diff options
| author | Emilio Jesus Gallego Arias | 2019-06-05 17:48:46 +0200 |
|---|---|---|
| committer | Emilio Jesus Gallego Arias | 2019-06-09 14:26:58 +0200 |
| commit | a8b3c907cb2d6da16bdeea10b943552dc9efc0ed (patch) | |
| tree | e56d7cd2b02bf7a2267dacb1e87c9aee1ef56594 /plugins/funind/recdef.ml | |
| parent | 1f81679d117446d32fcad8012e5613cb2377b359 (diff) | |
[proof] Move proofs that have an associated constant to `Lemmas`
The main idea of this PR is to distinguish the types of "proof object"
`Proof_global.t` and the type of "proof object associated to a
constant, the new `Lemmas.t`.
This way, we can move the terminator setup to the higher layer in
`vernac`, which is the one that really knows about constants, paving
the way for further simplification and in particular for a unified
handling of constant saving by removal of the control inversion here.
Terminators are now internal to `Lemmas`, as it is the only part of
the code applying them.
As a consequence, proof nesting is now handled by `Lemmas`, and
`Proof_global.t` is just a single `Proof.t` plus some environmental
meta-data.
We are also enable considerable simplification in a future PR, as this
patch makes `Proof.t` and `Proof_global.t` essentially the same, so we
should expect to handle them under a unified interface.
Diffstat (limited to 'plugins/funind/recdef.ml')
| -rw-r--r-- | plugins/funind/recdef.ml | 87 |
1 files changed, 44 insertions, 43 deletions
diff --git a/plugins/funind/recdef.ml b/plugins/funind/recdef.ml index 5bedb360d1..17d962f30f 100644 --- a/plugins/funind/recdef.ml +++ b/plugins/funind/recdef.ml @@ -34,7 +34,6 @@ open Declare open Decl_kinds open Tacred open Goal -open Pfedit open Glob_term open Pretyping open Termops @@ -72,7 +71,8 @@ let declare_fun f_id kind ?univs value = let ce = definition_entry ?univs value (*FIXME *) in ConstRef(declare_constant f_id (DefinitionEntry ce, kind));; -let defined pstate = Lemmas.save_pstate_proved ~pstate ~opaque:Proof_global.Transparent ~idopt:None +let defined lemma = + Lemmas.save_lemma_proved ?proof:None ~lemma ~opaque:Proof_global.Transparent ~idopt:None let def_of_const t = match (Constr.kind t) with @@ -1221,7 +1221,7 @@ let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_a end let get_current_subgoals_types pstate = - let p = Proof_global.give_me_the_proof pstate in + let p = Proof_global.get_proof pstate in let Proof.{ goals=sgs; sigma; _ } = Proof.data p in sigma, List.map (Goal.V82.abstract_type sigma) sgs @@ -1281,8 +1281,8 @@ let clear_goals sigma = List.map clear_goal -let build_new_goal_type pstate = - let sigma, sub_gls_types = get_current_subgoals_types pstate in +let build_new_goal_type lemma = + let sigma, sub_gls_types = Lemmas.pf_fold get_current_subgoals_types lemma in (* Pp.msgnl (str "sub_gls_types1 := " ++ Util.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *) let sub_gls_types = clear_goals sigma sub_gls_types in (* Pp.msgnl (str "sub_gls_types2 := " ++ Pp.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *) @@ -1297,9 +1297,9 @@ let is_opaque_constant c = | Declarations.Def _ -> Proof_global.Transparent | Declarations.Primitive _ -> Proof_global.Opaque -let open_new_goal pstate build_proof sigma using_lemmas ref_ goal_name (gls_type,decompose_and_tac,nb_goal) = +let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name (gls_type,decompose_and_tac,nb_goal) = (* Pp.msgnl (str "gls_type := " ++ Printer.pr_lconstr gls_type); *) - let current_proof_name = Proof_global.get_current_proof_name pstate in + let current_proof_name = Lemmas.pf_fold Proof_global.get_proof_name lemma in let name = match goal_name with | Some s -> s | None -> @@ -1323,7 +1323,7 @@ let open_new_goal pstate build_proof sigma using_lemmas ref_ goal_name (gls_type let lid = ref [] in let h_num = ref (-1) in let env = Global.env () in - let pstate = build_proof env (Evd.from_env env) + let lemma = build_proof env (Evd.from_env env) ( fun gls -> let hid = next_ident_away_in_goal h_id (pf_ids_of_hyps gls) in observe_tclTHENLIST (fun _ _ -> str "") @@ -1367,17 +1367,17 @@ let open_new_goal pstate build_proof sigma using_lemmas ref_ goal_name (gls_type ) g) in - Lemmas.save_pstate_proved ~pstate ~opaque:opacity ~idopt:None + Lemmas.save_lemma_proved ?proof:None ~lemma ~opaque:opacity ~idopt:None in - let pstate = Lemmas.start_proof + let lemma = Lemmas.start_lemma na Decl_kinds.(Global ImportDefaultBehavior, false (* FIXME *), Proof Lemma) sigma gls_type ~hook:(Lemmas.mk_hook hook) in - let pstate = if Indfun_common.is_strict_tcc () + let lemma = if Indfun_common.is_strict_tcc () then - fst @@ by (Proofview.V82.tactic (tclIDTAC)) pstate + fst @@ Lemmas.by (Proofview.V82.tactic (tclIDTAC)) lemma else - fst @@ by (Proofview.V82.tactic begin + fst @@ Lemmas.by (Proofview.V82.tactic begin fun g -> tclTHEN (decompose_and_tac) @@ -1393,9 +1393,9 @@ let open_new_goal pstate build_proof sigma using_lemmas ref_ goal_name (gls_type ) using_lemmas) ) tclIDTAC) - g end) pstate + g end) lemma in - if Proof_global.get_open_goals pstate = 0 then (defined pstate; None) else Some pstate + if Lemmas.(pf_fold Proof_global.get_open_goals) lemma = 0 then (defined lemma; None) else Some lemma let com_terminate interactive_proof @@ -1410,26 +1410,26 @@ let com_terminate nb_args ctx hook = let start_proof env ctx (tac_start:tactic) (tac_end:tactic) = - let pstate = Lemmas.start_proof thm_name + let lemma = Lemmas.start_lemma thm_name (Global ImportDefaultBehavior, false (* FIXME *), Proof Lemma) ~sign:(Environ.named_context_val env) ctx (EConstr.of_constr (compute_terminate_type nb_args fonctional_ref)) ~hook in - let pstate = fst @@ by (Proofview.V82.tactic (observe_tac (fun _ _ -> str "starting_tac") tac_start)) pstate in - fst @@ by (Proofview.V82.tactic (observe_tac (fun _ _ -> str "whole_start") (whole_start tac_end nb_args is_mes fonctional_ref - input_type relation rec_arg_num ))) pstate + let lemma = fst @@ Lemmas.by (Proofview.V82.tactic (observe_tac (fun _ _ -> str "starting_tac") tac_start)) lemma in + fst @@ Lemmas.by (Proofview.V82.tactic (observe_tac (fun _ _ -> str "whole_start") (whole_start tac_end nb_args is_mes fonctional_ref + input_type relation rec_arg_num ))) lemma in - let pstate = start_proof Global.(env ()) ctx tclIDTAC tclIDTAC in + let lemma = start_proof Global.(env ()) ctx tclIDTAC tclIDTAC in try - let sigma, new_goal_type = build_new_goal_type pstate in + let sigma, new_goal_type = build_new_goal_type lemma in let sigma = Evd.from_ctx (Evd.evar_universe_context sigma) in - open_new_goal pstate start_proof sigma + open_new_goal ~lemma start_proof sigma using_lemmas tcc_lemma_ref (Some tcc_lemma_name) (new_goal_type) with EmptySubgoals -> (* a non recursive function declared with measure ! *) tcc_lemma_ref := Not_needed; - if interactive_proof then Some pstate - else (defined pstate; None) + if interactive_proof then Some lemma + else (defined lemma; None) let start_equation (f:GlobRef.t) (term_f:GlobRef.t) (cont_tactic:Id.t list -> tactic) g = @@ -1457,9 +1457,9 @@ let com_eqn sign uctx nb_arg eq_name functional_ref f_ref terminate_ref equation let evd = Evd.from_ctx uctx in let f_constr = constr_of_monomorphic_global f_ref in let equation_lemma_type = subst1 f_constr equation_lemma_type in - let pstate = Lemmas.start_proof eq_name (Global ImportDefaultBehavior, false, Proof Lemma) ~sign evd + let lemma = Lemmas.start_lemma eq_name (Global ImportDefaultBehavior, false, Proof Lemma) ~sign evd (EConstr.of_constr equation_lemma_type) in - let pstate = fst @@ by + let lemma = fst @@ Lemmas.by (Proofview.V82.tactic (start_equation f_ref terminate_ref (fun x -> prove_eq (fun _ -> tclIDTAC) @@ -1486,14 +1486,14 @@ let com_eqn sign uctx nb_arg eq_name functional_ref f_ref terminate_ref equation ih = Id.of_string "______"; } ) - )) pstate in - let _ = Flags.silently (fun () -> Lemmas.save_pstate_proved ~pstate ~opaque:opacity ~idopt:None) () in + )) lemma in + let _ = Flags.silently (fun () -> Lemmas.save_lemma_proved ?proof:None ~lemma ~opaque:opacity ~idopt:None) () in () (* Pp.msgnl (fun _ _ -> str "eqn finished"); *) let recursive_definition ~interactive_proof ~is_mes function_name rec_impls type_of_f r rec_arg_num eq - generate_induction_principle using_lemmas : Proof_global.t option = + generate_induction_principle using_lemmas : Lemmas.t option = let open Term in let open Constr in let open CVars in @@ -1550,8 +1550,9 @@ let recursive_definition ~interactive_proof ~is_mes function_name rec_impls type let stop = (* XXX: What is the correct way to get sign at hook time *) let sign = Environ.named_context_val Global.(env ()) in - try com_eqn sign uctx (List.length res_vars) equation_id functional_ref f_ref term_ref (subst_var function_name equation_lemma_type); - false + try + com_eqn sign uctx (List.length res_vars) equation_id functional_ref f_ref term_ref (subst_var function_name equation_lemma_type); + false with e when CErrors.noncritical e -> begin if do_observe () @@ -1582,15 +1583,15 @@ let recursive_definition ~interactive_proof ~is_mes function_name rec_impls type in (* XXX STATE Why do we need this... why is the toplevel protection not enough *) funind_purify (fun () -> - let pstate = com_terminate - interactive_proof - tcc_lemma_name - tcc_lemma_constr - is_mes functional_ref - (EConstr.of_constr rec_arg_type) - relation rec_arg_num - term_id - using_lemmas - (List.length res_vars) - evd (Lemmas.mk_hook hook) - in pstate) () + com_terminate + interactive_proof + tcc_lemma_name + tcc_lemma_constr + is_mes functional_ref + (EConstr.of_constr rec_arg_type) + relation rec_arg_num + term_id + using_lemmas + (List.length res_vars) + evd (Lemmas.mk_hook hook)) + () |
