aboutsummaryrefslogtreecommitdiff
path: root/plugins/funind/indfun.ml
diff options
context:
space:
mode:
authorEmilio Jesus Gallego Arias2019-07-17 06:19:49 +0200
committerEmilio Jesus Gallego Arias2019-07-31 11:13:04 +0200
commit7864ae92065ecb787c72cdd8eca2b3aeb6604dbe (patch)
tree6e5870c34dd874ad82abd128d7ca64b6217e1520 /plugins/funind/indfun.ml
parent4e679df3c15e5e554ff9ef85138f9c55396e9f0b (diff)
[funind] Derive_correctness is only used in funind, thus more there.
Diffstat (limited to 'plugins/funind/indfun.ml')
-rw-r--r--plugins/funind/indfun.ml849
1 files changed, 848 insertions, 1 deletions
diff --git a/plugins/funind/indfun.ml b/plugins/funind/indfun.ml
index 1987677d7d..73e9c94d34 100644
--- a/plugins/funind/indfun.ml
+++ b/plugins/funind/indfun.ml
@@ -25,6 +25,31 @@ open Decl_kinds
module RelDecl = Context.Rel.Declaration
+(* Move to common *)
+let observe strm =
+ if do_observe ()
+ then Feedback.msg_debug strm
+ else ()
+
+let do_observe_tac s tac g =
+ let goal =
+ try Printer.pr_goal g
+ with e when CErrors.noncritical e -> assert false
+ in
+ try
+ let v = tac g in
+ msgnl (goal ++ fnl () ++ s ++(str " ")++(str "finished")); v
+ with reraise ->
+ let reraise = CErrors.push reraise in
+ observe (hov 0 (str "observation "++ s++str " raised exception " ++
+ CErrors.iprint reraise ++ str " on goal" ++ fnl() ++ goal ));
+ iraise reraise;;
+
+let observe_tac s tac g =
+ if do_observe ()
+ then do_observe_tac (str s) tac g
+ else tac g
+
let is_rec_info sigma scheme_info =
let test_branche min acc decl =
acc || (
@@ -244,6 +269,828 @@ let prepare_body { Vernacexpr.binders; rtype } rt =
let fun_args,rt' = chop_rlambda_n n rt in
(fun_args,rt')
+(* [prove_fun_correct funs_constr graphs_constr schemes lemmas_types_infos i ]
+ is the tactic used to prove correctness lemma.
+
+ [funs_constr], [graphs_constr] [schemes] [lemmas_types_infos] are the mutually recursive functions
+ (resp. graphs of the functions and principles and correctness lemma types) to prove correct.
+
+ [i] is the indice of the function to prove correct
+
+ The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
+ it looks like~:
+ [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
+ res = f x_1\ldots x_n in, \rightarrow graph\ x_1\ldots x_n\ res]
+
+
+ The sketch of the proof is the following one~:
+ \begin{enumerate}
+ \item intros until $x_n$
+ \item $functional\ induction\ (f.(i)\ x_1\ldots x_n)$ using schemes.(i)
+ \item for each generated branch intro [res] and [hres :res = f x_1\ldots x_n], rewrite [hres] and the
+ apply the corresponding constructor of the corresponding graph inductive.
+ \end{enumerate}
+
+*)
+
+let rec generate_fresh_id x avoid i =
+ if i == 0
+ then []
+ else
+ let id = Namegen.next_ident_away_in_goal x (Id.Set.of_list avoid) in
+ id::(generate_fresh_id x (id::avoid) (pred i))
+
+let make_eq () =
+ try EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type"))
+ with _ -> assert false
+
+let prove_fun_correct evd funs_constr graphs_constr schemes lemmas_types_infos i : Tacmach.tactic =
+ let open Context.Rel.Declaration in
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ fun g ->
+ (* first of all we recreate the lemmas types to be used as predicates of the induction principle
+ that is~:
+ \[fun (x_1:t_1)\ldots(x_n:t_n)=> fun fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\]
+ *)
+ (* we the get the definition of the graphs block *)
+ let graph_ind,u = destInd evd graphs_constr.(i) in
+ let kn = fst graph_ind in
+ let mib,_ = Global.lookup_inductive graph_ind in
+ (* and the principle to use in this lemma in $\zeta$ normal form *)
+ let f_principle,princ_type = schemes.(i) in
+ let princ_type = Reductionops.nf_zeta (Global.env ()) evd princ_type in
+ let princ_infos = Tactics.compute_elim_sig evd princ_type in
+ (* The number of args of the function is then easily computable *)
+ let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in
+ let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
+ let ids = args_names@(pf_ids_of_hyps g) in
+ (* Since we cannot ensure that the functional principle is defined in the
+ environment and due to the bug #1174, we will need to pose the principle
+ using a name
+ *)
+ let principle_id = Namegen.next_ident_away_in_goal (Id.of_string "princ") (Id.Set.of_list ids) in
+ let ids = principle_id :: ids in
+ (* We get the branches of the principle *)
+ let branches = List.rev princ_infos.Tactics.branches in
+ (* and built the intro pattern for each of them *)
+ let intro_pats =
+ List.map
+ (fun decl ->
+ List.map
+ (fun id -> CAst.make @@ IntroNaming (Namegen.IntroIdentifier id))
+ (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl)))))
+ )
+ branches
+ in
+ (* before building the full intro pattern for the principle *)
+ let eq_ind = make_eq () in
+ let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in
+ (* The next to referencies will be used to find out which constructor to apply in each branch *)
+ let ind_number = ref 0
+ and min_constr_number = ref 0 in
+ (* The tactic to prove the ith branch of the principle *)
+ let prove_branche i g =
+ (* We get the identifiers of this branch *)
+ let pre_args =
+ List.fold_right
+ (fun {CAst.v=pat} acc ->
+ match pat with
+ | IntroNaming (Namegen.IntroIdentifier id) -> id::acc
+ | _ -> anomaly (Pp.str "Not an identifier.")
+ )
+ (List.nth intro_pats (pred i))
+ []
+ in
+ (* and get the real args of the branch by unfolding the defined constant *)
+ (*
+ We can then recompute the arguments of the constructor.
+ For each [hid] introduced by this branch, if [hid] has type
+ $forall res, res=fv -> graph.(j)\ x_1\ x_n res$ the corresponding arguments of the constructor are
+ [ fv (hid fv (refl_equal fv)) ].
+ If [hid] has another type the corresponding argument of the constructor is [hid]
+ *)
+ let constructor_args g =
+ List.fold_right
+ (fun hid acc ->
+ let type_of_hid = pf_unsafe_type_of g (mkVar hid) in
+ let sigma = project g in
+ match EConstr.kind sigma type_of_hid with
+ | Prod(_,_,t') ->
+ begin
+ match EConstr.kind sigma t' with
+ | Prod(_,t'',t''') ->
+ begin
+ match EConstr.kind sigma t'',EConstr.kind sigma t''' with
+ | App(eq,args), App(graph',_)
+ when
+ (EConstr.eq_constr sigma eq eq_ind) &&
+ Array.exists (EConstr.eq_constr_nounivs sigma graph') graphs_constr ->
+ (args.(2)::(mkApp(mkVar hid,[|args.(2);(mkApp(eq_construct,[|args.(0);args.(2)|]))|]))
+ ::acc)
+ | _ -> mkVar hid :: acc
+ end
+ | _ -> mkVar hid :: acc
+ end
+ | _ -> mkVar hid :: acc
+ ) pre_args []
+ in
+ (* in fact we must also add the parameters to the constructor args *)
+ let constructor_args g =
+ let params_id = fst (List.chop princ_infos.Tactics.nparams args_names) in
+ (List.map mkVar params_id)@((constructor_args g))
+ in
+ (* We then get the constructor corresponding to this branch and
+ modifies the references has needed i.e.
+ if the constructor is the last one of the current inductive then
+ add one the number of the inductive to take and add the number of constructor of the previous
+ graph to the minimal constructor number
+ *)
+ let constructor =
+ let constructor_num = i - !min_constr_number in
+ let length = Array.length (mib.Declarations.mind_packets.(!ind_number).Declarations.mind_consnames) in
+ if constructor_num <= length
+ then
+ begin
+ (kn,!ind_number),constructor_num
+ end
+ else
+ begin
+ incr ind_number;
+ min_constr_number := !min_constr_number + length ;
+ (kn,!ind_number),1
+ end
+ in
+ (* we can then build the final proof term *)
+ let app_constructor g = applist((mkConstructU(constructor,u)),constructor_args g) in
+ (* an apply the tactic *)
+ let res,hres =
+ match generate_fresh_id (Id.of_string "z") (ids(* @this_branche_ids *)) 2 with
+ | [res;hres] -> res,hres
+ | _ -> assert false
+ in
+ (* observe (str "constructor := " ++ Printer.pr_lconstr_env (pf_env g) app_constructor); *)
+ (
+ tclTHENLIST
+ [
+ observe_tac("h_intro_patterns ") (let l = (List.nth intro_pats (pred i)) in
+ match l with
+ | [] -> tclIDTAC
+ | _ -> Proofview.V82.of_tactic (intro_patterns false l));
+ (* unfolding of all the defined variables introduced by this branch *)
+ (* observe_tac "unfolding" pre_tac; *)
+ (* $zeta$ normalizing of the conclusion *)
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ { Redops.all_flags with
+ Genredexpr.rDelta = false ;
+ Genredexpr.rConst = []
+ }
+ )
+ Locusops.onConcl);
+ observe_tac ("toto ") tclIDTAC;
+
+ (* introducing the result of the graph and the equality hypothesis *)
+ observe_tac "introducing" (tclMAP (fun x -> Proofview.V82.of_tactic (Simple.intro x)) [res;hres]);
+ (* replacing [res] with its value *)
+ observe_tac "rewriting res value" (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar hres)));
+ (* Conclusion *)
+ observe_tac "exact" (fun g ->
+ Proofview.V82.of_tactic (exact_check (app_constructor g)) g)
+ ]
+ )
+ g
+ in
+ (* end of branche proof *)
+ let lemmas =
+ Array.map
+ (fun ((_,(ctxt,concl))) ->
+ match ctxt with
+ | [] | [_] | [_;_] -> anomaly (Pp.str "bad context.")
+ | hres::res::decl::ctxt ->
+ let res = EConstr.it_mkLambda_or_LetIn
+ (EConstr.it_mkProd_or_LetIn concl [hres;res])
+ (LocalAssum (RelDecl.get_annot decl, RelDecl.get_type decl) :: ctxt)
+ in
+ res)
+ lemmas_types_infos
+ in
+ let param_names = fst (List.chop princ_infos.nparams args_names) in
+ let params = List.map mkVar param_names in
+ let lemmas = Array.to_list (Array.map (fun c -> applist(c,params)) lemmas) in
+ (* The bindings of the principle
+ that is the params of the principle and the different lemma types
+ *)
+ let bindings =
+ let params_bindings,avoid =
+ List.fold_left2
+ (fun (bindings,avoid) decl p ->
+ let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
+ p::bindings,id::avoid
+ )
+ ([],pf_ids_of_hyps g)
+ princ_infos.params
+ (List.rev params)
+ in
+ let lemmas_bindings =
+ List.rev (fst (List.fold_left2
+ (fun (bindings,avoid) decl p ->
+ let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
+ (Reductionops.nf_zeta (pf_env g) (project g) p)::bindings,id::avoid)
+ ([],avoid)
+ princ_infos.predicates
+ (lemmas)))
+ in
+ (params_bindings@lemmas_bindings)
+ in
+ tclTHENLIST
+ [
+ observe_tac "principle" (Proofview.V82.of_tactic (assert_by
+ (Name principle_id)
+ princ_type
+ (exact_check f_principle)));
+ observe_tac "intro args_names" (tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) args_names);
+ (* observe_tac "titi" (pose_proof (Name (Id.of_string "__")) (Reductionops.nf_beta Evd.empty ((mkApp (mkVar principle_id,Array.of_list bindings))))); *)
+ observe_tac "idtac" tclIDTAC;
+ tclTHEN_i
+ (observe_tac
+ "functional_induction" (
+ (fun gl ->
+ let term = mkApp (mkVar principle_id,Array.of_list bindings) in
+ let gl', _ty = pf_eapply (Typing.type_of ~refresh:true) gl term in
+ Proofview.V82.of_tactic (apply term) gl')
+ ))
+ (fun i g -> observe_tac ("proving branche "^string_of_int i) (prove_branche i) g )
+ ]
+ g
+
+(**
+ [find_induction_principle f] searches and returns the [body] and the [type] of [f_rect]
+
+ WARNING: while convertible, [type_of body] and [type] can be non equal
+*)
+let find_induction_principle evd f =
+ let f_as_constant,u = match EConstr.kind !evd f with
+ | Const c' -> c'
+ | _ -> user_err Pp.(str "Must be used with a function")
+ in
+ let infos = find_Function_infos f_as_constant in
+ match infos.rect_lemma with
+ | None -> raise Not_found
+ | Some rect_lemma ->
+ let evd',rect_lemma = Evd.fresh_global (Global.env ()) !evd (GlobRef.ConstRef rect_lemma) in
+ let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in
+ evd:=evd';
+ rect_lemma,typ
+
+(* [generate_type g_to_f f graph i] build the completeness (resp. correctness) lemma type if [g_to_f = true]
+ (resp. g_to_f = false) where [graph] is the graph of [f] and is the [i]th function in the block.
+
+ [generate_type true f i] returns
+ \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
+ graph\ x_1\ldots x_n\ res \rightarrow res = fv \] decomposed as the context and the conclusion
+
+ [generate_type false f i] returns
+ \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
+ res = fv \rightarrow graph\ x_1\ldots x_n\ res\] decomposed as the context and the conclusion
+ *)
+
+let generate_type evd g_to_f f graph i =
+ let open Context.Rel.Declaration in
+ let open EConstr.Vars in
+ (*i we deduce the number of arguments of the function and its returned type from the graph i*)
+ let evd',graph =
+ Evd.fresh_global (Global.env ()) !evd (GlobRef.IndRef (fst (destInd !evd graph)))
+ in
+ evd:=evd';
+ let sigma, graph_arity = Typing.type_of (Global.env ()) !evd graph in
+ evd := sigma;
+ let ctxt,_ = decompose_prod_assum !evd graph_arity in
+ let fun_ctxt,res_type =
+ match ctxt with
+ | [] | [_] -> anomaly (Pp.str "Not a valid context.")
+ | decl :: fun_ctxt -> fun_ctxt, RelDecl.get_type decl
+ in
+ let rec args_from_decl i accu = function
+ | [] -> accu
+ | LocalDef _ :: l ->
+ args_from_decl (succ i) accu l
+ | _ :: l ->
+ let t = mkRel i in
+ args_from_decl (succ i) (t :: accu) l
+ in
+ (*i We need to name the vars [res] and [fv] i*)
+ let filter = fun decl -> match RelDecl.get_name decl with
+ | Name id -> Some id
+ | Anonymous -> None
+ in
+ let named_ctxt = Id.Set.of_list (List.map_filter filter fun_ctxt) in
+ let res_id = Namegen.next_ident_away_in_goal (Id.of_string "_res") named_ctxt in
+ let fv_id = Namegen.next_ident_away_in_goal (Id.of_string "fv") (Id.Set.add res_id named_ctxt) in
+ (*i we can then type the argument to be applied to the function [f] i*)
+ let args_as_rels = Array.of_list (args_from_decl 1 [] fun_ctxt) in
+ (*i
+ the hypothesis [res = fv] can then be computed
+ We will need to lift it by one in order to use it as a conclusion
+ i*)
+ let make_eq = make_eq ()
+ in
+ let res_eq_f_of_args =
+ mkApp(make_eq ,[|lift 2 res_type;mkRel 1;mkRel 2|])
+ in
+ (*i
+ The hypothesis [graph\ x_1\ldots x_n\ res] can then be computed
+ We will need to lift it by one in order to use it as a conclusion
+ i*)
+ let args_and_res_as_rels = Array.of_list (args_from_decl 3 [] fun_ctxt) in
+ let args_and_res_as_rels = Array.append args_and_res_as_rels [|mkRel 1|] in
+ let graph_applied = mkApp(graph, args_and_res_as_rels) in
+ (*i The [pre_context] is the defined to be the context corresponding to
+ \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, \]
+ i*)
+ let pre_ctxt =
+ LocalAssum (make_annot (Name res_id) Sorts.Relevant, lift 1 res_type) ::
+ LocalDef (make_annot (Name fv_id) Sorts.Relevant, mkApp (f,args_as_rels), res_type) :: fun_ctxt
+ in
+ (*i and we can return the solution depending on which lemma type we are defining i*)
+ if g_to_f
+ then LocalAssum (make_annot Anonymous Sorts.Relevant,graph_applied)::pre_ctxt,(lift 1 res_eq_f_of_args),graph
+ else LocalAssum (make_annot Anonymous Sorts.Relevant,res_eq_f_of_args)::pre_ctxt,(lift 1 graph_applied),graph
+
+(* [prove_fun_complete funs graphs schemes lemmas_types_infos i]
+ is the tactic used to prove completeness lemma.
+
+ [funcs], [graphs] [schemes] [lemmas_types_infos] are the mutually recursive functions
+ (resp. definitions of the graphs of the functions, principles and correctness lemma types) to prove correct.
+
+ [i] is the indice of the function to prove complete
+
+ The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
+ it looks like~:
+ [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
+ graph\ x_1\ldots x_n\ res, \rightarrow res = f x_1\ldots x_n in]
+
+
+ The sketch of the proof is the following one~:
+ \begin{enumerate}
+ \item intros until $H:graph\ x_1\ldots x_n\ res$
+ \item $elim\ H$ using schemes.(i)
+ \item for each generated branch, intro the news hyptohesis, for each such hyptohesis [h], if [h] has
+ type [x=?] with [x] a variable, then subst [x],
+ if [h] has type [t=?] with [t] not a variable then rewrite [t] in the subterms, else
+ if [h] is a match then destruct it, else do just introduce it,
+ after all intros, the conclusion should be a reflexive equality.
+ \end{enumerate}
+
+*)
+
+let thin ids gl = Proofview.V82.of_tactic (Tactics.clear ids) gl
+
+(* [intros_with_rewrite] do the intros in each branch and treat each new hypothesis
+ (unfolding, substituting, destructing cases \ldots)
+ *)
+let tauto =
+ let open Ltac_plugin in
+ let dp = List.map Id.of_string ["Tauto" ; "Init"; "Coq"] in
+ let mp = ModPath.MPfile (DirPath.make dp) in
+ let kn = KerName.make mp (Label.make "tauto") in
+ Proofview.tclBIND (Proofview.tclUNIT ()) begin fun () ->
+ let body = Tacenv.interp_ltac kn in
+ Tacinterp.eval_tactic body
+ end
+
+(* [generalize_dependent_of x hyp g]
+ generalize every hypothesis which depends of [x] but [hyp]
+*)
+let generalize_dependent_of x hyp g =
+ let open Context.Named.Declaration in
+ let open Tacmach in
+ let open Tacticals in
+ tclMAP
+ (function
+ | LocalAssum ({binder_name=id},t) when not (Id.equal id hyp) &&
+ (Termops.occur_var (pf_env g) (project g) x t) -> tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [mkVar id])) (thin [id])
+ | _ -> tclIDTAC
+ )
+ (pf_hyps g)
+ g
+
+let rec intros_with_rewrite g =
+ observe_tac "intros_with_rewrite" intros_with_rewrite_aux g
+and intros_with_rewrite_aux : Tacmach.tactic =
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ fun g ->
+ let eq_ind = make_eq () in
+ let sigma = project g in
+ match EConstr.kind sigma (pf_concl g) with
+ | Prod(_,t,t') ->
+ begin
+ match EConstr.kind sigma t with
+ | App(eq,args) when (EConstr.eq_constr sigma eq eq_ind) ->
+ if Reductionops.is_conv (pf_env g) (project g) args.(1) args.(2)
+ then
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); thin [id]; intros_with_rewrite ] g
+ else if isVar sigma args.(1) && (Environ.evaluable_named (destVar sigma args.(1)) (pf_env g))
+ then tclTHENLIST[
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))]);
+ tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))] ((destVar sigma args.(1)),Locus.InHyp) )))
+ (pf_ids_of_hyps g);
+ intros_with_rewrite
+ ] g
+ else if isVar sigma args.(2) && (Environ.evaluable_named (destVar sigma args.(2)) (pf_env g))
+ then tclTHENLIST[
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))]);
+ tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))] ((destVar sigma args.(2)),Locus.InHyp) )))
+ (pf_ids_of_hyps g);
+ intros_with_rewrite
+ ] g
+ else if isVar sigma args.(1)
+ then
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
+ generalize_dependent_of (destVar sigma args.(1)) id;
+ tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
+ intros_with_rewrite
+ ]
+ g
+ else if isVar sigma args.(2)
+ then
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
+ generalize_dependent_of (destVar sigma args.(2)) id;
+ tclTRY (Proofview.V82.of_tactic (Equality.rewriteRL (mkVar id)));
+ intros_with_rewrite
+ ]
+ g
+ else
+ begin
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST[
+ Proofview.V82.of_tactic (Simple.intro id);
+ tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
+ intros_with_rewrite
+ ] g
+ end
+ | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr (UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.False.type")) ->
+ Proofview.V82.of_tactic tauto g
+ | Case(_,_,v,_) ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (simplest_case v);
+ intros_with_rewrite
+ ] g
+ | LetIn _ ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ {Redops.all_flags
+ with Genredexpr.rDelta = false;
+ })
+ Locusops.onConcl)
+ ;
+ intros_with_rewrite
+ ] g
+ | _ ->
+ let id = pf_get_new_id (Id.of_string "y") g in
+ tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);intros_with_rewrite] g
+ end
+ | LetIn _ ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ {Redops.all_flags
+ with Genredexpr.rDelta = false;
+ })
+ Locusops.onConcl)
+ ;
+ intros_with_rewrite
+ ] g
+ | _ -> tclIDTAC g
+
+let rec reflexivity_with_destruct_cases g =
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ let destruct_case () =
+ try
+ match EConstr.kind (project g) (snd (destApp (project g) (pf_concl g))).(2) with
+ | Case(_,_,v,_) ->
+ tclTHENLIST[
+ Proofview.V82.of_tactic (simplest_case v);
+ Proofview.V82.of_tactic intros;
+ observe_tac "reflexivity_with_destruct_cases" reflexivity_with_destruct_cases
+ ]
+ | _ -> Proofview.V82.of_tactic reflexivity
+ with e when CErrors.noncritical e -> Proofview.V82.of_tactic reflexivity
+ in
+ let eq_ind = make_eq () in
+ let my_inj_flags = Some {
+ Equality.keep_proof_equalities = false;
+ injection_in_context = false; (* for compatibility, necessary *)
+ injection_pattern_l2r_order = false; (* probably does not matter; except maybe with dependent hyps *)
+ } in
+ let discr_inject =
+ Tacticals.onAllHypsAndConcl (
+ fun sc g ->
+ match sc with
+ None -> tclIDTAC g
+ | Some id ->
+ match EConstr.kind (project g) (pf_unsafe_type_of g (mkVar id)) with
+ | App(eq,[|_;t1;t2|]) when EConstr.eq_constr (project g) eq eq_ind ->
+ if Equality.discriminable (pf_env g) (project g) t1 t2
+ then Proofview.V82.of_tactic (Equality.discrHyp id) g
+ else if Equality.injectable (pf_env g) (project g) ~keep_proofs:None t1 t2
+ then tclTHENLIST [Proofview.V82.of_tactic (Equality.injHyp my_inj_flags None id);thin [id];intros_with_rewrite] g
+ else tclIDTAC g
+ | _ -> tclIDTAC g
+ )
+ in
+ (tclFIRST
+ [ observe_tac "reflexivity_with_destruct_cases : reflexivity" (Proofview.V82.of_tactic reflexivity);
+ observe_tac "reflexivity_with_destruct_cases : destruct_case" ((destruct_case ()));
+ (* We reach this point ONLY if
+ the same value is matched (at least) two times
+ along binding path.
+ In this case, either we have a discriminable hypothesis and we are done,
+ either at least an injectable one and we do the injection before continuing
+ *)
+ observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases)
+ ])
+ g
+
+let prove_fun_complete funcs graphs schemes lemmas_types_infos i : Tacmach.tactic =
+ let open Tacmach in
+ let open Tactics in
+ let open Tacticals in
+ fun g ->
+ (* We compute the types of the different mutually recursive lemmas
+ in $\zeta$ normal form
+ *)
+ let lemmas =
+ Array.map
+ (fun (_,(ctxt,concl)) -> Reductionops.nf_zeta (pf_env g) (project g) (EConstr.it_mkLambda_or_LetIn concl ctxt))
+ lemmas_types_infos
+ in
+ (* We get the constant and the principle corresponding to this lemma *)
+ let f = funcs.(i) in
+ let graph_principle = Reductionops.nf_zeta (pf_env g) (project g) (EConstr.of_constr schemes.(i)) in
+ let princ_type = pf_unsafe_type_of g graph_principle in
+ let princ_infos = Tactics.compute_elim_sig (project g) princ_type in
+ (* Then we get the number of argument of the function
+ and compute a fresh name for each of them
+ *)
+ let nb_fun_args = Termops.nb_prod (project g) (pf_concl g) - 2 in
+ let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
+ let ids = args_names@(pf_ids_of_hyps g) in
+ (* and fresh names for res H and the principle (cf bug bug #1174) *)
+ let res,hres,graph_principle_id =
+ match generate_fresh_id (Id.of_string "z") ids 3 with
+ | [res;hres;graph_principle_id] -> res,hres,graph_principle_id
+ | _ -> assert false
+ in
+ let ids = res::hres::graph_principle_id::ids in
+ (* we also compute fresh names for each hyptohesis of each branch
+ of the principle *)
+ let branches = List.rev princ_infos.branches in
+ let intro_pats =
+ List.map
+ (fun decl ->
+ List.map
+ (fun id -> id)
+ (generate_fresh_id (Id.of_string "y") ids (Termops.nb_prod (project g) (RelDecl.get_type decl)))
+ )
+ branches
+ in
+ (* We will need to change the function by its body
+ using [f_equation] if it is recursive (that is the graph is infinite
+ or unfold if the graph is finite
+ *)
+ let rewrite_tac j ids : Tacmach.tactic =
+ let graph_def = graphs.(j) in
+ let infos =
+ try find_Function_infos (fst (destConst (project g) funcs.(j)))
+ with Not_found -> user_err Pp.(str "No graph found")
+ in
+ if infos.is_general
+ || Rtree.is_infinite Declareops.eq_recarg graph_def.mind_recargs
+ then
+ let eq_lemma =
+ try Option.get (infos).equation_lemma
+ with Option.IsNone -> anomaly (Pp.str "Cannot find equation lemma.")
+ in
+ tclTHENLIST[
+ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) ids;
+ Proofview.V82.of_tactic (Equality.rewriteLR (mkConst eq_lemma));
+ (* Don't forget to $\zeta$ normlize the term since the principles
+ have been $\zeta$-normalized *)
+ Proofview.V82.of_tactic (reduce
+ (Genredexpr.Cbv
+ {Redops.all_flags
+ with Genredexpr.rDelta = false;
+ })
+ Locusops.onConcl)
+ ;
+ Proofview.V82.of_tactic (generalize (List.map mkVar ids));
+ thin ids
+ ]
+ else
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst (project g) f)))])
+ in
+ (* The proof of each branche itself *)
+ let ind_number = ref 0 in
+ let min_constr_number = ref 0 in
+ let prove_branche i g =
+ (* we fist compute the inductive corresponding to the branch *)
+ let this_ind_number =
+ let constructor_num = i - !min_constr_number in
+ let length = Array.length (graphs.(!ind_number).Declarations.mind_consnames) in
+ if constructor_num <= length
+ then !ind_number
+ else
+ begin
+ incr ind_number;
+ min_constr_number := !min_constr_number + length;
+ !ind_number
+ end
+ in
+ let this_branche_ids = List.nth intro_pats (pred i) in
+ tclTHENLIST[
+ (* we expand the definition of the function *)
+ observe_tac "rewrite_tac" (rewrite_tac this_ind_number this_branche_ids);
+ (* introduce hypothesis with some rewrite *)
+ observe_tac "intros_with_rewrite (all)" intros_with_rewrite;
+ (* The proof is (almost) complete *)
+ observe_tac "reflexivity" (reflexivity_with_destruct_cases)
+ ]
+ g
+ in
+ let params_names = fst (List.chop princ_infos.nparams args_names) in
+ let open EConstr in
+ let params = List.map mkVar params_names in
+ tclTHENLIST
+ [ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) (args_names@[res;hres]);
+ observe_tac "h_generalize"
+ (Proofview.V82.of_tactic (generalize [mkApp(applist(graph_principle,params),Array.map (fun c -> applist(c,params)) lemmas)]));
+ Proofview.V82.of_tactic (Simple.intro graph_principle_id);
+ observe_tac "" (tclTHEN_i
+ (observe_tac "elim" (Proofview.V82.of_tactic (elim false None (mkVar hres,NoBindings) (Some (mkVar graph_principle_id,NoBindings)))))
+ (fun i g -> observe_tac "prove_branche" (prove_branche i) g ))
+ ]
+ g
+
+(* [derive_correctness make_scheme funs graphs] create correctness and completeness
+ lemmas for each function in [funs] w.r.t. [graphs]
+
+ [make_scheme] is Functional_principle_types.make_scheme (dependency pb) and
+*)
+
+let derive_correctness (funs: pconstant list) (graphs:inductive list) =
+ assert (funs <> []);
+ assert (graphs <> []);
+ let funs = Array.of_list funs and graphs = Array.of_list graphs in
+ let map (c, u) = mkConstU (c, EInstance.make u) in
+ let funs_constr = Array.map map funs in
+ (* XXX STATE Why do we need this... why is the toplevel protection not enough *)
+ funind_purify
+ (fun () ->
+ let env = Global.env () in
+ let evd = ref (Evd.from_env env) in
+ let graphs_constr = Array.map mkInd graphs in
+ let lemmas_types_infos =
+ Util.Array.map2_i
+ (fun i f_constr graph ->
+ (* let const_of_f,u = destConst f_constr in *)
+ let (type_of_lemma_ctxt,type_of_lemma_concl,graph) =
+ generate_type evd false f_constr graph i
+ in
+ let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
+ graphs_constr.(i) <- graph;
+ let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
+ let sigma, _ = Typing.type_of (Global.env ()) !evd type_of_lemma in
+ evd := sigma;
+ let type_of_lemma = Reductionops.nf_zeta (Global.env ()) !evd type_of_lemma in
+ observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma);
+ type_of_lemma,type_info
+ )
+ funs_constr
+ graphs_constr
+ in
+ let schemes =
+ (* The functional induction schemes are computed and not saved if there is more that one function
+ if the block contains only one function we can safely reuse [f_rect]
+ *)
+ try
+ if not (Int.equal (Array.length funs_constr) 1) then raise Not_found;
+ [| find_induction_principle evd funs_constr.(0) |]
+ with Not_found ->
+ (
+
+ Array.of_list
+ (List.map
+ (fun entry ->
+ (EConstr.of_constr (fst (fst(Future.force entry.Proof_global.proof_entry_body))), EConstr.of_constr (Option.get entry.Proof_global.proof_entry_type ))
+ )
+ (Functional_principles_types.make_scheme evd (Array.map_to_list (fun const -> const,Sorts.InType) funs))
+ )
+ )
+ in
+ let proving_tac =
+ prove_fun_correct !evd funs_constr graphs_constr schemes lemmas_types_infos
+ in
+ Array.iteri
+ (fun i f_as_constant ->
+ let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
+ (*i The next call to mk_correct_id is valid since we are constructing the lemma
+ Ensures by: obvious
+ i*)
+ let lem_id = mk_correct_id f_id in
+ let (typ,_) = lemmas_types_infos.(i) in
+ let info = Lemmas.Info.make
+ ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
+ ~kind:(Decls.(IsProof Theorem)) () in
+ let lemma = Lemmas.start_lemma
+ ~name:lem_id
+ ~poly:false
+ ~info
+ !evd
+ typ in
+ let lemma = fst @@ Lemmas.by
+ (Proofview.V82.tactic (proving_tac i)) lemma in
+ let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in
+ let finfo = find_Function_infos (fst f_as_constant) in
+ (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *)
+ let _,lem_cst_constr = Evd.fresh_global
+ (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
+ let (lem_cst,_) = destConst !evd lem_cst_constr in
+ update_Function {finfo with correctness_lemma = Some lem_cst};
+
+ )
+ funs;
+ let lemmas_types_infos =
+ Util.Array.map2_i
+ (fun i f_constr graph ->
+ let (type_of_lemma_ctxt,type_of_lemma_concl,graph) =
+ generate_type evd true f_constr graph i
+ in
+ let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
+ graphs_constr.(i) <- graph;
+ let type_of_lemma =
+ EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt
+ in
+ let type_of_lemma = Reductionops.nf_zeta env !evd type_of_lemma in
+ observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env env !evd type_of_lemma);
+ type_of_lemma,type_info
+ )
+ funs_constr
+ graphs_constr
+ in
+
+ let (kn,_) as graph_ind,u = (destInd !evd graphs_constr.(0)) in
+ let mib,mip = Global.lookup_inductive graph_ind in
+ let sigma, scheme =
+ (Indrec.build_mutual_induction_scheme (Global.env ()) !evd
+ (Array.to_list
+ (Array.mapi
+ (fun i _ -> ((kn,i), EInstance.kind !evd u),true,InType)
+ mib.Declarations.mind_packets
+ )
+ )
+ )
+ in
+ let schemes =
+ Array.of_list scheme
+ in
+ let proving_tac =
+ prove_fun_complete funs_constr mib.Declarations.mind_packets schemes lemmas_types_infos
+ in
+ Array.iteri
+ (fun i f_as_constant ->
+ let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
+ (*i The next call to mk_complete_id is valid since we are constructing the lemma
+ Ensures by: obvious
+ i*)
+ let lem_id = mk_complete_id f_id in
+ let info = Lemmas.Info.make
+ ~scope:(DeclareDef.Global Declare.ImportDefaultBehavior)
+ ~kind:Decls.(IsProof Theorem) () in
+ let lemma = Lemmas.start_lemma ~name:lem_id ~poly:false ~info
+ sigma (fst lemmas_types_infos.(i)) in
+ let lemma = fst (Lemmas.by
+ (Proofview.V82.tactic (observe_tac ("prove completeness ("^(Id.to_string f_id)^")")
+ (proving_tac i))) lemma) in
+ let () = Lemmas.save_lemma_proved ~lemma ~opaque:Proof_global.Transparent ~idopt:None in
+ let finfo = find_Function_infos (fst f_as_constant) in
+ let _,lem_cst_constr = Evd.fresh_global
+ (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
+ let (lem_cst,_) = destConst !evd lem_cst_constr in
+ update_Function {finfo with completeness_lemma = Some lem_cst}
+ )
+ funs)
+ ()
+
let warn_funind_cannot_build_inversion =
CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind"
(fun e' -> strbrk "Cannot build inversion information" ++
@@ -285,7 +1132,7 @@ let derive_inversion fix_names =
fix_names
(evd',[])
in
- Invfun.derive_correctness
+ derive_correctness
fix_names_as_constant
lind;
with e when CErrors.noncritical e ->