aboutsummaryrefslogtreecommitdiff
path: root/lib/cList.ml
diff options
context:
space:
mode:
authorEmilio Jesus Gallego Arias2017-12-15 18:51:45 +0100
committerEmilio Jesus Gallego Arias2017-12-23 19:20:30 +0100
commit5ffa147bd2fe548df3ac9053fe497d0871a5f6df (patch)
treecc62882184c34e33e2995a5a4ff4ebfcbd0defe0 /lib/cList.ml
parentdea75d74c222c25f6aa6c38506ac7a51b339e9c6 (diff)
[lib] Split auxiliary libraries into Coq-specific and general.
Up to this point the `lib` directory contained two different library archives, `clib.cma` and `lib.cma`, which a rough splitting between Coq-specific libraries and general-purpose ones. We know split the directory in two, as to make the distinction clear: - `clib`: contains libraries that are not Coq specific and implement common data structures and programming patterns. These libraries could be eventually replace with external dependencies and the rest of the code base wouldn't notice much. - `lib`: contains Coq-specific common libraries in widespread use along the codebase, but that are not considered part of other components. Examples are printing, error handling, or flags. In some cases we have coupling due to utility files depending on Coq specific flags, however this commit doesn't modify any files, but only moves them around, further cleanup is welcome, as indeed a few files in `lib` should likely be placed in `clib`. Also note that `Deque` is not used ATM.
Diffstat (limited to 'lib/cList.ml')
-rw-r--r--lib/cList.ml889
1 files changed, 0 insertions, 889 deletions
diff --git a/lib/cList.ml b/lib/cList.ml
deleted file mode 100644
index 0ef7c3d8ba..0000000000
--- a/lib/cList.ml
+++ /dev/null
@@ -1,889 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-type 'a cmp = 'a -> 'a -> int
-type 'a eq = 'a -> 'a -> bool
-
-module type S = module type of List
-
-module type ExtS =
-sig
- include S
- val compare : 'a cmp -> 'a list cmp
- val equal : 'a eq -> 'a list eq
- val is_empty : 'a list -> bool
- val init : int -> (int -> 'a) -> 'a list
- val mem_f : 'a eq -> 'a -> 'a list -> bool
- val add_set : 'a eq -> 'a -> 'a list -> 'a list
- val eq_set : 'a eq -> 'a list -> 'a list -> bool
- val intersect : 'a eq -> 'a list -> 'a list -> 'a list
- val union : 'a eq -> 'a list -> 'a list -> 'a list
- val unionq : 'a list -> 'a list -> 'a list
- val subtract : 'a eq -> 'a list -> 'a list -> 'a list
- val subtractq : 'a list -> 'a list -> 'a list
- val interval : int -> int -> int list
- val make : int -> 'a -> 'a list
- val assign : 'a list -> int -> 'a -> 'a list
- val distinct : 'a list -> bool
- val distinct_f : 'a cmp -> 'a list -> bool
- val duplicates : 'a eq -> 'a list -> 'a list
- val filter2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> 'a list * 'b list
- val map_filter : ('a -> 'b option) -> 'a list -> 'b list
- val map_filter_i : (int -> 'a -> 'b option) -> 'a list -> 'b list
- val filter_with : bool list -> 'a list -> 'a list
- val smartmap : ('a -> 'a) -> 'a list -> 'a list
- val map_left : ('a -> 'b) -> 'a list -> 'b list
- val map_i : (int -> 'a -> 'b) -> int -> 'a list -> 'b list
- val map2_i :
- (int -> 'a -> 'b -> 'c) -> int -> 'a list -> 'b list -> 'c list
- val map3 :
- ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
- val map4 :
- ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
- val filteri :
- (int -> 'a -> bool) -> 'a list -> 'a list
- val partitioni :
- (int -> 'a -> bool) -> 'a list -> 'a list * 'a list
- val map_of_array : ('a -> 'b) -> 'a array -> 'b list
- val smartfilter : ('a -> bool) -> 'a list -> 'a list
- val extend : bool list -> 'a -> 'a list -> 'a list
- val count : ('a -> bool) -> 'a list -> int
- val index : 'a eq -> 'a -> 'a list -> int
- val index0 : 'a eq -> 'a -> 'a list -> int
- val iteri : (int -> 'a -> unit) -> 'a list -> unit
- val fold_left_until : ('c -> 'a -> 'c CSig.until) -> 'c -> 'a list -> 'c
- val fold_right_i : (int -> 'a -> 'b -> 'b) -> int -> 'a list -> 'b -> 'b
- val fold_left_i : (int -> 'a -> 'b -> 'a) -> int -> 'a -> 'b list -> 'a
- val fold_right_and_left :
- ('a -> 'b -> 'b list -> 'a) -> 'b list -> 'a -> 'a
- val fold_left3 : ('a -> 'b -> 'c -> 'd -> 'a) -> 'a -> 'b list -> 'c list -> 'd list -> 'a
- val for_all_i : (int -> 'a -> bool) -> int -> 'a list -> bool
- val except : 'a eq -> 'a -> 'a list -> 'a list
- val remove : 'a eq -> 'a -> 'a list -> 'a list
- val remove_first : ('a -> bool) -> 'a list -> 'a list
- val extract_first : ('a -> bool) -> 'a list -> 'a list * 'a
- val insert : ('a -> 'a -> bool) -> 'a -> 'a list -> 'a list
- val for_all2eq : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
- val sep_last : 'a list -> 'a * 'a list
- val find_map : ('a -> 'b option) -> 'a list -> 'b
- val uniquize : 'a list -> 'a list
- val sort_uniquize : 'a cmp -> 'a list -> 'a list
- val merge_uniq : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list
- val subset : 'a list -> 'a list -> bool
- val chop : int -> 'a list -> 'a list * 'a list
- exception IndexOutOfRange
- val goto : int -> 'a list -> 'a list * 'a list
- val split_when : ('a -> bool) -> 'a list -> 'a list * 'a list
- val split3 : ('a * 'b * 'c) list -> 'a list * 'b list * 'c list
- val firstn : int -> 'a list -> 'a list
- val last : 'a list -> 'a
- val lastn : int -> 'a list -> 'a list
- val skipn : int -> 'a list -> 'a list
- val skipn_at_least : int -> 'a list -> 'a list
- val addn : int -> 'a -> 'a list -> 'a list
- val prefix_of : 'a eq -> 'a list -> 'a list -> bool
- val drop_prefix : 'a eq -> 'a list -> 'a list -> 'a list
- val drop_last : 'a list -> 'a list
- val map_append : ('a -> 'b list) -> 'a list -> 'b list
- val map_append2 : ('a -> 'b -> 'c list) -> 'a list -> 'b list -> 'c list
- val share_tails : 'a list -> 'a list -> 'a list * 'a list * 'a list
- val fold_left_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list
- val fold_right_map : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a
- val fold_left2_map : ('a -> 'b -> 'c -> 'a * 'd) -> 'a -> 'b list -> 'c list -> 'a * 'd list
- val fold_right2_map : ('b -> 'c -> 'a -> 'd * 'a) -> 'b list -> 'c list -> 'a -> 'd list * 'a
- val fold_left3_map : ('a -> 'b -> 'c -> 'd -> 'a * 'e) -> 'a -> 'b list -> 'c list -> 'd list -> 'a * 'e list
- val fold_left4_map : ('a -> 'b -> 'c -> 'd -> 'e -> 'a * 'r) -> 'a -> 'b list -> 'c list -> 'd list -> 'e list -> 'a * 'r list
- val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list
- val fold_map' : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a
- val map_assoc : ('a -> 'b) -> ('c * 'a) list -> ('c * 'b) list
- val assoc_f : 'a eq -> 'a -> ('a * 'b) list -> 'b
- val remove_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> ('a * 'b) list
- val mem_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> bool
- val cartesian : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
- val cartesians : ('a -> 'b -> 'b) -> 'b -> 'a list list -> 'b list
- val combinations : 'a list list -> 'a list list
- val combine3 : 'a list -> 'b list -> 'c list -> ('a * 'b * 'c) list
- val cartesians_filter :
- ('a -> 'b -> 'b option) -> 'b -> 'a list list -> 'b list
- val factorize_left : 'a eq -> ('a * 'b) list -> ('a * 'b list) list
-
- module type MonoS = sig
- type elt
- val equal : elt list -> elt list -> bool
- val mem : elt -> elt list -> bool
- val assoc : elt -> (elt * 'a) list -> 'a
- val mem_assoc : elt -> (elt * 'a) list -> bool
- val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list
- val mem_assoc_sym : elt -> ('a * elt) list -> bool
- end
-
-end
-
-include List
-
-(** Tail-rec implementation of usual functions. This is a well-known trick used
- in, for instance, ExtLib and Batteries. *)
-
-type 'a cell = {
- head : 'a;
- mutable tail : 'a list;
-}
-
-external cast : 'a cell -> 'a list = "%identity"
-
-let rec map_loop f p = function
-| [] -> ()
-| x :: l ->
- let c = { head = f x; tail = [] } in
- p.tail <- cast c;
- map_loop f c l
-
-let map f = function
-| [] -> []
-| x :: l ->
- let c = { head = f x; tail = [] } in
- map_loop f c l;
- cast c
-
-let rec map2_loop f p l1 l2 = match l1, l2 with
-| [], [] -> ()
-| x :: l1, y :: l2 ->
- let c = { head = f x y; tail = [] } in
- p.tail <- cast c;
- map2_loop f c l1 l2
-| _ -> invalid_arg "List.map2"
-
-let map2 f l1 l2 = match l1, l2 with
-| [], [] -> []
-| x :: l1, y :: l2 ->
- let c = { head = f x y; tail = [] } in
- map2_loop f c l1 l2;
- cast c
-| _ -> invalid_arg "List.map2"
-
-let rec map_of_array_loop f p a i l =
- if Int.equal i l then ()
- else
- let c = { head = f (Array.unsafe_get a i); tail = [] } in
- p.tail <- cast c;
- map_of_array_loop f c a (i + 1) l
-
-let map_of_array f a =
- let l = Array.length a in
- if Int.equal l 0 then []
- else
- let c = { head = f (Array.unsafe_get a 0); tail = [] } in
- map_of_array_loop f c a 1 l;
- cast c
-
-let rec append_loop p tl = function
-| [] -> p.tail <- tl
-| x :: l ->
- let c = { head = x; tail = [] } in
- p.tail <- cast c;
- append_loop c tl l
-
-let append l1 l2 = match l1 with
-| [] -> l2
-| x :: l ->
- let c = { head = x; tail = [] } in
- append_loop c l2 l;
- cast c
-
-let rec copy p = function
-| [] -> p
-| x :: l ->
- let c = { head = x; tail = [] } in
- p.tail <- cast c;
- copy c l
-
-let rec init_loop len f p i =
- if Int.equal i len then ()
- else
- let c = { head = f i; tail = [] } in
- p.tail <- cast c;
- init_loop len f c (succ i)
-
-let init len f =
- if len < 0 then invalid_arg "List.init"
- else if Int.equal len 0 then []
- else
- let c = { head = f 0; tail = [] } in
- init_loop len f c 1;
- cast c
-
-let rec concat_loop p = function
-| [] -> ()
-| x :: l -> concat_loop (copy p x) l
-
-let concat l =
- let dummy = { head = Obj.magic 0; tail = [] } in
- concat_loop dummy l;
- dummy.tail
-
-let flatten = concat
-
-let rec split_loop p q = function
-| [] -> ()
-| (x, y) :: l ->
- let cl = { head = x; tail = [] } in
- let cr = { head = y; tail = [] } in
- p.tail <- cast cl;
- q.tail <- cast cr;
- split_loop cl cr l
-
-let split = function
-| [] -> [], []
-| (x, y) :: l ->
- let cl = { head = x; tail = [] } in
- let cr = { head = y; tail = [] } in
- split_loop cl cr l;
- (cast cl, cast cr)
-
-let rec combine_loop p l1 l2 = match l1, l2 with
-| [], [] -> ()
-| x :: l1, y :: l2 ->
- let c = { head = (x, y); tail = [] } in
- p.tail <- cast c;
- combine_loop c l1 l2
-| _ -> invalid_arg "List.combine"
-
-let combine l1 l2 = match l1, l2 with
-| [], [] -> []
-| x :: l1, y :: l2 ->
- let c = { head = (x, y); tail = [] } in
- combine_loop c l1 l2;
- cast c
-| _ -> invalid_arg "List.combine"
-
-let rec filter_loop f p = function
-| [] -> ()
-| x :: l ->
- if f x then
- let c = { head = x; tail = [] } in
- let () = p.tail <- cast c in
- filter_loop f c l
- else
- filter_loop f p l
-
-let filter f l =
- let c = { head = Obj.magic 0; tail = [] } in
- filter_loop f c l;
- c.tail
-
-(** FIXME: Already present in OCaml 4.00 *)
-
-let rec map_i_loop f i p = function
-| [] -> ()
-| x :: l ->
- let c = { head = f i x; tail = [] } in
- p.tail <- cast c;
- map_i_loop f (succ i) c l
-
-let map_i f i = function
-| [] -> []
-| x :: l ->
- let c = { head = f i x; tail = [] } in
- map_i_loop f (succ i) c l;
- cast c
-
-(** Extensions of OCaml Stdlib *)
-
-let rec compare cmp l1 l2 =
- if l1 == l2 then 0 else
- match l1,l2 with
- [], [] -> 0
- | _::_, [] -> 1
- | [], _::_ -> -1
- | x1::l1, x2::l2 ->
- (match cmp x1 x2 with
- | 0 -> compare cmp l1 l2
- | c -> c)
-
-let rec equal cmp l1 l2 =
- l1 == l2 ||
- match l1, l2 with
- | [], [] -> true
- | x1 :: l1, x2 :: l2 ->
- cmp x1 x2 && equal cmp l1 l2
- | _ -> false
-
-let is_empty = function
-| [] -> true
-| _ -> false
-
-let mem_f cmp x l = List.exists (cmp x) l
-
-let intersect cmp l1 l2 =
- filter (fun x -> mem_f cmp x l2) l1
-
-let union cmp l1 l2 =
- let rec urec = function
- | [] -> l2
- | a::l -> if mem_f cmp a l2 then urec l else a::urec l
- in
- urec l1
-
-let subtract cmp l1 l2 =
- if is_empty l2 then l1
- else List.filter (fun x -> not (mem_f cmp x l2)) l1
-
-let unionq l1 l2 = union (==) l1 l2
-let subtractq l1 l2 = subtract (==) l1 l2
-
-let interval n m =
- let rec interval_n (l,m) =
- if n > m then l else interval_n (m::l, pred m)
- in
- interval_n ([], m)
-
-let addn n v =
- let rec aux n l =
- if Int.equal n 0 then l
- else aux (pred n) (v :: l)
- in
- if n < 0 then invalid_arg "List.addn"
- else aux n
-
-let make n v = addn n v []
-
-let assign l n e =
- let rec assrec stk l i = match l, i with
- | ((h::t), 0) -> List.rev_append stk (e :: t)
- | ((h::t), n) -> assrec (h :: stk) t (pred n)
- | ([], _) -> failwith "List.assign"
- in
- assrec [] l n
-
-let rec smartmap f l = match l with
- [] -> l
- | h::tl ->
- let h' = f h and tl' = smartmap f tl in
- if h'==h && tl'==tl then l
- else h'::tl'
-
-let map_left = map
-
-let map2_i f i l1 l2 =
- let rec map_i i = function
- | ([], []) -> []
- | ((h1::t1), (h2::t2)) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2)
- | (_, _) -> invalid_arg "map2_i"
- in
- map_i i (l1,l2)
-
-let map3 f l1 l2 l3 =
- let rec map = function
- | ([], [], []) -> []
- | ((h1::t1), (h2::t2), (h3::t3)) -> let v = f h1 h2 h3 in v::map (t1,t2,t3)
- | (_, _, _) -> invalid_arg "map3"
- in
- map (l1,l2,l3)
-
-let map4 f l1 l2 l3 l4 =
- let rec map = function
- | ([], [], [], []) -> []
- | ((h1::t1), (h2::t2), (h3::t3), (h4::t4)) -> let v = f h1 h2 h3 h4 in v::map (t1,t2,t3,t4)
- | (_, _, _, _) -> invalid_arg "map4"
- in
- map (l1,l2,l3,l4)
-
-let rec smartfilter f l = match l with
- [] -> l
- | h::tl ->
- let tl' = smartfilter f tl in
- if f h then
- if tl' == tl then l
- else h :: tl'
- else tl'
-
-let rec extend l a l' = match l,l' with
- | true::l, b::l' -> b :: extend l a l'
- | false::l, l' -> a :: extend l a l'
- | [], [] -> []
- | _ -> invalid_arg "extend"
-
-let count f l =
- let rec aux acc = function
- | [] -> acc
- | h :: t -> if f h then aux (acc + 1) t else aux acc t in
- aux 0 l
-
-let rec index_f f x l n = match l with
-| [] -> raise Not_found
-| y :: l -> if f x y then n else index_f f x l (succ n)
-
-let index f x l = index_f f x l 1
-
-let index0 f x l = index_f f x l 0
-
-let fold_left_until f accu s =
- let rec aux accu = function
- | [] -> accu
- | x :: xs -> match f accu x with CSig.Stop x -> x | CSig.Cont i -> aux i xs in
- aux accu s
-
-let fold_right_i f i l =
- let rec it_f i l a = match l with
- | [] -> a
- | b::l -> f (i-1) b (it_f (i-1) l a)
- in
- it_f (List.length l + i) l
-
-let fold_left_i f =
- let rec it_list_f i a = function
- | [] -> a
- | b::l -> it_list_f (i+1) (f i a b) l
- in
- it_list_f
-
-let rec fold_left3 f accu l1 l2 l3 =
- match (l1, l2, l3) with
- ([], [], []) -> accu
- | (a1::l1, a2::l2, a3::l3) -> fold_left3 f (f accu a1 a2 a3) l1 l2 l3
- | (_, _, _) -> invalid_arg "List.fold_left3"
-
-let rec fold_left4 f accu l1 l2 l3 l4 =
- match (l1, l2, l3, l4) with
- ([], [], [], []) -> accu
- | (a1::l1, a2::l2, a3::l3, a4::l4) -> fold_left4 f (f accu a1 a2 a3 a4) l1 l2 l3 l4
- | (_,_, _, _) -> invalid_arg "List.fold_left4"
-
-(* [fold_right_and_left f [a1;...;an] hd =
- f (f (... (f (f hd
- an
- [an-1;...;a1])
- an-1
- [an-2;...;a1])
- ...)
- a2
- [a1])
- a1
- []] *)
-
-let fold_right_and_left f l hd =
- let rec aux tl = function
- | [] -> hd
- | a::l -> let hd = aux (a::tl) l in f hd a tl
- in aux [] l
-
-let iteri f l = fold_left_i (fun i _ x -> f i x) 0 () l
-
-let for_all_i p =
- let rec for_all_p i = function
- | [] -> true
- | a::l -> p i a && for_all_p (i+1) l
- in
- for_all_p
-
-let except cmp x l = List.filter (fun y -> not (cmp x y)) l
-
-let remove = except (* Alias *)
-
-let rec remove_first p = function
- | b::l when p b -> l
- | b::l -> b::remove_first p l
- | [] -> raise Not_found
-
-let extract_first p li =
- let rec loop rev_left = function
- | [] -> raise Not_found
- | x::right ->
- if p x then List.rev_append rev_left right, x
- else loop (x :: rev_left) right
- in loop [] li
-
-let insert p v l =
- let rec insrec = function
- | [] -> [v]
- | h::tl -> if p v h then v::h::tl else h::insrec tl
- in
- insrec l
-
-let add_set cmp x l = if mem_f cmp x l then l else x :: l
-
-(** List equality up to permutation (but considering multiple occurrences) *)
-
-let eq_set cmp l1 l2 =
- let rec aux l1 = function
- | [] -> is_empty l1
- | a::l2 -> aux (remove_first (cmp a) l1) l2 in
- try aux l1 l2 with Not_found -> false
-
-let for_all2eq f l1 l2 =
- try List.for_all2 f l1 l2 with Invalid_argument _ -> false
-
-let filteri p =
- let rec filter_i_rec i = function
- | [] -> []
- | x::l -> let l' = filter_i_rec (succ i) l in if p i x then x::l' else l'
- in
- filter_i_rec 0
-
-let partitioni p =
- let rec aux i = function
- | [] -> [], []
- | x :: l ->
- let (l1, l2) = aux (succ i) l in
- if p i x then (x :: l1, l2)
- else (l1, x :: l2)
- in aux 0
-
-let rec sep_last = function
- | [] -> failwith "sep_last"
- | hd::[] -> (hd,[])
- | hd::tl -> let (l,tl) = sep_last tl in (l,hd::tl)
-
-let rec find_map f = function
-| [] -> raise Not_found
-| x :: l ->
- match f x with
- | None -> find_map f l
- | Some y -> y
-
-(* FIXME: we should avoid relying on the generic hash function,
- just as we'd better avoid Pervasives.compare *)
-
-let uniquize l =
- let visited = Hashtbl.create 23 in
- let rec aux acc changed = function
- | h::t -> if Hashtbl.mem visited h then aux acc true t else
- begin
- Hashtbl.add visited h h;
- aux (h::acc) changed t
- end
- | [] -> if changed then List.rev acc else l
- in aux [] false l
-
-(** [sort_uniquize] might be an alternative to the hashtbl-based
- [uniquize], when the order of the elements is irrelevant *)
-
-let rec uniquize_sorted cmp = function
- | a::b::l when Int.equal (cmp a b) 0 -> uniquize_sorted cmp (a::l)
- | a::l -> a::uniquize_sorted cmp l
- | [] -> []
-
-let sort_uniquize cmp l = uniquize_sorted cmp (List.sort cmp l)
-
-(* FIXME: again, generic hash function *)
-
-let distinct l =
- let visited = Hashtbl.create 23 in
- let rec loop = function
- | h::t ->
- if Hashtbl.mem visited h then false
- else
- begin
- Hashtbl.add visited h h;
- loop t
- end
- | [] -> true
- in loop l
-
-let distinct_f cmp l =
- let rec loop = function
- | a::b::_ when Int.equal (cmp a b) 0 -> false
- | a::l -> loop l
- | [] -> true
- in loop (List.sort cmp l)
-
-let rec merge_uniq cmp l1 l2 =
- match l1, l2 with
- | [], l2 -> l2
- | l1, [] -> l1
- | h1 :: t1, h2 :: t2 ->
- let c = cmp h1 h2 in
- if Int.equal c 0
- then h1 :: merge_uniq cmp t1 t2
- else if c <= 0
- then h1 :: merge_uniq cmp t1 l2
- else h2 :: merge_uniq cmp l1 t2
-
-let rec duplicates cmp = function
- | [] -> []
- | x::l ->
- let l' = duplicates cmp l in
- if mem_f cmp x l then add_set cmp x l' else l'
-
-let rec filter2_loop f p q l1 l2 = match l1, l2 with
-| [], [] -> ()
-| x :: l1, y :: l2 ->
- if f x y then
- let c1 = { head = x; tail = [] } in
- let c2 = { head = y; tail = [] } in
- let () = p.tail <- cast c1 in
- let () = q.tail <- cast c2 in
- filter2_loop f c1 c2 l1 l2
- else
- filter2_loop f p q l1 l2
-| _ -> invalid_arg "List.filter2"
-
-let filter2 f l1 l2 =
- let c1 = { head = Obj.magic 0; tail = [] } in
- let c2 = { head = Obj.magic 0; tail = [] } in
- filter2_loop f c1 c2 l1 l2;
- (c1.tail, c2.tail)
-
-let rec map_filter_loop f p = function
- | [] -> ()
- | x :: l ->
- match f x with
- | None -> map_filter_loop f p l
- | Some y ->
- let c = { head = y; tail = [] } in
- p.tail <- cast c;
- map_filter_loop f c l
-
-let map_filter f l =
- let c = { head = Obj.magic 0; tail = [] } in
- map_filter_loop f c l;
- c.tail
-
-let rec map_filter_i_loop f i p = function
- | [] -> ()
- | x :: l ->
- match f i x with
- | None -> map_filter_i_loop f (succ i) p l
- | Some y ->
- let c = { head = y; tail = [] } in
- p.tail <- cast c;
- map_filter_i_loop f (succ i) c l
-
-let map_filter_i f l =
- let c = { head = Obj.magic 0; tail = [] } in
- map_filter_i_loop f 0 c l;
- c.tail
-
-let rec filter_with filter l = match filter, l with
-| [], [] -> []
-| true :: filter, x :: l -> x :: filter_with filter l
-| false :: filter, _ :: l -> filter_with filter l
-| _ -> invalid_arg "List.filter_with"
-
-(* FIXME: again, generic hash function *)
-
-let subset l1 l2 =
- let t2 = Hashtbl.create 151 in
- List.iter (fun x -> Hashtbl.add t2 x ()) l2;
- let rec look = function
- | [] -> true
- | x::ll -> try Hashtbl.find t2 x; look ll with Not_found -> false
- in
- look l1
-
-(** [goto i l] splits [l] into two lists [(l1,l2)] such that
- [(List.rev l1)++l2=l] and [l1] has length [i]. It raises
- [IndexOutOfRange] when [i] is negative or greater than the
- length of [l]. *)
-exception IndexOutOfRange
-let goto n l =
- let rec goto i acc = function
- | tl when Int.equal i 0 -> (acc, tl)
- | h::t -> goto (pred i) (h::acc) t
- | [] -> raise IndexOutOfRange
- in
- goto n [] l
-
-(* [chop i l] splits [l] into two lists [(l1,l2)] such that
- [l1++l2=l] and [l1] has length [i].
- It raises [Failure] when [i] is negative or greater than the length of [l] *)
-
-let chop n l =
- try let (h,t) = goto n l in (List.rev h,t)
- with IndexOutOfRange -> failwith "List.chop"
- (* spiwack: should raise [IndexOutOfRange] but I'm afraid of missing
- a try/with when replacing the exception. *)
-
-(* [split_when p l] splits [l] into two lists [(l1,a::l2)] such that
- [l1++(a::l2)=l], [p a=true] and [p b = false] for every element [b] of [l1].
- If there is no such [a], then it returns [(l,[])] instead *)
-let split_when p =
- let rec split_when_loop x y =
- match y with
- | [] -> (List.rev x,[])
- | (a::l) -> if (p a) then (List.rev x,y) else split_when_loop (a::x) l
- in
- split_when_loop []
-
-let rec split3 = function
- | [] -> ([], [], [])
- | (x,y,z)::l ->
- let (rx, ry, rz) = split3 l in (x::rx, y::ry, z::rz)
-
-let firstn n l =
- let rec aux acc n l =
- match n, l with
- | 0, _ -> List.rev acc
- | n, h::t -> aux (h::acc) (pred n) t
- | _ -> failwith "firstn"
- in
- aux [] n l
-
-let rec last = function
- | [] -> failwith "List.last"
- | [x] -> x
- | _ :: l -> last l
-
-let lastn n l =
- let len = List.length l in
- let rec aux m l =
- if Int.equal m n then l else aux (m - 1) (List.tl l)
- in
- if len < n then failwith "lastn" else aux len l
-
-let rec skipn n l = match n,l with
- | 0, _ -> l
- | _, [] -> failwith "List.skipn"
- | n, _::l -> skipn (pred n) l
-
-let skipn_at_least n l =
- try skipn n l with Failure _ -> []
-
-let prefix_of cmp prefl l =
- let rec prefrec = function
- | (h1::t1, h2::t2) -> cmp h1 h2 && prefrec (t1,t2)
- | ([], _) -> true
- | _ -> false
- in
- prefrec (prefl,l)
-
-(** if [l=p++t] then [drop_prefix p l] is [t] else [l] *)
-
-let drop_prefix cmp p l =
- let rec drop_prefix_rec = function
- | (h1::tp, h2::tl) when cmp h1 h2 -> drop_prefix_rec (tp,tl)
- | ([], tl) -> tl
- | _ -> l
- in
- drop_prefix_rec (p,l)
-
-let map_append f l = List.flatten (List.map f l)
-
-let map_append2 f l1 l2 = List.flatten (List.map2 f l1 l2)
-
-let share_tails l1 l2 =
- let rec shr_rev acc = function
- | ((x1::l1), (x2::l2)) when x1 == x2 -> shr_rev (x1::acc) (l1,l2)
- | (l1,l2) -> (List.rev l1, List.rev l2, acc)
- in
- shr_rev [] (List.rev l1, List.rev l2)
-
-(* Poor man's monadic map *)
-let rec fold_left_map f e = function
- | [] -> (e,[])
- | h::t ->
- let e',h' = f e h in
- let e'',t' = fold_left_map f e' t in
- e'',h'::t'
-
-let fold_map = fold_left_map
-
-(* (* tail-recursive version of the above function *)
-let fold_map f e l =
- let g (e,b') h =
- let (e',h') = f e h in
- (e',h'::b')
- in
- let (e',lrev) = List.fold_left g (e,[]) l in
- (e',List.rev lrev)
-*)
-
-(* The same, based on fold_right, with the effect accumulated on the right *)
-let fold_right_map f l e =
- List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e)
-
-let fold_map' = fold_right_map
-
-let on_snd f (x,y) = (x,f y)
-
-let fold_left2_map f e l l' =
- on_snd List.rev @@
- List.fold_left2 (fun (e,l) x x' ->
- let (e,y) = f e x x' in
- (e, y::l)
- ) (e, []) l l'
-
-let fold_right2_map f l l' e =
- List.fold_right2 (fun x x' (l,e) -> let (y,e) = f x x' e in (y::l,e)) l l' ([],e)
-
-let fold_left3_map f e l l' l'' =
- on_snd List.rev @@
- fold_left3 (fun (e,l) x x' x'' -> let (e,y) = f e x x' x'' in (e,y::l)) (e,[]) l l' l''
-
-let fold_left4_map f e l1 l2 l3 l4 =
- on_snd List.rev @@
- fold_left4 (fun (e,l) x1 x2 x3 x4 -> let (e,y) = f e x1 x2 x3 x4 in (e,y::l)) (e,[]) l1 l2 l3 l4
-
-let map_assoc f = List.map (fun (x,a) -> (x,f a))
-
-let rec assoc_f f a = function
- | (x, e) :: xs -> if f a x then e else assoc_f f a xs
- | [] -> raise Not_found
-
-let remove_assoc_f f a l =
- try remove_first (fun (x,_) -> f a x) l with Not_found -> l
-
-let mem_assoc_f f a l = List.exists (fun (x,_) -> f a x) l
-
-(* A generic cartesian product: for any operator (**),
- [cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]],
- and so on if there are more elements in the lists. *)
-
-let cartesian op l1 l2 =
- map_append (fun x -> List.map (op x) l2) l1
-
-(* [cartesians] is an n-ary cartesian product: it iterates
- [cartesian] over a list of lists. *)
-
-let cartesians op init ll =
- List.fold_right (cartesian op) ll [init]
-
-(* combinations [[a;b];[c;d]] gives [[a;c];[a;d];[b;c];[b;d]] *)
-
-let combinations l = cartesians (fun x l -> x::l) [] l
-
-let rec combine3 x y z =
- match x, y, z with
- | [], [], [] -> []
- | (x :: xs), (y :: ys), (z :: zs) ->
- (x, y, z) :: combine3 xs ys zs
- | _, _, _ -> invalid_arg "List.combine3"
-
-(* Keep only those products that do not return None *)
-
-let cartesian_filter op l1 l2 =
- map_append (fun x -> map_filter (op x) l2) l1
-
-(* Keep only those products that do not return None *)
-
-let cartesians_filter op init ll =
- List.fold_right (cartesian_filter op) ll [init]
-
-(* Drop the last element of a list *)
-
-let rec drop_last = function
- | [] -> assert false
- | hd :: [] -> []
- | hd :: tl -> hd :: drop_last tl
-
-(* Factorize lists of pairs according to the left argument *)
-let rec factorize_left cmp = function
- | (a,b)::l ->
- let al,l' = partition (fun (a',_) -> cmp a a') l in
- (a,(b::List.map snd al)) :: factorize_left cmp l'
- | [] -> []
-
-module type MonoS = sig
- type elt
- val equal : elt list -> elt list -> bool
- val mem : elt -> elt list -> bool
- val assoc : elt -> (elt * 'a) list -> 'a
- val mem_assoc : elt -> (elt * 'a) list -> bool
- val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list
- val mem_assoc_sym : elt -> ('a * elt) list -> bool
-end