; + observe_tac "reflexivity_with_destruct_cases" reflexivity_with_destruct_cases + ] + | _ -> Proofview.V82.of_tactic reflexivity + with e when CErrors.noncritical e -> Proofview.V82.of_tactic reflexivity + in + let eq_ind = make_eq () in + let my_inj_flags = Some { + Equality.keep_proof_equalities = false; + injection_in_context = false; (* for compatibility, necessary *) + injection_pattern_l2r_order = false; (* probably does not matter; except maybe with dependent hyps *) + } in + let discr_inject = + Tacticals.onAllHypsAndConcl ( + fun sc g -> + match sc with + None -> tclIDTAC g + | Some id -> + match EConstr.kind (project g) (pf_unsafe_type_of g (mkVar id)) with + | App(eq,[|_;t1;t2|]) when EConstr.eq_constr (project g) eq eq_ind -> + if Equality.discriminable (pf_env g) (project g) t1 t2 + then Proofview.V82.of_tactic (Equality.discrHyp id) g + else if Equality.injectable (pf_env g) (project g) ~keep_proofs:None t1 t2 + then tclTHENLIST [Proofview.V82.of_tactic (Equality.injHyp my_inj_flags None id);thin [id];intros_with_rewrite] g + else tclIDTAC g + | _ -> tclIDTAC g + ) + in + (tclFIRST + [ observe_tac "reflexivity_with_destruct_cases : reflexivity" (Proofview.V82.of_tactic reflexivity); + observe_tac "reflexivity_with_destruct_cases : destruct_case" ((destruct_case ())); + (* We reach this point ONLY if + the same value is matched (at least) two times + along binding path. + In this case, either we have a discriminable hypothesis and we are done, + either at least an injectable one and we do the injection before continuing + *) + observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases) + ]) + g + +let prove_fun_complete funcs graphs schemes lemmas_types_infos i : Tacmach.tactic = + let open EConstr in + let open Tacmach in + let open Tactics in + let open Tacticals in + fun g -> + (* We compute the types of the different mutually recursive lemmas + in $\zeta$ normal form + *) + let lemmas = + Array.map + (fun (_,(ctxt,concl)) -> Reductionops.nf_zeta (pf_env g) (project g) (EConstr.it_mkLambda_or_LetIn concl ctxt)) + lemmas_types_infos + in + (* We get the constant and the principle corresponding to this lemma *) + let f = funcs.(i) in + let graph_principle = Reductionops.nf_zeta (pf_env g) (project g) (EConstr.of_constr schemes.(i)) in + let princ_type = pf_unsafe_type_of g graph_principle in + let princ_infos = Tactics.compute_elim_sig (project g) princ_type in + (* Then we get the number of argument of the function + and compute a fresh name for each of them + *) + let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in + let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in + let ids = args_names@(pf_ids_of_hyps g) in + (* and fresh names for res H and the principle (cf bug bug #1174) *) + let res,hres,graph_principle_id = + match generate_fresh_id (Id.of_string "z") ids 3 with + | [res;hres;graph_principle_id] -> res,hres,graph_principle_id + | _ -> assert false + in + let ids = res::hres::graph_principle_id::ids in + (* we also compute fresh names for each hyptohesis of each branch + of the principle *) + let branches = List.rev princ_infos.branches in + let intro_pats = + List.map + (fun decl -> + List.map + (fun id -> id) + (generate_fresh_id (Id.of_string "y") ids (Termops.nb_prod (project g) (RelDecl.get_type decl))) + ) + branches + in + (* We will need to change the function by its body + using [f_equation] if it is recursive (that is the graph is infinite + or unfold if the graph is finite + *) + let rewrite_tac j ids : Tacmach.tactic = + let graph_def = graphs.(j) in + let infos = + try find_Function_infos (fst (destConst (project g) funcs.(j))) + with Not_found -> CErrors.user_err Pp.(str "No graph found") + in + if infos.is_general + || Rtree.is_infinite Declareops.eq_recarg graph_def.Declarations.mind_recargs + then + let eq_lemma = + try Option.get (infos).equation_lemma + with Option.IsNone -> CErrors.anomaly (Pp.str "Cannot find equation lemma.") + in + tclTHENLIST[ + tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) ids; + Proofview.V82.of_tactic (Equality.rewriteLR (mkConst eq_lemma)); + (* Don't forget to $\zeta$ normlize the term since the principles + have been $\zeta$-normalized *) + Proofview.V82.of_tactic (reduce + (Genredexpr.Cbv + {Redops.all_flags + with Genredexpr.rDelta = false; + }) + Locusops.onConcl) + ; + Proofview.V82.of_tactic (generalize (List.map mkVar ids)); + thin ids + ] + else + Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst (project g) f)))]) + in + (* The proof of each branche itself *) + let ind_number = ref 0 in + let min_constr_number = ref 0 in + let prove_branche i g = + (* we fist compute the inductive corresponding to the branch *) + let this_ind_number = + let constructor_num = i - !min_constr_number in + let length = Array.length (graphs.(!ind_number).Declarations.mind_consnames) in + if constructor_num <= length + then !ind_number + else + begin + incr ind_number; + min_constr_number := !min_constr_number + length; + !ind_number + end + in + let this_branche_ids = List.nth intro_pats (pred i) in + tclTHENLIST[ + (* we expand the definition of the function *) + observe_tac "rewrite_tac" (rewrite_tac this_ind_number this_branche_ids); + (* introduce hypothesis with some rewrite *) + observe_tac "intros_with_rewrite (all)" intros_with_rewrite; + (* The proof is (almost) complete *) + observe_tac "reflexivity" (reflexivity_with_destruct_cases) + ] + g + in + let params_names = fst (List.chop princ_infos.nparams args_names) in + let open EConstr in + let params = List.map mkVar params_names in + tclTHENLIST + [ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) (args_names@[res;hres]); + observe_tac "h_generalize" + (Proofview.V82.of_tactic (generalize [mkApp(applist(graph_principle,params),Array.map (fun c -> applist(c,params)) lemmas)])); + Proofview.V82.of_tactic (Simple.intro graph_principle_id); + observe_tac "" (tclTHEN_i + (observe_tac "elim" (Proofview.V82.of_tactic (elim false None (mkVar hres, Tactypes.NoBindings) + (Some (mkVar graph_principle_id, Tactypes.NoBindings))))) + (fun i g -> observe_tac "prove_branche" (prove_branche i) g )) + ] + g + +(* [derive_correctness make_scheme funs graphs] create correctness and completeness + lemmas for each function in [funs] w.r.t. [graphs] +*) + +let derive_correctness (funs: Constr.pconstant list) (graphs:inductive list) = + let open EConstr in + assert (funs <> []); + assert (graphs <> []); + let funs = Array.of_list funs and graphs = Array.of_list graphs in + let map (c, u) = mkConstU (c, EInstance.make u) in + let funs_constr = Array.map map funs in + (* XXX STATE Why do we need this... why is the toplevel protection not enough *) + funind_purify + (fun () -> + let env = Global.env () in + let evd = ref (Evd.from_env env) in + let graphs_constr = Array.map mkInd graphs in + let lemmas_types_infos = + Util.Array.map2_i + (fun i f_constr graph -> + (* let const_of_f,u = destConst f_constr in *) + let (type_of_lemma_ctxt,type_of_lemma_concl,graph) = + generate_type evd false f_constr graph i + in + let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in + graphs_constr.(i) <- graph; + let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in + let sigma, _ = Typing.type_of (Global.env ()) !evd type_of_lemma in + evd := sigma; + let type_of_lemma = Reductionops.nf_zeta (Global.env ()) !evd type_of_lemma in + observe Pp.(str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma); + type_of_lemma,type_info + ) + funs_constr + graphs_constr + in + let schemes = + (* The functional induction schemes are computed and not saved if there is more that one function + if the block contains only one function we can safely reuse [f_rect] + *) + try + if not (Int.equal (Array.length funs_constr) 1) then raise Not_found; + [| find_induction_principle evd funs_constr.(0) |] + with Not_found -> + ( + + Array.of_list + (List.map + (fun entry -> + (EConstr.of_constr (fst (fst(Future.force entry.Proof_global.proof_entry_body))), EConstr.of_constr (Option.get entry.Proof_global.proof_entry_type )) + ) + (Functional_principles_types.make_scheme evd (Array.map_to_list (fun const -> const,Sorts.InType) funs)) + ) + ) + in + let proving_tac = + prove_fun_correct !evd funs_constr graphs_constr schemes lemmas_types_infos + in + Array.iteri + (fun i f_as_constant -> + let f_id = Label.to_id (Constant.label (fst f_as_constant)) in + (*i The next call to mk_correct_id is valid since we are constructing the lemma + Ensures by: obvious + i*) + let lem_id = mk_correct_id f_id in + let (typ,_) = lemmas_types_infos.(i) in + let info = Lemmas.Info.make + ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) + ~kind:(Decls.(IsProof Theorem)) () in + let lemma = Lemmas.start_lemma + ~name:lem_id + ~poly:false + ~info + !evd + typ in + let lemma = fst @@ Lemmas.by + (Proofview.V82.tactic (proving_tac i)) lemma in + let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in + let finfo = find_Function_infos (fst f_as_constant) in + (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *) + let _,lem_cst_constr = Evd.fresh_global + (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in + let (lem_cst,_) = EConstr.destConst !evd lem_cst_constr in + update_Function {finfo with correctness_lemma = Some lem_cst}; + + ) + funs; + let lemmas_types_infos = + Util.Array.map2_i + (fun i f_constr graph -> + let (type_of_lemma_ctxt,type_of_lemma_concl,graph) = + generate_type evd true f_constr graph i + in + let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in + graphs_constr.(i) <- graph; + let type_of_lemma = + EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt + in + let type_of_lemma = Reductionops.nf_zeta env !evd type_of_lemma in + observe Pp.(str "type_of_lemma := " ++ Printer.pr_leconstr_env env !evd type_of_lemma); + type_of_lemma,type_info + ) + funs_constr + graphs_constr + in + + let (kn,_) as graph_ind,u = (destInd !evd graphs_constr.(0)) in + let mib,mip = Global.lookup_inductive graph_ind in + let sigma, scheme = + (Indrec.build_mutual_induction_scheme (Global.env ()) !evd + (Array.to_list + (Array.mapi + (fun i _ -> ((kn,i), EInstance.kind !evd u),true, Sorts.InType) + mib.Declarations.mind_packets + ) + ) + ) + in + let schemes = + Array.of_list scheme + in + let proving_tac = + prove_fun_complete funs_constr mib.Declarations.mind_packets schemes lemmas_types_infos + in + Array.iteri + (fun i f_as_constant -> + let f_id = Label.to_id (Constant.label (fst f_as_constant)) in + (*i The next call to mk_complete_id is valid since we are constructing the lemma + Ensures by: obvious + i*) + let lem_id = mk_complete_id f_id in + let info = Lemmas.Info.make + ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) + ~kind:Decls.(IsProof Theorem) () in + let lemma = Lemmas.start_lemma ~name:lem_id ~poly:false ~info + sigma (fst lemmas_types_infos.(i)) in + let lemma = fst (Lemmas.by + (Proofview.V82.tactic (observe_tac ("prove completeness ("^(Id.to_string f_id)^")") + (proving_tac i))) lemma) in + let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in + let finfo = find_Function_infos (fst f_as_constant) in + let _,lem_cst_constr = Evd.fresh_global + (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in + let (lem_cst,_) = destConst !evd lem_cst_constr in + update_Function {finfo with completeness_lemma = Some lem_cst} + ) + funs) + () + +let warn_funind_cannot_build_inversion = + CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind" + Pp.(fun e' -> strbrk "Cannot build inversion information" ++ + if do_observe () then (fnl() ++ CErrors.print e') else mt ()) + +let derive_inversion fix_names = + try + let evd' = Evd.from_env (Global.env ()) in + (* we first transform the fix_names identifier into their corresponding constant *) + let evd',fix_names_as_constant = + List.fold_right + (fun id (evd,l) -> + let evd,c = + Evd.fresh_global + (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in + let (cst, u) = EConstr.destConst evd c in + evd, (cst, EConstr.EInstance.kind evd u) :: l + ) + fix_names + (evd',[]) + in + (* + Then we check that the graphs have been defined + If one of the graphs haven't been defined + we do nothing + *) + List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ; + try + let evd', lind = + List.fold_right + (fun id (evd,l) -> + let evd,id = + Evd.fresh_global + (Global.env ()) evd + (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id))) + in + evd,(fst (EConstr.destInd evd id))::l + ) + fix_names + (evd',[]) + in + derive_correctness + fix_names_as_constant + lind; + with e when CErrors.noncritical e -> + warn_funind_cannot_build_inversion e + with e when CErrors.noncritical e -> + warn_funind_cannot_build_inversion e + +let register_wf interactive_proof ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body + pre_hook + = + let type_of_f = Constrexpr_ops.mkCProdN args ret_type in + let rec_arg_num = + let names = + List.map + CAst.(with_val (fun x -> x)) + (Constrexpr_ops.names_of_local_assums args) + in + List.index Name.equal (Name wf_arg) names + in + let unbounded_eq = + let f_app_args = + CAst.make @@ Constrexpr.CAppExpl( + (None, Libnames.qualid_of_ident fname,None) , + (List.map + (function + | {CAst.v=Anonymous} -> assert false + | {CAst.v=Name e} -> (Constrexpr_ops.mkIdentC e) + ) + (Constrexpr_ops.names_of_local_assums args) + ) + ) + in + CAst.make @@ Constrexpr.CApp ((None,Constrexpr_ops.mkRefC (Libnames.qualid_of_string "Logic.eq")), + [(f_app_args,None);(body,None)]) + in + let eq = Constrexpr_ops.mkCProdN args unbounded_eq in + let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type + nb_args relation = + try + pre_hook [fconst] + (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes + functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation + ); + derive_inversion [fname] + with e when CErrors.noncritical e -> + (* No proof done *) + () + in + Recdef.recursive_definition ~interactive_proof + ~is_mes fname rec_impls + type_of_f + wf_rel_expr + rec_arg_num + eq + hook + using_lemmas + +let register_mes interactive_proof fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body = + let wf_arg_type,wf_arg = + match wf_arg with + | None -> + begin + match args with + | [Constrexpr.CLocalAssum ([{CAst.v=Name x}],k,t)] -> t,x + | _ -> CErrors.user_err (Pp.str "Recursive argument must be specified") + end + | Some wf_args -> + try + match + List.find + (function + | Constrexpr.CLocalAssum(l,k,t) -> + List.exists + (function {CAst.v=Name id} -> Id.equal id wf_args | _ -> false) + l + | _ -> false + ) + args + with + | Constrexpr.CLocalAssum(_,k,t) -> t,wf_args + | _ -> assert false + with Not_found -> assert false + in + let wf_rel_from_mes,is_mes = + match wf_rel_expr_opt with + | None -> + let ltof = + let make_dir l = DirPath.make (List.rev_map Id.of_string l) in + Libnames.qualid_of_path + (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof")) + in + let fun_from_mes = + let applied_mes = + Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in + Constrexpr_ops.mkLambdaC ([CAst.make @@ Name wf_arg],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes) + in + let wf_rel_from_mes = + Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes]) + in + wf_rel_from_mes,true + | Some wf_rel_expr -> + let wf_rel_with_mes = + let a = Names.Id.of_string "___a" in + let b = Names.Id.of_string "___b" in + Constrexpr_ops.mkLambdaC( + [CAst.make @@ Name a; CAst.make @@ Name b], + Constrexpr.Default Decl_kinds.Explicit, + wf_arg_type, + Constrexpr_ops.mkAppC(wf_rel_expr, + [ + Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]); + Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b]) + ]) + ) + in + wf_rel_with_mes,false + in + register_wf interactive_proof ~is_mes:is_mes fname rec_impls wf_rel_from_mes wf_arg + using_lemmas args ret_type body + +let do_generate_principle_aux pconstants on_error register_built interactive_proof fixpoint_exprl : Lemmas.t option = + List.iter (fun { Vernacexpr.notations } -> + if not (List.is_empty notations) + then CErrors.user_err (Pp.str "Function does not support notations for now")) fixpoint_exprl; + let lemma, _is_struct = + match fixpoint_exprl with + | [{ Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CWfRec (wf_x,wf_rel)} } as fixpoint_expr] -> + let { Vernacexpr.fname; univs; binders; rtype; body_def } as fixpoint_expr = + match recompute_binder_list [fixpoint_expr] with + | [e] -> e + | _ -> assert false + in + let fixpoint_exprl = [fixpoint_expr] in + let body = match body_def with | Some body -> body | None -> + CErrors.user_err ~hdr:"Function" (Pp.str "Body of Function must be given") in + let recdefs,rec_impls = build_newrecursive fixpoint_exprl in + let using_lemmas = [] in + let pre_hook pconstants = + generate_principle + (ref (Evd.from_env (Global.env ()))) + pconstants + on_error + true + register_built + fixpoint_exprl + recdefs + true + in + if register_built + then register_wf interactive_proof fname.CAst.v rec_impls wf_rel wf_x.CAst.v using_lemmas binders rtype body pre_hook, false + else None, false + | [{ Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CMeasureRec(wf_x,wf_mes,wf_rel_opt)} } as fixpoint_expr] -> + let { Vernacexpr.fname; univs; binders; rtype; body_def} as fixpoint_expr = + match recompute_binder_list [fixpoint_expr] with + | [e] -> e + | _ -> assert false + in + let fixpoint_exprl = [fixpoint_expr] in + let recdefs,rec_impls = build_newrecursive fixpoint_exprl in + let using_lemmas = [] in + let body = match body_def with + | Some body -> body + | None -> + CErrors.user_err ~hdr:"Function" Pp.(str "Body of Function must be given") in + let pre_hook pconstants = + generate_principle + (ref (Evd.from_env (Global.env ()))) + pconstants + on_error + true + register_built + fixpoint_exprl + recdefs + true + in + if register_built + then register_mes interactive_proof fname.CAst.v rec_impls wf_mes wf_rel_opt + (Option.map (fun x -> x.CAst.v) wf_x) using_lemmas binders rtype body pre_hook, true + else None, true + | _ -> + List.iter (function { Vernacexpr.rec_order } -> + match rec_order with + | Some { CAst.v = (Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _) } -> + CErrors.user_err + (Pp.str "Cannot use mutual definition with well-founded recursion or measure") + | _ -> () + ) + fixpoint_exprl; + let fixpoint_exprl = recompute_binder_list fixpoint_exprl in + let fix_names = List.map (function { Vernacexpr.fname } -> fname.CAst.v) fixpoint_exprl in + (* ok all the expressions are structural *) + let recdefs,rec_impls = build_newrecursive fixpoint_exprl in + let is_rec = List.exists (is_rec fix_names) recdefs in + let lemma,evd,pconstants = + if register_built + then register_struct is_rec fixpoint_exprl + else None, Evd.from_env (Global.env ()), pconstants + in + let evd = ref evd in + generate_principle + (ref !evd) + pconstants + on_error + false + register_built + fixpoint_exprl + recdefs + interactive_proof + (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof); + if register_built then + begin derive_inversion fix_names; end; + lemma, true + in + lemma + +let warn_cannot_define_graph = + CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind" + (fun (names,error) -> + Pp.(strbrk "Cannot define graph(s) for " ++ + h 1 names ++ error)) + +let warn_cannot_define_principle = + CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind" + (fun (names,error) -> + Pp.(strbrk "Cannot define induction principle(s) for "++ + h 1 names ++ error)) + +let warning_error names e = + let e_explain e = + match e with + | ToShow e -> + Pp.(spc () ++ CErrors.print e) + | _ -> + if do_observe () + then Pp.(spc () ++ CErrors.print e) + else Pp.mt () + in + match e with + | Building_graph e -> + let names = Pp.(prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) in + warn_cannot_define_graph (names,e_explain e) + | Defining_principle e -> + let names = Pp.(prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) in + warn_cannot_define_principle (names,e_explain e) + | _ -> raise e + +let error_error names e = + let e_explain e = + match e with + | ToShow e -> Pp.(spc () ++ CErrors.print e) + | _ -> if do_observe () then Pp.(spc () ++ CErrors.print e) else Pp.mt () + in + match e with + | Building_graph e -> + CErrors.user_err + Pp.(str "Cannot define graph(s) for " ++ + h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++ + e_explain e) + | _ -> raise e + +(* [chop_n_arrow n t] chops the [n] first arrows in [t] + Acts on Constrexpr.constr_expr +*) +let rec chop_n_arrow n t = + let exception Stop of Constrexpr.constr_expr in + let open Constrexpr in + if n <= 0 + then t (* If we have already removed all the arrows then return the type *) + else (* If not we check the form of [t] *) + match t.CAst.v with + | Constrexpr.CProdN(nal_ta',t') -> (* If we have a forall, two results are possible : + either we need to discard more than the number of arrows contained + in this product declaration then we just recall [chop_n_arrow] on + the remaining number of arrow to chop and [t'] we discard it and + recall [chop_n_arrow], either this product contains more arrows + than the number we need to chop and then we return the new type + *) + begin + try + let new_n = + let rec aux (n:int) = function + [] -> n + | CLocalAssum(nal,k,t'')::nal_ta' -> + let nal_l = List.length nal in + if n >= nal_l + then + aux (n - nal_l) nal_ta' + else + let new_t' = CAst.make @@ + Constrexpr.CProdN( + CLocalAssum((snd (List.chop n nal)),k,t'')::nal_ta',t') + in + raise (Stop new_t') + | _ -> CErrors.anomaly (Pp.str "Not enough products.") + in + aux n nal_ta' + in + chop_n_arrow new_n t' + with Stop t -> t + end + | _ -> CErrors.anomaly (Pp.str "Not enough products.") + +let rec add_args id new_args = + let open Libnames in + let open Constrexpr in + CAst.map (function + | CRef (qid,_) as b -> + if qualid_is_ident qid && Id.equal (qualid_basename qid) id then + CAppExpl((None,qid,None),new_args) + else b + | CFix _ | CCoFix _ -> + CErrors.anomaly ~label:"add_args " (Pp.str "todo.") + | CProdN(nal,b1) -> + CProdN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2) + | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t) + | CLocalPattern _ -> + CErrors.user_err (Pp.str "pattern with quote not allowed here.")) nal, + add_args id new_args b1) + | CLambdaN(nal,b1) -> + CLambdaN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2) + | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t) + | CLocalPattern _ -> + CErrors.user_err (Pp.str "pattern with quote not allowed here.")) nal, + add_args id new_args b1) + | CLetIn(na,b1,t,b2) -> + CLetIn(na,add_args id new_args b1,Option.map (add_args id new_args) t,add_args id new_args b2) + | CAppExpl((pf,qid,us),exprl) -> + if qualid_is_ident qid && Id.equal (qualid_basename qid) id then + CAppExpl((pf,qid,us),new_args@(List.map (add_args id new_args) exprl)) + else CAppExpl((pf,qid,us),List.map (add_args id new_args) exprl) + | CApp((pf,b),bl) -> + CApp((pf,add_args id new_args b), + List.map (fun (e,o) -> add_args id new_args e,o) bl) + | CCases(sty,b_option,cel,cal) -> + CCases(sty,Option.map (add_args id new_args) b_option, + List.map (fun (b,na,b_option) -> + add_args id new_args b, + na, b_option) cel, + List.map CAst.(map (fun (cpl,e) -> (cpl,add_args id new_args e))) cal + ) + | CLetTuple(nal,(na,b_option),b1,b2) -> + CLetTuple(nal,(na,Option.map (add_args id new_args) b_option), + add_args id new_args b1, + add_args id new_args b2 + ) + + | CIf(b1,(na,b_option),b2,b3) -> + CIf(add_args id new_args b1, + (na,Option.map (add_args id new_args) b_option), + add_args id new_args b2, + add_args id new_args b3 + ) + | CHole _ + | CPatVar _ + | CEvar _ + | CPrim _ + | CSort _ as b -> b + | CCast(b1,b2) -> + CCast(add_args id new_args b1, + Glob_ops.map_cast_type (add_args id new_args) b2) + | CRecord pars -> + CRecord (List.map (fun (e,o) -> e, add_args id new_args o) pars) + | CNotation _ -> + CErrors.anomaly ~label:"add_args " (Pp.str "CNotation.") + | CGeneralization _ -> + CErrors.anomaly ~label:"add_args " (Pp.str "CGeneralization.") + | CDelimiters _ -> + CErrors.anomaly ~label:"add_args " (Pp.str "CDelimiters.") + ) + +let rec get_args b t : Constrexpr.local_binder_expr list * Constrexpr.constr_expr * Constrexpr.constr_expr = + let open Constrexpr in + match b.CAst.v with + | Constrexpr.CLambdaN (CLocalAssum(nal,k,ta) as d::rest, b') -> + begin + let n = List.length nal in + let nal_tas,b'',t'' = get_args (CAst.make ?loc:b.CAst.loc @@ Constrexpr.CLambdaN (rest,b')) (chop_n_arrow n t) in + d :: nal_tas, b'',t'' + end + | Constrexpr.CLambdaN ([], b) -> [],b,t + | _ -> [],b,t + +let make_graph (f_ref : GlobRef.t) = + let open Constrexpr in + let env = Global.env() in + let sigma = Evd.from_env env in + let c,c_body = + match f_ref with + | GlobRef.ConstRef c -> + begin + try c,Global.lookup_constant c + with Not_found -> + CErrors.user_err Pp.(str "Cannot find " ++ Printer.pr_leconstr_env env sigma (EConstr.mkConst c)) + end + | _ -> + CErrors.user_err Pp.(str "Not a function reference") + in + (match Global.body_of_constant_body Library.indirect_accessor c_body with + | None -> + CErrors.user_err (Pp.str "Cannot build a graph over an axiom!") + | Some (body, _, _) -> + let env = Global.env () in + let extern_body,extern_type = + with_full_print (fun () -> + (Constrextern.extern_constr false env sigma (EConstr.of_constr body), + Constrextern.extern_type false env sigma + (EConstr.of_constr (*FIXME*) c_body.Declarations.const_type) + ) + ) + () + in + let (nal_tas,b,t) = get_args extern_body extern_type in + let expr_list = + match b.CAst.v with + | Constrexpr.CFix(l_id,fixexprl) -> + let l = + List.map + (fun (id,recexp,bl,t,b) -> + let { CAst.loc; v=rec_id } = match Option.get recexp with + | { CAst.v = CStructRec id } -> id + | { CAst.v = CWfRec (id,_) } -> id + | { CAst.v = CMeasureRec (oid,_,_) } -> Option.get oid + in + let new_args = + List.flatten + (List.map + (function + | Constrexpr.CLocalDef (na,_,_)-> [] + | Constrexpr.CLocalAssum (nal,_,_) -> + List.map + (fun {CAst.loc;v=n} -> CAst.make ?loc @@ + CRef(Libnames.qualid_of_ident ?loc @@ Nameops.Name.get_id n,None)) + nal + | Constrexpr.CLocalPattern _ -> assert false + ) + nal_tas + ) + in + let b' = add_args id.CAst.v new_args b in + { Vernacexpr.fname=id; univs=None + ; rec_order = Some (CAst.make (CStructRec (CAst.make rec_id))) + ; binders = nal_tas@bl; rtype=t; body_def=Some b'; notations = []} + ) + fixexprl + in + l + | _ -> + let fname = CAst.make (Label.to_id (Constant.label c)) in + [{ Vernacexpr.fname; univs=None; rec_order = None; binders=nal_tas; rtype=t; body_def=Some b; notations=[]}] + in + let mp = Constant.modpath c in + let pstate = do_generate_principle_aux [c,Univ.Instance.empty] error_error false false expr_list in + assert (Option.is_empty pstate); + (* We register the infos *) + List.iter + (fun { Vernacexpr.fname= {CAst.v=id} } -> + add_Function false (Constant.make2 mp (Label.of_id id))) + expr_list) + +(* *************** statically typed entrypoints ************************* *) + +let do_generate_principle_interactive fixl : Lemmas.t = + match + do_generate_principle_aux [] warning_error true true fixl + with + | Some lemma -> lemma + | None -> + CErrors.anomaly + (Pp.str"indfun: leaving no open proof in interactive mode") + +let do_generate_principle fixl : unit = + match do_generate_principle_aux [] warning_error true false fixl with + | Some _lemma -> + CErrors.anomaly + (Pp.str"indfun: leaving a goal open in non-interactive mode") + | None -> () diff --git a/plugins/funind/gen_principle.mli b/plugins/funind/gen_principle.mli new file mode 100644 index 0000000000..06ece6feee --- /dev/null +++ b/plugins/funind/gen_principle.mli @@ -0,0 +1,17 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +val warn_cannot_define_graph : ?loc:Loc.t -> Pp.t * Pp.t -> unit +val warn_cannot_define_principle : ?loc:Loc.t -> Pp.t * Pp.t -> unit + +val do_generate_principle_interactive : Vernacexpr.fixpoint_expr list -> Lemmas.t +val do_generate_principle : Vernacexpr.fixpoint_expr list -> unit + +val make_graph : Names.GlobRef.t -> unit diff --git a/plugins/funind/glob_term_to_relation.ml b/plugins/funind/glob_term_to_relation.ml index 6dc01a9f8f..798c62d549 100644 --- a/plugins/funind/glob_term_to_relation.ml +++ b/plugins/funind/glob_term_to_relation.ml @@ -1554,5 +1554,3 @@ let build_inductive evd funconstants funsargs returned_types rtl = Detyping.print_universes := pu; Constrextern.print_universes := cu; raise (Building_graph e) - - diff --git a/plugins/funind/indfun.ml b/plugins/funind/indfun.ml index 73e9c94d34..eeb2f246c2 100644 --- a/plugins/funind/indfun.ml +++ b/plugins/funind/indfun.ml @@ -13,43 +13,13 @@ open Sorts open Util open Names open Constr -open Context open EConstr open Pp open Indfun_common -open Libnames -open Glob_term -open Declarations open Tactypes -open Decl_kinds module RelDecl = Context.Rel.Declaration -(* Move to common *) -let observe strm = - if do_observe () - then Feedback.msg_debug strm - else () - -let do_observe_tac s tac g = - let goal = - try Printer.pr_goal g - with e when CErrors.noncritical e -> assert false - in - try - let v = tac g in - msgnl (goal ++ fnl () ++ s ++(str " ")++(str "finished")); v - with reraise -> - let reraise = CErrors.push reraise in - observe (hov 0 (str "observation "++ s++str " raised exception " ++ - CErrors.iprint reraise ++ str " on goal" ++ fnl() ++ goal )); - iraise reraise;; - -let observe_tac s tac g = - if do_observe () - then do_observe_tac (str s) tac g - else tac g - let is_rec_info sigma scheme_info = let test_branche min acc decl = acc || ( @@ -175,1599 +145,3 @@ let functional_induction with_clean c princl pat = subst_and_reduce g' in res - -let rec abstract_glob_constr c = function - | [] -> c - | Constrexpr.CLocalDef (x,b,t)::bl -> Constrexpr_ops.mkLetInC(x,b,t,abstract_glob_constr c bl) - | Constrexpr.CLocalAssum (idl,k,t)::bl -> - List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl - (abstract_glob_constr c bl) - | Constrexpr.CLocalPattern _::bl -> assert false - -let interp_casted_constr_with_implicits env sigma impls c = - Constrintern.intern_gen Pretyping.WithoutTypeConstraint env sigma ~impls c - -(* - Construct a fixpoint as a Glob_term - and not as a constr -*) - -let build_newrecursive lnameargsardef = - let env0 = Global.env() in - let sigma = Evd.from_env env0 in - let (rec_sign,rec_impls) = - List.fold_left - (fun (env,impls) { Vernacexpr.fname={CAst.v=recname}; binders; rtype } -> - let arityc = Constrexpr_ops.mkCProdN binders rtype in - let arity,ctx = Constrintern.interp_type env0 sigma arityc in - let evd = Evd.from_env env0 in - let evd, (_, (_, impls')) = Constrintern.interp_context_evars ~program_mode:false env evd binders in - let impl = Constrintern.compute_internalization_data env0 evd Constrintern.Recursive arity impls' in - let open Context.Named.Declaration in - let r = Sorts.Relevant in (* TODO relevance *) - (EConstr.push_named (LocalAssum (make_annot recname r,arity)) env, Id.Map.add recname impl impls)) - (env0,Constrintern.empty_internalization_env) lnameargsardef in - let recdef = - (* Declare local notations *) - let f { Vernacexpr.binders; body_def } = - match body_def with - | Some body_def -> - let def = abstract_glob_constr body_def binders in - interp_casted_constr_with_implicits - rec_sign sigma rec_impls def - | None -> user_err ~hdr:"Function" (str "Body of Function must be given") - in - States.with_state_protection (List.map f) lnameargsardef - in - recdef,rec_impls - -let error msg = user_err Pp.(str msg) - -(* Checks whether or not the mutual bloc is recursive *) -let is_rec names = - let names = List.fold_right Id.Set.add names Id.Set.empty in - let check_id id names = Id.Set.mem id names in - let rec lookup names gt = match DAst.get gt with - | GVar(id) -> check_id id names - | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ | GInt _ -> false - | GCast(b,_) -> lookup names b - | GRec _ -> error "GRec not handled" - | GIf(b,_,lhs,rhs) -> - (lookup names b) || (lookup names lhs) || (lookup names rhs) - | GProd(na,_,t,b) | GLambda(na,_,t,b) -> - lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b - | GLetIn(na,b,t,c) -> - lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c - | GLetTuple(nal,_,t,b) -> lookup names t || - lookup - (List.fold_left - (fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc) - names - nal - ) - b - | GApp(f,args) -> List.exists (lookup names) (f::args) - | GCases(_,_,el,brl) -> - List.exists (fun (e,_) -> lookup names e) el || - List.exists (lookup_br names) brl - and lookup_br names {CAst.v=(idl,_,rt)} = - let new_names = List.fold_right Id.Set.remove idl names in - lookup new_names rt - in - lookup names - -let rec local_binders_length = function - (* Assume that no `{ ... } contexts occur *) - | [] -> 0 - | Constrexpr.CLocalDef _::bl -> 1 + local_binders_length bl - | Constrexpr.CLocalAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl - | Constrexpr.CLocalPattern _::bl -> assert false - -let prepare_body { Vernacexpr.binders; rtype } rt = - let n = local_binders_length binders in -(* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *) - let fun_args,rt' = chop_rlambda_n n rt in - (fun_args,rt') - -(* [prove_fun_correct funs_constr graphs_constr schemes lemmas_types_infos i ] - is the tactic used to prove correctness lemma. - - [funs_constr], [graphs_constr] [schemes] [lemmas_types_infos] are the mutually recursive functions - (resp. graphs of the functions and principles and correctness lemma types) to prove correct. - - [i] is the indice of the function to prove correct - - The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is - it looks like~: - [\forall (x_1:t_1)\ldots(x_n:t_n), forall res, - res = f x_1\ldots x_n in, \rightarrow graph\ x_1\ldots x_n\ res] - - - The sketch of the proof is the following one~: - \begin{enumerate} - \item intros until $x_n$ - \item $functional\ induction\ (f.(i)\ x_1\ldots x_n)$ using schemes.(i) - \item for each generated branch intro [res] and [hres :res = f x_1\ldots x_n], rewrite [hres] and the - apply the corresponding constructor of the corresponding graph inductive. - \end{enumerate} - -*) - -let rec generate_fresh_id x avoid i = - if i == 0 - then [] - else - let id = Namegen.next_ident_away_in_goal x (Id.Set.of_list avoid) in - id::(generate_fresh_id x (id::avoid) (pred i)) - -let make_eq () = - try EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type")) - with _ -> assert false - -let prove_fun_correct evd funs_constr graphs_constr schemes lemmas_types_infos i : Tacmach.tactic = - let open Context.Rel.Declaration in - let open Tacmach in - let open Tactics in - let open Tacticals in - fun g -> - (* first of all we recreate the lemmas types to be used as predicates of the induction principle - that is~: - \[fun (x_1:t_1)\ldots(x_n:t_n)=> fun fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\] - *) - (* we the get the definition of the graphs block *) - let graph_ind,u = destInd evd graphs_constr.(i) in - let kn = fst graph_ind in - let mib,_ = Global.lookup_inductive graph_ind in - (* and the principle to use in this lemma in $\zeta$ normal form *) - let f_principle,princ_type = schemes.(i) in - let princ_type = Reductionops.nf_zeta (Global.env ()) evd princ_type in - let princ_infos = Tactics.compute_elim_sig evd princ_type in - (* The number of args of the function is then easily computable *) - let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in - let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in - let ids = args_names@(pf_ids_of_hyps g) in - (* Since we cannot ensure that the functional principle is defined in the - environment and due to the bug #1174, we will need to pose the principle - using a name - *) - let principle_id = Namegen.next_ident_away_in_goal (Id.of_string "princ") (Id.Set.of_list ids) in - let ids = principle_id :: ids in - (* We get the branches of the principle *) - let branches = List.rev princ_infos.Tactics.branches in - (* and built the intro pattern for each of them *) - let intro_pats = - List.map - (fun decl -> - List.map - (fun id -> CAst.make @@ IntroNaming (Namegen.IntroIdentifier id)) - (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl))))) - ) - branches - in - (* before building the full intro pattern for the principle *) - let eq_ind = make_eq () in - let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in - (* The next to referencies will be used to find out which constructor to apply in each branch *) - let ind_number = ref 0 - and min_constr_number = ref 0 in - (* The tactic to prove the ith branch of the principle *) - let prove_branche i g = - (* We get the identifiers of this branch *) - let pre_args = - List.fold_right - (fun {CAst.v=pat} acc -> - match pat with - | IntroNaming (Namegen.IntroIdentifier id) -> id::acc - | _ -> anomaly (Pp.str "Not an identifier.") - ) - (List.nth intro_pats (pred i)) - [] - in - (* and get the real args of the branch by unfolding the defined constant *) - (* - We can then recompute the arguments of the constructor. - For each [hid] introduced by this branch, if [hid] has type - $forall res, res=fv -> graph.(j)\ x_1\ x_n res$ the corresponding arguments of the constructor are - [ fv (hid fv (refl_equal fv)) ]. - If [hid] has another type the corresponding argument of the constructor is [hid] - *) - let constructor_args g = - List.fold_right - (fun hid acc -> - let type_of_hid = pf_unsafe_type_of g (mkVar hid) in - let sigma = project g in - match EConstr.kind sigma type_of_hid with - | Prod(_,_,t') -> - begin - match EConstr.kind sigma t' with - | Prod(_,t'',t''') -> - begin - match EConstr.kind sigma t'',EConstr.kind sigma t''' with - | App(eq,args), App(graph',_) - when - (EConstr.eq_constr sigma eq eq_ind) && - Array.exists (EConstr.eq_constr_nounivs sigma graph') graphs_constr -> - (args.(2)::(mkApp(mkVar hid,[|args.(2);(mkApp(eq_construct,[|args.(0);args.(2)|]))|])) - ::acc) - | _ -> mkVar hid :: acc - end - | _ -> mkVar hid :: acc - end - | _ -> mkVar hid :: acc - ) pre_args [] - in - (* in fact we must also add the parameters to the constructor args *) - let constructor_args g = - let params_id = fst (List.chop princ_infos.Tactics.nparams args_names) in - (List.map mkVar params_id)@((constructor_args g)) - in - (* We then get the constructor corresponding to this branch and - modifies the references has needed i.e. - if the constructor is the last one of the current inductive then - add one the number of the inductive to take and add the number of constructor of the previous - graph to the minimal constructor number - *) - let constructor = - let constructor_num = i - !min_constr_number in - let length = Array.length (mib.Declarations.mind_packets.(!ind_number).Declarations.mind_consnames) in - if constructor_num <= length - then - begin - (kn,!ind_number),constructor_num - end - else - begin - incr ind_number; - min_constr_number := !min_constr_number + length ; - (kn,!ind_number),1 - end - in - (* we can then build the final proof term *) - let app_constructor g = applist((mkConstructU(constructor,u)),constructor_args g) in - (* an apply the tactic *) - let res,hres = - match generate_fresh_id (Id.of_string "z") (ids(* @this_branche_ids *)) 2 with - | [res;hres] -> res,hres - | _ -> assert false - in - (* observe (str "constructor := " ++ Printer.pr_lconstr_env (pf_env g) app_constructor); *) - ( - tclTHENLIST - [ - observe_tac("h_intro_patterns ") (let l = (List.nth intro_pats (pred i)) in - match l with - | [] -> tclIDTAC - | _ -> Proofview.V82.of_tactic (intro_patterns false l)); - (* unfolding of all the defined variables introduced by this branch *) - (* observe_tac "unfolding" pre_tac; *) - (* $zeta$ normalizing of the conclusion *) - Proofview.V82.of_tactic (reduce - (Genredexpr.Cbv - { Redops.all_flags with - Genredexpr.rDelta = false ; - Genredexpr.rConst = [] - } - ) - Locusops.onConcl); - observe_tac ("toto ") tclIDTAC; - - (* introducing the result of the graph and the equality hypothesis *) - observe_tac "introducing" (tclMAP (fun x -> Proofview.V82.of_tactic (Simple.intro x)) [res;hres]); - (* replacing [res] with its value *) - observe_tac "rewriting res value" (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar hres))); - (* Conclusion *) - observe_tac "exact" (fun g -> - Proofview.V82.of_tactic (exact_check (app_constructor g)) g) - ] - ) - g - in - (* end of branche proof *) - let lemmas = - Array.map - (fun ((_,(ctxt,concl))) -> - match ctxt with - | [] | [_] | [_;_] -> anomaly (Pp.str "bad context.") - | hres::res::decl::ctxt -> - let res = EConstr.it_mkLambda_or_LetIn - (EConstr.it_mkProd_or_LetIn concl [hres;res]) - (LocalAssum (RelDecl.get_annot decl, RelDecl.get_type decl) :: ctxt) - in - res) - lemmas_types_infos - in - let param_names = fst (List.chop princ_infos.nparams args_names) in - let params = List.map mkVar param_names in - let lemmas = Array.to_list (Array.map (fun c -> applist(c,params)) lemmas) in - (* The bindings of the principle - that is the params of the principle and the different lemma types - *) - let bindings = - let params_bindings,avoid = - List.fold_left2 - (fun (bindings,avoid) decl p -> - let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in - p::bindings,id::avoid - ) - ([],pf_ids_of_hyps g) - princ_infos.params - (List.rev params) - in - let lemmas_bindings = - List.rev (fst (List.fold_left2 - (fun (bindings,avoid) decl p -> - let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in - (Reductionops.nf_zeta (pf_env g) (project g) p)::bindings,id::avoid) - ([],avoid) - princ_infos.predicates - (lemmas))) - in - (params_bindings@lemmas_bindings) - in - tclTHENLIST - [ - observe_tac "principle" (Proofview.V82.of_tactic (assert_by - (Name principle_id) - princ_type - (exact_check f_principle))); - observe_tac "intro args_names" (tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) args_names); - (* observe_tac "titi" (pose_proof (Name (Id.of_string "__")) (Reductionops.nf_beta Evd.empty ((mkApp (mkVar principle_id,Array.of_list bindings))))); *) - observe_tac "idtac" tclIDTAC; - tclTHEN_i - (observe_tac - "functional_induction" ( - (fun gl -> - let term = mkApp (mkVar principle_id,Array.of_list bindings) in - let gl', _ty = pf_eapply (Typing.type_of ~refresh:true) gl term in - Proofview.V82.of_tactic (apply term) gl') - )) - (fun i g -> observe_tac ("proving branche "^string_of_int i) (prove_branche i) g ) - ] - g - -(** - [find_induction_principle f] searches and returns the [body] and the [type] of [f_rect] - - WARNING: while convertible, [type_of body] and [type] can be non equal -*) -let find_induction_principle evd f = - let f_as_constant,u = match EConstr.kind !evd f with - | Const c' -> c' - | _ -> user_err Pp.(str "Must be used with a function") - in - let infos = find_Function_infos f_as_constant in - match infos.rect_lemma with - | None -> raise Not_found - | Some rect_lemma -> - let evd',rect_lemma = Evd.fresh_global (Global.env ()) !evd (GlobRef.ConstRef rect_lemma) in - let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in - evd:=evd'; - rect_lemma,typ - -(* [generate_type g_to_f f graph i] build the completeness (resp. correctness) lemma type if [g_to_f = true] - (resp. g_to_f = false) where [graph] is the graph of [f] and is the [i]th function in the block. - - [generate_type true f i] returns - \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, - graph\ x_1\ldots x_n\ res \rightarrow res = fv \] decomposed as the context and the conclusion - - [generate_type false f i] returns - \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, - res = fv \rightarrow graph\ x_1\ldots x_n\ res\] decomposed as the context and the conclusion - *) - -let generate_type evd g_to_f f graph i = - let open Context.Rel.Declaration in - let open EConstr.Vars in - (*i we deduce the number of arguments of the function and its returned type from the graph i*) - let evd',graph = - Evd.fresh_global (Global.env ()) !evd (GlobRef.IndRef (fst (destInd !evd graph))) - in - evd:=evd'; - let sigma, graph_arity = Typing.type_of (Global.env ()) !evd graph in - evd := sigma; - let ctxt,_ = decompose_prod_assum !evd graph_arity in - let fun_ctxt,res_type = - match ctxt with - | [] | [_] -> anomaly (Pp.str "Not a valid context.") - | decl :: fun_ctxt -> fun_ctxt, RelDecl.get_type decl - in - let rec args_from_decl i accu = function - | [] -> accu - | LocalDef _ :: l -> - args_from_decl (succ i) accu l - | _ :: l -> - let t = mkRel i in - args_from_decl (succ i) (t :: accu) l - in - (*i We need to name the vars [res] and [fv] i*) - let filter = fun decl -> match RelDecl.get_name decl with - | Name id -> Some id - | Anonymous -> None - in - let named_ctxt = Id.Set.of_list (List.map_filter filter fun_ctxt) in - let res_id = Namegen.next_ident_away_in_goal (Id.of_string "_res") named_ctxt in - let fv_id = Namegen.next_ident_away_in_goal (Id.of_string "fv") (Id.Set.add res_id named_ctxt) in - (*i we can then type the argument to be applied to the function [f] i*) - let args_as_rels = Array.of_list (args_from_decl 1 [] fun_ctxt) in - (*i - the hypothesis [res = fv] can then be computed - We will need to lift it by one in order to use it as a conclusion - i*) - let make_eq = make_eq () - in - let res_eq_f_of_args = - mkApp(make_eq ,[|lift 2 res_type;mkRel 1;mkRel 2|]) - in - (*i - The hypothesis [graph\ x_1\ldots x_n\ res] can then be computed - We will need to lift it by one in order to use it as a conclusion - i*) - let args_and_res_as_rels = Array.of_list (args_from_decl 3 [] fun_ctxt) in - let args_and_res_as_rels = Array.append args_and_res_as_rels [|mkRel 1|] in - let graph_applied = mkApp(graph, args_and_res_as_rels) in - (*i The [pre_context] is the defined to be the context corresponding to - \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, \] - i*) - let pre_ctxt = - LocalAssum (make_annot (Name res_id) Sorts.Relevant, lift 1 res_type) :: - LocalDef (make_annot (Name fv_id) Sorts.Relevant, mkApp (f,args_as_rels), res_type) :: fun_ctxt - in - (*i and we can return the solution depending on which lemma type we are defining i*) - if g_to_f - then LocalAssum (make_annot Anonymous Sorts.Relevant,graph_applied)::pre_ctxt,(lift 1 res_eq_f_of_args),graph - else LocalAssum (make_annot Anonymous Sorts.Relevant,res_eq_f_of_args)::pre_ctxt,(lift 1 graph_applied),graph - -(* [prove_fun_complete funs graphs schemes lemmas_types_infos i] - is the tactic used to prove completeness lemma. - - [funcs], [graphs] [schemes] [lemmas_types_infos] are the mutually recursive functions - (resp. definitions of the graphs of the functions, principles and correctness lemma types) to prove correct. - - [i] is the indice of the function to prove complete - - The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is - it looks like~: - [\forall (x_1:t_1)\ldots(x_n:t_n), forall res, - graph\ x_1\ldots x_n\ res, \rightarrow res = f x_1\ldots x_n in] - - - The sketch of the proof is the following one~: - \begin{enumerate} - \item intros until $H:graph\ x_1\ldots x_n\ res$ - \item $elim\ H$ using schemes.(i) - \item for each generated branch, intro the news hyptohesis, for each such hyptohesis [h], if [h] has - type [x=?] with [x] a variable, then subst [x], - if [h] has type [t=?] with [t] not a variable then rewrite [t] in the subterms, else - if [h] is a match then destruct it, else do just introduce it, - after all intros, the conclusion should be a reflexive equality. - \end{enumerate} - -*) - -let thin ids gl = Proofview.V82.of_tactic (Tactics.clear ids) gl - -(* [intros_with_rewrite] do the intros in each branch and treat each new hypothesis - (unfolding, substituting, destructing cases \ldots) - *) -let tauto = - let open Ltac_plugin in - let dp = List.map Id.of_string ["Tauto" ; "Init"; "Coq"] in - let mp = ModPath.MPfile (DirPath.make dp) in - let kn = KerName.make mp (Label.make "tauto") in - Proofview.tclBIND (Proofview.tclUNIT ()) begin fun () -> - let body = Tacenv.interp_ltac kn in - Tacinterp.eval_tactic body - end - -(* [generalize_dependent_of x hyp g] - generalize every hypothesis which depends of [x] but [hyp] -*) -let generalize_dependent_of x hyp g = - let open Context.Named.Declaration in - let open Tacmach in - let open Tacticals in - tclMAP - (function - | LocalAssum ({binder_name=id},t) when not (Id.equal id hyp) && - (Termops.occur_var (pf_env g) (project g) x t) -> tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [mkVar id])) (thin [id]) - | _ -> tclIDTAC - ) - (pf_hyps g) - g - -let rec intros_with_rewrite g = - observe_tac "intros_with_rewrite" intros_with_rewrite_aux g -and intros_with_rewrite_aux : Tacmach.tactic = - let open Tacmach in - let open Tactics in - let open Tacticals in - fun g -> - let eq_ind = make_eq () in - let sigma = project g in - match EConstr.kind sigma (pf_concl g) with - | Prod(_,t,t') -> - begin - match EConstr.kind sigma t with - | App(eq,args) when (EConstr.eq_constr sigma eq eq_ind) -> - if Reductionops.is_conv (pf_env g) (project g) args.(1) args.(2) - then - let id = pf_get_new_id (Id.of_string "y") g in - tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); thin [id]; intros_with_rewrite ] g - else if isVar sigma args.(1) && (Environ.evaluable_named (destVar sigma args.(1)) (pf_env g)) - then tclTHENLIST[ - Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))]); - tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))] ((destVar sigma args.(1)),Locus.InHyp) ))) - (pf_ids_of_hyps g); - intros_with_rewrite - ] g - else if isVar sigma args.(2) && (Environ.evaluable_named (destVar sigma args.(2)) (pf_env g)) - then tclTHENLIST[ - Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))]); - tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))] ((destVar sigma args.(2)),Locus.InHyp) ))) - (pf_ids_of_hyps g); - intros_with_rewrite - ] g - else if isVar sigma args.(1) - then - let id = pf_get_new_id (Id.of_string "y") g in - tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); - generalize_dependent_of (destVar sigma args.(1)) id; - tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id))); - intros_with_rewrite - ] - g - else if isVar sigma args.(2) - then - let id = pf_get_new_id (Id.of_string "y") g in - tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); - generalize_dependent_of (destVar sigma args.(2)) id; - tclTRY (Proofview.V82.of_tactic (Equality.rewriteRL (mkVar id))); - intros_with_rewrite - ] - g - else - begin - let id = pf_get_new_id (Id.of_string "y") g in - tclTHENLIST[ - Proofview.V82.of_tactic (Simple.intro id); - tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id))); - intros_with_rewrite - ] g - end - | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr (UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.False.type")) -> - Proofview.V82.of_tactic tauto g - | Case(_,_,v,_) -> - tclTHENLIST[ - Proofview.V82.of_tactic (simplest_case v); - intros_with_rewrite - ] g - | LetIn _ -> - tclTHENLIST[ - Proofview.V82.of_tactic (reduce - (Genredexpr.Cbv - {Redops.all_flags - with Genredexpr.rDelta = false; - }) - Locusops.onConcl) - ; - intros_with_rewrite - ] g - | _ -> - let id = pf_get_new_id (Id.of_string "y") g in - tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);intros_with_rewrite] g - end - | LetIn _ -> - tclTHENLIST[ - Proofview.V82.of_tactic (reduce - (Genredexpr.Cbv - {Redops.all_flags - with Genredexpr.rDelta = false; - }) - Locusops.onConcl) - ; - intros_with_rewrite - ] g - | _ -> tclIDTAC g - -let rec reflexivity_with_destruct_cases g = - let open Tacmach in - let open Tactics in - let open Tacticals in - let destruct_case () = - try - match EConstr.kind (project g) (snd (destApp (project g) (pf_concl g))).(2) with - | Case(_,_,v,_) -> - tclTHENLIST[ - Proofview.V82.of_tactic (simplest_case v); - Proofview.V82.of_tactic intros; - observe_tac "reflexivity_with_destruct_cases" reflexivity_with_destruct_cases - ] - | _ -> Proofview.V82.of_tactic reflexivity - with e when CErrors.noncritical e -> Proofview.V82.of_tactic reflexivity - in - let eq_ind = make_eq () in - let my_inj_flags = Some { - Equality.keep_proof_equalities = false; - injection_in_context = false; (* for compatibility, necessary *) - injection_pattern_l2r_order = false; (* probably does not matter; except maybe with dependent hyps *) - } in - let discr_inject = - Tacticals.onAllHypsAndConcl ( - fun sc g -> - match sc with - None -> tclIDTAC g - | Some id -> - match EConstr.kind (project g) (pf_unsafe_type_of g (mkVar id)) with - | App(eq,[|_;t1;t2|]) when EConstr.eq_constr (project g) eq eq_ind -> - if Equality.discriminable (pf_env g) (project g) t1 t2 - then Proofview.V82.of_tactic (Equality.discrHyp id) g - else if Equality.injectable (pf_env g) (project g) ~keep_proofs:None t1 t2 - then tclTHENLIST [Proofview.V82.of_tactic (Equality.injHyp my_inj_flags None id);thin [id];intros_with_rewrite] g - else tclIDTAC g - | _ -> tclIDTAC g - ) - in - (tclFIRST - [ observe_tac "reflexivity_with_destruct_cases : reflexivity" (Proofview.V82.of_tactic reflexivity); - observe_tac "reflexivity_with_destruct_cases : destruct_case" ((destruct_case ())); - (* We reach this point ONLY if - the same value is matched (at least) two times - along binding path. - In this case, either we have a discriminable hypothesis and we are done, - either at least an injectable one and we do the injection before continuing - *) - observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases) - ]) - g - -let prove_fun_complete funcs graphs schemes lemmas_types_infos i : Tacmach.tactic = - let open Tacmach in - let open Tactics in - let open Tacticals in - fun g -> - (* We compute the types of the different mutually recursive lemmas - in $\zeta$ normal form - *) - let lemmas = - Array.map - (fun (_,(ctxt,concl)) -> Reductionops.nf_zeta (pf_env g) (project g) (EConstr.it_mkLambda_or_LetIn concl ctxt)) - lemmas_types_infos - in - (* We get the constant and the principle corresponding to this lemma *) - let f = funcs.(i) in - let graph_principle = Reductionops.nf_zeta (pf_env g) (project g) (EConstr.of_constr schemes.(i)) in - let princ_type = pf_unsafe_type_of g graph_principle in - let princ_infos = Tactics.compute_elim_sig (project g) princ_type in - (* Then we get the number of argument of the function - and compute a fresh name for each of them - *) - let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in - let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in - let ids = args_names@(pf_ids_of_hyps g) in - (* and fresh names for res H and the principle (cf bug bug #1174) *) - let res,hres,graph_principle_id = - match generate_fresh_id (Id.of_string "z") ids 3 with - | [res;hres;graph_principle_id] -> res,hres,graph_principle_id - | _ -> assert false - in - let ids = res::hres::graph_principle_id::ids in - (* we also compute fresh names for each hyptohesis of each branch - of the principle *) - let branches = List.rev princ_infos.branches in - let intro_pats = - List.map - (fun decl -> - List.map - (fun id -> id) - (generate_fresh_id (Id.of_string "y") ids (Termops.nb_prod (project g) (RelDecl.get_type decl))) - ) - branches - in - (* We will need to change the function by its body - using [f_equation] if it is recursive (that is the graph is infinite - or unfold if the graph is finite - *) - let rewrite_tac j ids : Tacmach.tactic = - let graph_def = graphs.(j) in - let infos = - try find_Function_infos (fst (destConst (project g) funcs.(j))) - with Not_found -> user_err Pp.(str "No graph found") - in - if infos.is_general - || Rtree.is_infinite Declareops.eq_recarg graph_def.mind_recargs - then - let eq_lemma = - try Option.get (infos).equation_lemma - with Option.IsNone -> anomaly (Pp.str "Cannot find equation lemma.") - in - tclTHENLIST[ - tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) ids; - Proofview.V82.of_tactic (Equality.rewriteLR (mkConst eq_lemma)); - (* Don't forget to $\zeta$ normlize the term since the principles - have been $\zeta$-normalized *) - Proofview.V82.of_tactic (reduce - (Genredexpr.Cbv - {Redops.all_flags - with Genredexpr.rDelta = false; - }) - Locusops.onConcl) - ; - Proofview.V82.of_tactic (generalize (List.map mkVar ids)); - thin ids - ] - else - Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst (project g) f)))]) - in - (* The proof of each branche itself *) - let ind_number = ref 0 in - let min_constr_number = ref 0 in - let prove_branche i g = - (* we fist compute the inductive corresponding to the branch *) - let this_ind_number = - let constructor_num = i - !min_constr_number in - let length = Array.length (graphs.(!ind_number).Declarations.mind_consnames) in - if constructor_num <= length - then !ind_number - else - begin - incr ind_number; - min_constr_number := !min_constr_number + length; - !ind_number - end - in - let this_branche_ids = List.nth intro_pats (pred i) in - tclTHENLIST[ - (* we expand the definition of the function *) - observe_tac "rewrite_tac" (rewrite_tac this_ind_number this_branche_ids); - (* introduce hypothesis with some rewrite *) - observe_tac "intros_with_rewrite (all)" intros_with_rewrite; - (* The proof is (almost) complete *) - observe_tac "reflexivity" (reflexivity_with_destruct_cases) - ] - g - in - let params_names = fst (List.chop princ_infos.nparams args_names) in - let open EConstr in - let params = List.map mkVar params_names in - tclTHENLIST - [ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) (args_names@[res;hres]); - observe_tac "h_generalize" - (Proofview.V82.of_tactic (generalize [mkApp(applist(graph_principle,params),Array.map (fun c -> applist(c,params)) lemmas)])); - Proofview.V82.of_tactic (Simple.intro graph_principle_id); - observe_tac "" (tclTHEN_i - (observe_tac "elim" (Proofview.V82.of_tactic (elim false None (mkVar hres,NoBindings) (Some (mkVar graph_principle_id,NoBindings))))) - (fun i g -> observe_tac "prove_branche" (prove_branche i) g )) - ] - g - -(* [derive_correctness make_scheme funs graphs] create correctness and completeness - lemmas for each function in [funs] w.r.t. [graphs] - - [make_scheme] is Functional_principle_types.make_scheme (dependency pb) and -*) - -let derive_correctness (funs: pconstant list) (graphs:inductive list) = - assert (funs <> []); - assert (graphs <> []); - let funs = Array.of_list funs and graphs = Array.of_list graphs in - let map (c, u) = mkConstU (c, EInstance.make u) in - let funs_constr = Array.map map funs in - (* XXX STATE Why do we need this... why is the toplevel protection not enough *) - funind_purify - (fun () -> - let env = Global.env () in - let evd = ref (Evd.from_env env) in - let graphs_constr = Array.map mkInd graphs in - let lemmas_types_infos = - Util.Array.map2_i - (fun i f_constr graph -> - (* let const_of_f,u = destConst f_constr in *) - let (type_of_lemma_ctxt,type_of_lemma_concl,graph) = - generate_type evd false f_constr graph i - in - let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in - graphs_constr.(i) <- graph; - let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in - let sigma, _ = Typing.type_of (Global.env ()) !evd type_of_lemma in - evd := sigma; - let type_of_lemma = Reductionops.nf_zeta (Global.env ()) !evd type_of_lemma in - observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma); - type_of_lemma,type_info - ) - funs_constr - graphs_constr - in - let schemes = - (* The functional induction schemes are computed and not saved if there is more that one function - if the block contains only one function we can safely reuse [f_rect] - *) - try - if not (Int.equal (Array.length funs_constr) 1) then raise Not_found; - [| find_induction_principle evd funs_constr.(0) |] - with Not_found -> - ( - - Array.of_list - (List.map - (fun entry -> - (EConstr.of_constr (fst (fst(Future.force entry.Proof_global.proof_entry_body))), EConstr.of_constr (Option.get entry.Proof_global.proof_entry_type )) - ) - (Functional_principles_types.make_scheme evd (Array.map_to_list (fun const -> const,Sorts.InType) funs)) - ) - ) - in - let proving_tac = - prove_fun_correct !evd funs_constr graphs_constr schemes lemmas_types_infos - in - Array.iteri - (fun i f_as_constant -> - let f_id = Label.to_id (Constant.label (fst f_as_constant)) in - (*i The next call to mk_correct_id is valid since we are constructing the lemma - Ensures by: obvious - i*) - let lem_id = mk_correct_id f_id in - let (typ,_) = lemmas_types_infos.(i) in - let info = Lemmas.Info.make - ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) - ~kind:(Decls.(IsProof Theorem)) () in - let lemma = Lemmas.start_lemma - ~name:lem_id - ~poly:false - ~info - !evd - typ in - let lemma = fst @@ Lemmas.by - (Proofview.V82.tactic (proving_tac i)) lemma in - let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in - let finfo = find_Function_infos (fst f_as_constant) in - (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *) - let _,lem_cst_constr = Evd.fresh_global - (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in - let (lem_cst,_) = destConst !evd lem_cst_constr in - update_Function {finfo with correctness_lemma = Some lem_cst}; - - ) - funs; - let lemmas_types_infos = - Util.Array.map2_i - (fun i f_constr graph -> - let (type_of_lemma_ctxt,type_of_lemma_concl,graph) = - generate_type evd true f_constr graph i - in - let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in - graphs_constr.(i) <- graph; - let type_of_lemma = - EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt - in - let type_of_lemma = Reductionops.nf_zeta env !evd type_of_lemma in - observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env env !evd type_of_lemma); - type_of_lemma,type_info - ) - funs_constr - graphs_constr - in - - let (kn,_) as graph_ind,u = (destInd !evd graphs_constr.(0)) in - let mib,mip = Global.lookup_inductive graph_ind in - let sigma, scheme = - (Indrec.build_mutual_induction_scheme (Global.env ()) !evd - (Array.to_list - (Array.mapi - (fun i _ -> ((kn,i), EInstance.kind !evd u),true,InType) - mib.Declarations.mind_packets - ) - ) - ) - in - let schemes = - Array.of_list scheme - in - let proving_tac = - prove_fun_complete funs_constr mib.Declarations.mind_packets schemes lemmas_types_infos - in - Array.iteri - (fun i f_as_constant -> - let f_id = Label.to_id (Constant.label (fst f_as_constant)) in - (*i The next call to mk_complete_id is valid since we are constructing the lemma - Ensures by: obvious - i*) - let lem_id = mk_complete_id f_id in - let info = Lemmas.Info.make - ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) - ~kind:Decls.(IsProof Theorem) () in - let lemma = Lemmas.start_lemma ~name:lem_id ~poly:false ~info - sigma (fst lemmas_types_infos.(i)) in - let lemma = fst (Lemmas.by - (Proofview.V82.tactic (observe_tac ("prove completeness ("^(Id.to_string f_id)^")") - (proving_tac i))) lemma) in - let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in - let finfo = find_Function_infos (fst f_as_constant) in - let _,lem_cst_constr = Evd.fresh_global - (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in - let (lem_cst,_) = destConst !evd lem_cst_constr in - update_Function {finfo with completeness_lemma = Some lem_cst} - ) - funs) - () - -let warn_funind_cannot_build_inversion = - CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind" - (fun e' -> strbrk "Cannot build inversion information" ++ - if do_observe () then (fnl() ++ CErrors.print e') else mt ()) - -let derive_inversion fix_names = - try - let evd' = Evd.from_env (Global.env ()) in - (* we first transform the fix_names identifier into their corresponding constant *) - let evd',fix_names_as_constant = - List.fold_right - (fun id (evd,l) -> - let evd,c = - Evd.fresh_global - (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in - let (cst, u) = destConst evd c in - evd, (cst, EInstance.kind evd u) :: l - ) - fix_names - (evd',[]) - in - (* - Then we check that the graphs have been defined - If one of the graphs haven't been defined - we do nothing - *) - List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ; - try - let evd', lind = - List.fold_right - (fun id (evd,l) -> - let evd,id = - Evd.fresh_global - (Global.env ()) evd - (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id))) - in - evd,(fst (destInd evd id))::l - ) - fix_names - (evd',[]) - in - derive_correctness - fix_names_as_constant - lind; - with e when CErrors.noncritical e -> - warn_funind_cannot_build_inversion e - with e when CErrors.noncritical e -> - warn_funind_cannot_build_inversion e - -let warn_cannot_define_graph = - CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind" - (fun (names,error) -> strbrk "Cannot define graph(s) for " ++ - h 1 names ++ error) - -let warn_cannot_define_principle = - CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind" - (fun (names,error) -> strbrk "Cannot define induction principle(s) for "++ - h 1 names ++ error) - -let warning_error names e = - let e_explain e = - match e with - | ToShow e -> - spc () ++ CErrors.print e - | _ -> - if do_observe () - then (spc () ++ CErrors.print e) - else mt () - in - match e with - | Building_graph e -> - let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in - warn_cannot_define_graph (names,e_explain e) - | Defining_principle e -> - let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in - warn_cannot_define_principle (names,e_explain e) - | _ -> raise e - -let error_error names e = - let e_explain e = - match e with - | ToShow e -> spc () ++ CErrors.print e - | _ -> if do_observe () then (spc () ++ CErrors.print e) else mt () - in - match e with - | Building_graph e -> - user_err - (str "Cannot define graph(s) for " ++ - h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++ - e_explain e) - | _ -> raise e - -let generate_principle (evd:Evd.evar_map ref) pconstants on_error - is_general do_built (fix_rec_l : Vernacexpr.fixpoint_expr list) recdefs interactive_proof - (continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int -> - Tacmach.tactic) : unit = - let names = List.map (function { Vernacexpr.fname = {CAst.v=name} } -> name) fix_rec_l in - let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in - let funs_args = List.map fst fun_bodies in - let funs_types = List.map (function { Vernacexpr.rtype } -> rtype) fix_rec_l in - try - (* We then register the Inductive graphs of the functions *) - Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs; - if do_built - then - begin - (*i The next call to mk_rel_id is valid since we have just construct the graph - Ensures by : do_built - i*) - let f_R_mut = qualid_of_ident @@ mk_rel_id (List.nth names 0) in - let ind_kn = - fst (locate_with_msg - (pr_qualid f_R_mut++str ": Not an inductive type!") - locate_ind - f_R_mut) - in - let fname_kn { Vernacexpr.fname } = - let f_ref = qualid_of_ident ?loc:fname.CAst.loc fname.CAst.v in - locate_with_msg - (pr_qualid f_ref++str ": Not an inductive type!") - locate_constant - f_ref - in - let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in - let _ = - List.map_i - (fun i x -> - let env = Global.env () in - let princ = Indrec.lookup_eliminator env (ind_kn,i) (InProp) in - let evd = ref (Evd.from_env env) in - let evd',uprinc = Evd.fresh_global env !evd princ in - let _ = evd := evd' in - let sigma, princ_type = Typing.type_of ~refresh:true env !evd uprinc in - evd := sigma; - let princ_type = EConstr.Unsafe.to_constr princ_type in - Functional_principles_types.generate_functional_principle - evd - interactive_proof - princ_type - None - None - (Array.of_list pconstants) - (* funs_kn *) - i - (continue_proof 0 [|funs_kn.(i)|]) - ) - 0 - fix_rec_l - in - Array.iter (add_Function is_general) funs_kn; - () - end - with e when CErrors.noncritical e -> - on_error names e - -let register_struct is_rec (fixpoint_exprl: Vernacexpr.fixpoint_expr list) = - match fixpoint_exprl with - | [ { Vernacexpr.fname; univs; binders; rtype; body_def } ] when not is_rec -> - let body = match body_def with - | Some body -> body - | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in - ComDefinition.do_definition - ~program_mode:false - ~name:fname.CAst.v - ~poly:false - ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) - ~kind:Decls.Definition univs - binders None body (Some rtype); - let evd,rev_pconstants = - List.fold_left - (fun (evd,l) { Vernacexpr.fname } -> - let evd,c = - Evd.fresh_global - (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in - let (cst, u) = destConst evd c in - let u = EInstance.kind evd u in - evd,((cst, u) :: l) - ) - (Evd.from_env (Global.env ()),[]) - fixpoint_exprl - in - None, evd,List.rev rev_pconstants - | _ -> - ComFixpoint.do_fixpoint ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior) ~poly:false fixpoint_exprl; - let evd,rev_pconstants = - List.fold_left - (fun (evd,l) { Vernacexpr.fname } -> - let evd,c = - Evd.fresh_global - (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v)) in - let (cst, u) = destConst evd c in - let u = EInstance.kind evd u in - evd,((cst, u) :: l) - ) - (Evd.from_env (Global.env ()),[]) - fixpoint_exprl - in - None,evd,List.rev rev_pconstants - - -let generate_correction_proof_wf f_ref tcc_lemma_ref - is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation - (_: int) (_:Names.Constant.t array) (_:EConstr.constr array) (_:int) : Tacmach.tactic = - Functional_principles_proofs.prove_principle_for_gen - (f_ref,functional_ref,eq_ref) - tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation - - -let register_wf interactive_proof ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body - pre_hook - = - let type_of_f = Constrexpr_ops.mkCProdN args ret_type in - let rec_arg_num = - let names = - List.map - CAst.(with_val (fun x -> x)) - (Constrexpr_ops.names_of_local_assums args) - in - List.index Name.equal (Name wf_arg) names - in - let unbounded_eq = - let f_app_args = - CAst.make @@ Constrexpr.CAppExpl( - (None,qualid_of_ident fname.CAst.v,None) , - (List.map - (function - | {CAst.v=Anonymous} -> assert false - | {CAst.v=Name e} -> (Constrexpr_ops.mkIdentC e) - ) - (Constrexpr_ops.names_of_local_assums args) - ) - ) - in - CAst.make @@ Constrexpr.CApp ((None,Constrexpr_ops.mkRefC (qualid_of_string "Logic.eq")), - [(f_app_args,None);(body,None)]) - in - let eq = Constrexpr_ops.mkCProdN args unbounded_eq in - let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type - nb_args relation = - try - pre_hook [fconst] - (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes - functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation - ); - derive_inversion [fname.CAst.v] - with e when CErrors.noncritical e -> - (* No proof done *) - () - in - Recdef.recursive_definition ~interactive_proof - ~is_mes fname.CAst.v rec_impls - type_of_f - wf_rel_expr - rec_arg_num - eq - hook - using_lemmas - - -let register_mes interactive_proof fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body = - let wf_arg_type,wf_arg = - match wf_arg with - | None -> - begin - match args with - | [Constrexpr.CLocalAssum ([{CAst.v=Name x}],k,t)] -> t,x - | _ -> error "Recursive argument must be specified" - end - | Some wf_args -> - try - match - List.find - (function - | Constrexpr.CLocalAssum(l,k,t) -> - List.exists - (function {CAst.v=Name id} -> Id.equal id wf_args | _ -> false) - l - | _ -> false - ) - args - with - | Constrexpr.CLocalAssum(_,k,t) -> t,wf_args - | _ -> assert false - with Not_found -> assert false - in - let wf_rel_from_mes,is_mes = - match wf_rel_expr_opt with - | None -> - let ltof = - let make_dir l = DirPath.make (List.rev_map Id.of_string l) in - Libnames.qualid_of_path - (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof")) - in - let fun_from_mes = - let applied_mes = - Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in - Constrexpr_ops.mkLambdaC ([CAst.make @@ Name wf_arg],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes) - in - let wf_rel_from_mes = - Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes]) - in - wf_rel_from_mes,true - | Some wf_rel_expr -> - let wf_rel_with_mes = - let a = Names.Id.of_string "___a" in - let b = Names.Id.of_string "___b" in - Constrexpr_ops.mkLambdaC( - [CAst.make @@ Name a; CAst.make @@ Name b], - Constrexpr.Default Explicit, - wf_arg_type, - Constrexpr_ops.mkAppC(wf_rel_expr, - [ - Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]); - Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b]) - ]) - ) - in - wf_rel_with_mes,false - in - register_wf interactive_proof ~is_mes:is_mes fname rec_impls wf_rel_from_mes wf_arg - using_lemmas args ret_type body - -let map_option f = function - | None -> None - | Some v -> Some (f v) - -open Constrexpr - -let rec rebuild_bl aux bl typ = - match bl,typ with - | [], _ -> List.rev aux,typ - | (CLocalAssum(nal,bk,_))::bl',typ -> - rebuild_nal aux bk bl' nal typ - | (CLocalDef(na,_,_))::bl',{ CAst.v = CLetIn(_,nat,ty,typ') } -> - rebuild_bl (Constrexpr.CLocalDef(na,nat,ty)::aux) - bl' typ' - | _ -> assert false -and rebuild_nal aux bk bl' nal typ = - match nal,typ with - | _,{ CAst.v = CProdN([],typ) } -> rebuild_nal aux bk bl' nal typ - | [], _ -> rebuild_bl aux bl' typ - | na::nal,{ CAst.v = CProdN(CLocalAssum(na'::nal',bk',nal't)::rest,typ') } -> - if Name.equal (na.CAst.v) (na'.CAst.v) || Name.is_anonymous (na'.CAst.v) - then - let assum = CLocalAssum([na],bk,nal't) in - let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in - rebuild_nal - (assum::aux) - bk - bl' - nal - (CAst.make @@ CProdN(new_rest,typ')) - else - let assum = CLocalAssum([na'],bk,nal't) in - let new_rest = if nal' = [] then rest else (CLocalAssum(nal',bk',nal't)::rest) in - rebuild_nal - (assum::aux) - bk - bl' - (na::nal) - (CAst.make @@ CProdN(new_rest,typ')) - | _ -> - assert false - -let rebuild_bl aux bl typ = rebuild_bl aux bl typ - -let recompute_binder_list fixpoint_exprl = - let fixl = - List.map (fun fix -> Vernacexpr.{ - fix - with rec_order = ComFixpoint.adjust_rec_order ~structonly:false fix.binders fix.rec_order }) fixpoint_exprl in - let ((_,_,_,typel),_,ctx,_) = ComFixpoint.interp_fixpoint ~cofix:false fixl in - let constr_expr_typel = - with_full_print (List.map (fun c -> Constrextern.extern_constr false (Global.env ()) (Evd.from_ctx ctx) (EConstr.of_constr c))) typel in - let fixpoint_exprl_with_new_bl = - List.map2 (fun ({ Vernacexpr.binders } as fp) fix_typ -> - let binders, rtype = rebuild_bl [] binders fix_typ in - { fp with Vernacexpr.binders; rtype } - ) fixpoint_exprl constr_expr_typel - in - fixpoint_exprl_with_new_bl - - -let do_generate_principle_aux pconstants on_error register_built interactive_proof - (fixpoint_exprl : Vernacexpr.fixpoint_expr list) : Lemmas.t option = - List.iter (fun { Vernacexpr.notations } -> - if not (List.is_empty notations) - then error "Function does not support notations for now") fixpoint_exprl; - let lemma, _is_struct = - match fixpoint_exprl with - | [{ Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CWfRec (wf_x,wf_rel)} } as fixpoint_expr] -> - let { Vernacexpr.fname; univs; binders; rtype; body_def } as fixpoint_expr = - match recompute_binder_list [fixpoint_expr] with - | [e] -> e - | _ -> assert false - in - let fixpoint_exprl = [fixpoint_expr] in - let body = match body_def with - | Some body -> body - | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in - let recdefs,rec_impls = build_newrecursive fixpoint_exprl in - let using_lemmas = [] in - let pre_hook pconstants = - generate_principle - (ref (Evd.from_env (Global.env ()))) - pconstants - on_error - true - register_built - fixpoint_exprl - recdefs - true - in - if register_built - then register_wf interactive_proof fname rec_impls wf_rel wf_x.CAst.v using_lemmas binders rtype body pre_hook, false - else None, false - |[{ Vernacexpr.rec_order=Some {CAst.v = Constrexpr.CMeasureRec(wf_x,wf_mes,wf_rel_opt)} } as fixpoint_expr] -> - let { Vernacexpr.fname; univs; binders; rtype; body_def} as fixpoint_expr = - match recompute_binder_list [fixpoint_expr] with - | [e] -> e - | _ -> assert false - in - let fixpoint_exprl = [fixpoint_expr] in - let recdefs,rec_impls = build_newrecursive fixpoint_exprl in - let using_lemmas = [] in - let body = match body_def with - | Some body -> body - | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in - let pre_hook pconstants = - generate_principle - (ref (Evd.from_env (Global.env ()))) - pconstants - on_error - true - register_built - fixpoint_exprl - recdefs - true - in - if register_built - then register_mes interactive_proof fname rec_impls wf_mes wf_rel_opt (map_option (fun x -> x.CAst.v) wf_x) using_lemmas binders rtype body pre_hook, true - else None, true - | _ -> - List.iter (function { Vernacexpr.rec_order } -> - match rec_order with - | Some { CAst.v = (Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _) } -> - error - ("Cannot use mutual definition with well-founded recursion or measure") - | _ -> () - ) - fixpoint_exprl; - let fixpoint_exprl = recompute_binder_list fixpoint_exprl in - let fix_names = List.map (function { Vernacexpr.fname } -> fname.CAst.v) fixpoint_exprl in - (* ok all the expressions are structural *) - let recdefs,rec_impls = build_newrecursive fixpoint_exprl in - let is_rec = List.exists (is_rec fix_names) recdefs in - let lemma,evd,pconstants = - if register_built - then register_struct is_rec fixpoint_exprl - else None, Evd.from_env (Global.env ()), pconstants - in - let evd = ref evd in - generate_principle - (ref !evd) - pconstants - on_error - false - register_built - fixpoint_exprl - recdefs - interactive_proof - (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof); - if register_built then - begin derive_inversion fix_names; end; - lemma, true - in - lemma - -let rec add_args id new_args = CAst.map (function - | CRef (qid,_) as b -> - if qualid_is_ident qid && Id.equal (qualid_basename qid) id then - CAppExpl((None,qid,None),new_args) - else b - | CFix _ | CCoFix _ -> anomaly ~label:"add_args " (Pp.str "todo.") - | CProdN(nal,b1) -> - CProdN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2) - | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t) - | CLocalPattern _ -> user_err (Pp.str "pattern with quote not allowed here.")) nal, - add_args id new_args b1) - | CLambdaN(nal,b1) -> - CLambdaN(List.map (function CLocalAssum (nal,k,b2) -> CLocalAssum (nal,k,add_args id new_args b2) - | CLocalDef (na,b1,t) -> CLocalDef (na,add_args id new_args b1,Option.map (add_args id new_args) t) - | CLocalPattern _ -> user_err (Pp.str "pattern with quote not allowed here.")) nal, - add_args id new_args b1) - | CLetIn(na,b1,t,b2) -> - CLetIn(na,add_args id new_args b1,Option.map (add_args id new_args) t,add_args id new_args b2) - | CAppExpl((pf,qid,us),exprl) -> - if qualid_is_ident qid && Id.equal (qualid_basename qid) id then - CAppExpl((pf,qid,us),new_args@(List.map (add_args id new_args) exprl)) - else CAppExpl((pf,qid,us),List.map (add_args id new_args) exprl) - | CApp((pf,b),bl) -> - CApp((pf,add_args id new_args b), - List.map (fun (e,o) -> add_args id new_args e,o) bl) - | CCases(sty,b_option,cel,cal) -> - CCases(sty,Option.map (add_args id new_args) b_option, - List.map (fun (b,na,b_option) -> - add_args id new_args b, - na, b_option) cel, - List.map CAst.(map (fun (cpl,e) -> (cpl,add_args id new_args e))) cal - ) - | CLetTuple(nal,(na,b_option),b1,b2) -> - CLetTuple(nal,(na,Option.map (add_args id new_args) b_option), - add_args id new_args b1, - add_args id new_args b2 - ) - - | CIf(b1,(na,b_option),b2,b3) -> - CIf(add_args id new_args b1, - (na,Option.map (add_args id new_args) b_option), - add_args id new_args b2, - add_args id new_args b3 - ) - | CHole _ - | CPatVar _ - | CEvar _ - | CPrim _ - | CSort _ as b -> b - | CCast(b1,b2) -> - CCast(add_args id new_args b1, - Glob_ops.map_cast_type (add_args id new_args) b2) - | CRecord pars -> - CRecord (List.map (fun (e,o) -> e, add_args id new_args o) pars) - | CNotation _ -> anomaly ~label:"add_args " (Pp.str "CNotation.") - | CGeneralization _ -> anomaly ~label:"add_args " (Pp.str "CGeneralization.") - | CDelimiters _ -> anomaly ~label:"add_args " (Pp.str "CDelimiters.") - ) -exception Stop of Constrexpr.constr_expr - - -(* [chop_n_arrow n t] chops the [n] first arrows in [t] - Acts on Constrexpr.constr_expr -*) -let rec chop_n_arrow n t = - if n <= 0 - then t (* If we have already removed all the arrows then return the type *) - else (* If not we check the form of [t] *) - match t.CAst.v with - | Constrexpr.CProdN(nal_ta',t') -> (* If we have a forall, two results are possible : - either we need to discard more than the number of arrows contained - in this product declaration then we just recall [chop_n_arrow] on - the remaining number of arrow to chop and [t'] we discard it and - recall [chop_n_arrow], either this product contains more arrows - than the number we need to chop and then we return the new type - *) - begin - try - let new_n = - let rec aux (n:int) = function - [] -> n - | CLocalAssum(nal,k,t'')::nal_ta' -> - let nal_l = List.length nal in - if n >= nal_l - then - aux (n - nal_l) nal_ta' - else - let new_t' = CAst.make @@ - Constrexpr.CProdN( - CLocalAssum((snd (List.chop n nal)),k,t'')::nal_ta',t') - in - raise (Stop new_t') - | _ -> anomaly (Pp.str "Not enough products.") - in - aux n nal_ta' - in - chop_n_arrow new_n t' - with Stop t -> t - end - | _ -> anomaly (Pp.str "Not enough products.") - - -let rec get_args b t : Constrexpr.local_binder_expr list * - Constrexpr.constr_expr * Constrexpr.constr_expr = - match b.CAst.v with - | Constrexpr.CLambdaN (CLocalAssum(nal,k,ta) as d::rest, b') -> - begin - let n = List.length nal in - let nal_tas,b'',t'' = get_args (CAst.make ?loc:b.CAst.loc @@ Constrexpr.CLambdaN (rest,b')) (chop_n_arrow n t) in - d :: nal_tas, b'',t'' - end - | Constrexpr.CLambdaN ([], b) -> [],b,t - | _ -> [],b,t - - -let make_graph (f_ref : GlobRef.t) = - let env = Global.env() in - let sigma = Evd.from_env env in - let c,c_body = - match f_ref with - | GlobRef.ConstRef c -> - begin try c,Global.lookup_constant c - with Not_found -> - raise (UserError (None,str "Cannot find " ++ Printer.pr_leconstr_env env sigma (mkConst c)) ) - end - | _ -> raise (UserError (None, str "Not a function reference") ) - in - (match Global.body_of_constant_body Library.indirect_accessor c_body with - | None -> error "Cannot build a graph over an axiom!" - | Some (body, _, _) -> - let env = Global.env () in - let extern_body,extern_type = - with_full_print (fun () -> - (Constrextern.extern_constr false env sigma (EConstr.of_constr body), - Constrextern.extern_type false env sigma - (EConstr.of_constr (*FIXME*) c_body.const_type) - ) - ) () - in - let (nal_tas,b,t) = get_args extern_body extern_type in - let expr_list = - match b.CAst.v with - | Constrexpr.CFix(l_id,fixexprl) -> - let l = - List.map - (fun (id,recexp,bl,t,b) -> - let { CAst.loc; v=rec_id } = match Option.get recexp with - | { CAst.v = CStructRec id } -> id - | { CAst.v = CWfRec (id,_) } -> id - | { CAst.v = CMeasureRec (oid,_,_) } -> Option.get oid - in - let new_args = - List.flatten - (List.map - (function - | Constrexpr.CLocalDef (na,_,_)-> [] - | Constrexpr.CLocalAssum (nal,_,_) -> - List.map - (fun {CAst.loc;v=n} -> CAst.make ?loc @@ - CRef(Libnames.qualid_of_ident ?loc @@ Nameops.Name.get_id n,None)) - nal - | Constrexpr.CLocalPattern _ -> assert false - ) - nal_tas - ) - in - let b' = add_args id.CAst.v new_args b in - { Vernacexpr.fname=id; univs=None - ; rec_order = Some (CAst.make (CStructRec (CAst.make rec_id))) - ; binders = nal_tas@bl; rtype=t; body_def=Some b'; notations = []} - ) fixexprl in - l - | _ -> - let fname = CAst.make (Label.to_id (Constant.label c)) in - [{ Vernacexpr.fname; univs=None; rec_order = None; binders=nal_tas; rtype=t; body_def=Some b; notations=[]}] - in - let mp = Constant.modpath c in - let pstate = do_generate_principle_aux [c,Univ.Instance.empty] error_error false false expr_list in - assert (Option.is_empty pstate); - (* We register the infos *) - List.iter - (fun { Vernacexpr.fname= {CAst.v=id} } -> - add_Function false (Constant.make2 mp (Label.of_id id))) - expr_list) - -(* *************** statically typed entrypoints ************************* *) - -let do_generate_principle_interactive fixl : Lemmas.t = - match - do_generate_principle_aux [] warning_error true true fixl - with - | Some lemma -> lemma - | None -> - CErrors.anomaly - (Pp.str"indfun: leaving no open proof in interactive mode") - -let do_generate_principle fixl : unit = - match do_generate_principle_aux [] warning_error true false fixl with - | Some _lemma -> - CErrors.anomaly - (Pp.str"indfun: leaving a goal open in non-interactive mode") - | None -> () diff --git a/plugins/funind/indfun.mli b/plugins/funind/indfun.mli index bfc9686ae5..97a840e950 100644 --- a/plugins/funind/indfun.mli +++ b/plugins/funind/indfun.mli @@ -1,19 +1,16 @@ -open Names -open Tactypes - -val warn_cannot_define_graph : ?loc:Loc.t -> Pp.t * Pp.t -> unit - -val warn_cannot_define_principle : ?loc:Loc.t -> Pp.t * Pp.t -> unit - -val do_generate_principle : Vernacexpr.fixpoint_expr list -> unit - -val do_generate_principle_interactive : Vernacexpr.fixpoint_expr list -> Lemmas.t +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) val functional_induction : bool -> EConstr.constr -> - (EConstr.constr * EConstr.constr bindings) option -> + (EConstr.constr * EConstr.constr Tactypes.bindings) option -> Ltac_plugin.Tacexpr.or_and_intro_pattern option -> Goal.goal Evd.sigma -> Goal.goal list Evd.sigma - -val make_graph : GlobRef.t -> unit diff --git a/plugins/funind/indfun_common.ml b/plugins/funind/indfun_common.ml index a119586f7b..2d8d10a1f2 100644 --- a/plugins/funind/indfun_common.ml +++ b/plugins/funind/indfun_common.ml @@ -10,8 +10,7 @@ let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct" let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete" let mk_equation_id id = Nameops.add_suffix id "_equation" -let msgnl m = - () +let msgnl m = () let fresh_id avoid s = Namegen.next_ident_away_in_goal (Id.of_string s) (Id.Set.of_list avoid) diff --git a/plugins/funind/recdef_plugin.mlpack b/plugins/funind/recdef_plugin.mlpack index 755fa4f879..2adcfddd0a 100644 --- a/plugins/funind/recdef_plugin.mlpack +++ b/plugins/funind/recdef_plugin.mlpack @@ -6,4 +6,5 @@ Functional_principles_proofs Functional_principles_types Invfun Indfun +Gen_principle G_indfun |
