aboutsummaryrefslogtreecommitdiff
path: root/plugins/cc/ccproof.ml
diff options
context:
space:
mode:
authorPierre Corbineau2014-12-16 15:59:35 +0100
committerPierre Corbineau2014-12-16 15:59:35 +0100
commitd4f5bdd6f7304fac541bb5f4555ecdd6aa42699a (patch)
treebef50df694a7188a35a298fe2a5b4633e83fc24b /plugins/cc/ccproof.ml
parent8bda62e798c4e89c8c3f9406327899e394f7be0f (diff)
fix bug #2447 in congruence
Diffstat (limited to 'plugins/cc/ccproof.ml')
-rw-r--r--plugins/cc/ccproof.ml112
1 files changed, 59 insertions, 53 deletions
diff --git a/plugins/cc/ccproof.ml b/plugins/cc/ccproof.ml
index 6177f22f3b..7b1a02cbe8 100644
--- a/plugins/cc/ccproof.ml
+++ b/plugins/cc/ccproof.ml
@@ -12,6 +12,7 @@
open Errors
open Term
open Ccalgo
+open Pp
type rule=
Ax of constr
@@ -91,60 +92,65 @@ let pinject p c n a =
p_rhs=nth_arg p.p_rhs (n-a);
p_rule=Inject(p,c,n,a)}
-let build_proof uf=
+let rec equal_proof uf i j=
+ debug (str "equal_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j);
+ if i=j then prefl (term uf i) else
+ let (li,lj)=join_path uf i j in
+ ptrans (path_proof uf i li) (psym (path_proof uf j lj))
+
+and edge_proof uf ((i,j),eq)=
+ debug (str "edge_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j);
+ let pi=equal_proof uf i eq.lhs in
+ let pj=psym (equal_proof uf j eq.rhs) in
+ let pij=
+ match eq.rule with
+ Axiom (s,reversed)->
+ if reversed then psymax (axioms uf) s
+ else pax (axioms uf) s
+ | Congruence ->congr_proof uf eq.lhs eq.rhs
+ | Injection (ti,ipac,tj,jpac,k) -> (* pi_k ipac = p_k jpac *)
+ let p=ind_proof uf ti ipac tj jpac in
+ let cinfo= get_constructor_info uf ipac.cnode in
+ pinject p cinfo.ci_constr cinfo.ci_nhyps k in
+ ptrans (ptrans pi pij) pj
+
+and constr_proof uf i ipac=
+ debug (str "constr_proof " ++ pr_idx_term uf i ++ brk (1,20));
+ let t=find_oldest_pac uf i ipac in
+ let eq_it=equal_proof uf i t in
+ if ipac.args=[] then
+ eq_it
+ else
+ let fipac=tail_pac ipac in
+ let (fi,arg)=subterms uf t in
+ let targ=term uf arg in
+ let p=constr_proof uf fi fipac in
+ ptrans eq_it (pcongr p (prefl targ))
+
+and path_proof uf i l=
+ debug (str "path_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ str "{" ++
+ (prlist_with_sep (fun () -> str ",") (fun ((_,j),_) -> int j) l) ++ str "}");
+ match l with
+ | [] -> prefl (term uf i)
+ | x::q->ptrans (path_proof uf (snd (fst x)) q) (edge_proof uf x)
+
+and congr_proof uf i j=
+ debug (str "congr_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j);
+ let (i1,i2) = subterms uf i
+ and (j1,j2) = subterms uf j in
+ pcongr (equal_proof uf i1 j1) (equal_proof uf i2 j2)
+
+and ind_proof uf i ipac j jpac=
+ debug (str "ind_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j);
+ let p=equal_proof uf i j
+ and p1=constr_proof uf i ipac
+ and p2=constr_proof uf j jpac in
+ ptrans (psym p1) (ptrans p p2)
- let axioms = axioms uf in
-
- let rec equal_proof i j=
- if i=j then prefl (term uf i) else
- let (li,lj)=join_path uf i j in
- ptrans (path_proof i li) (psym (path_proof j lj))
-
- and edge_proof ((i,j),eq)=
- let pi=equal_proof i eq.lhs in
- let pj=psym (equal_proof j eq.rhs) in
- let pij=
- match eq.rule with
- Axiom (s,reversed)->
- if reversed then psymax axioms s
- else pax axioms s
- | Congruence ->congr_proof eq.lhs eq.rhs
- | Injection (ti,ipac,tj,jpac,k) ->
- let p=ind_proof ti ipac tj jpac in
- let cinfo= get_constructor_info uf ipac.cnode in
- pinject p cinfo.ci_constr cinfo.ci_nhyps k
- in ptrans (ptrans pi pij) pj
-
- and constr_proof i t ipac=
- if ipac.args=[] then
- equal_proof i t
- else
- let npac=tail_pac ipac in
- let (j,arg)=subterms uf t in
- let targ=term uf arg in
- let rj=find uf j in
- let u=find_pac uf rj npac in
- let p=constr_proof j u npac in
- ptrans (equal_proof i t) (pcongr p (prefl targ))
-
- and path_proof i=function
- [] -> prefl (term uf i)
- | x::q->ptrans (path_proof (snd (fst x)) q) (edge_proof x)
-
- and congr_proof i j=
- let (i1,i2) = subterms uf i
- and (j1,j2) = subterms uf j in
- pcongr (equal_proof i1 j1) (equal_proof i2 j2)
-
- and ind_proof i ipac j jpac=
- let p=equal_proof i j
- and p1=constr_proof i i ipac
- and p2=constr_proof j j jpac in
- ptrans (psym p1) (ptrans p p2)
- in
- function
- `Prove (i,j) -> equal_proof i j
- | `Discr (i,ci,j,cj)-> ind_proof i ci j cj
+let build_proof uf=
+ function
+ | `Prove (i,j) -> equal_proof uf i j
+ | `Discr (i,ci,j,cj)-> ind_proof uf i ci j cj