diff options
| author | Pierre-Marie Pédrot | 2018-05-19 12:12:43 +0200 |
|---|---|---|
| committer | Pierre-Marie Pédrot | 2018-11-20 16:09:44 +0100 |
| commit | 82f7c721ea066a4776be09bd40444cf491f3659e (patch) | |
| tree | 69b1c704a859a0990ff1b1192a9ac0443cdf88fb /kernel | |
| parent | 4c25871dc47f40caf9a3a1662cbb8c703a0876ab (diff) | |
Do not wrap FProd return types in a closure.
There is little point to this as the type is dependent on an open value and
is never computed further.
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/cClosure.ml | 17 | ||||
| -rw-r--r-- | kernel/cClosure.mli | 2 | ||||
| -rw-r--r-- | kernel/reduction.ml | 6 |
3 files changed, 14 insertions, 11 deletions
diff --git a/kernel/cClosure.ml b/kernel/cClosure.ml index 7e73609996..0679fc30d7 100644 --- a/kernel/cClosure.ml +++ b/kernel/cClosure.ml @@ -300,7 +300,7 @@ and fterm = | FCoFix of cofixpoint * fconstr subs | FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *) | FLambda of int * (Name.t * constr) list * constr * fconstr subs - | FProd of Name.t * fconstr * fconstr + | FProd of Name.t * constr * constr * fconstr subs | FLetIn of Name.t * fconstr * fconstr * constr * fconstr subs | FEvar of existential * fconstr subs | FLIFT of int * fconstr @@ -584,9 +584,12 @@ let rec to_constr lfts v = let tys = List.mapi (fun i (na, c) -> na, subst_constr (subs_liftn i subs) c) tys in let f = subst_constr (subs_liftn len subs) f in Term.compose_lam (List.rev tys) f - | FProd (n,t,c) -> - mkProd (n, to_constr lfts t, - to_constr (el_lift lfts) c) + | FProd (n, t, c, e) -> + if is_subs_id e && is_lift_id lfts then + mkProd (n, t, c) + else + let subs' = comp_subs lfts e in + mkProd (n, subst_constr subs' t, subst_constr (subs_lift subs') c) | FLetIn (n,b,t,f,e) -> let subs = comp_subs (el_lift lfts) (subs_lift e) in mkLetIn (n, to_constr lfts b, @@ -869,7 +872,7 @@ and knht info e t stk = | CoFix cfx -> { norm = Cstr; term = FCoFix (cfx,e) }, stk | Lambda _ -> { norm = Cstr; term = mk_lambda e t }, stk | Prod (n, t, c) -> - { norm = Whnf; term = FProd (n, mk_clos e t, mk_clos (subs_lift e) c) }, stk + { norm = Whnf; term = FProd (n, t, c, e) }, stk | LetIn (n,b,t,c) -> { norm = Red; term = FLetIn (n, mk_clos e b, mk_clos e t, c, e) }, stk | Evar ev -> { norm = Red; term = FEvar (ev, e) }, stk @@ -992,8 +995,8 @@ and norm_head info tab m = | FLetIn(na,a,b,f,e) -> let c = mk_clos (subs_lift e) f in mkLetIn(na, kl info tab a, kl info tab b, kl info tab c) - | FProd(na,dom,rng) -> - mkProd(na, kl info tab dom, kl info tab rng) + | FProd(na,dom,rng,e) -> + mkProd(na, kl info tab (mk_clos e dom), kl info tab (mk_clos (subs_lift e) rng)) | FCoFix((n,(na,tys,bds)),e) -> let ftys = Array.Fun1.map mk_clos e tys in let fbds = diff --git a/kernel/cClosure.mli b/kernel/cClosure.mli index b6c87b3732..3163833ef3 100644 --- a/kernel/cClosure.mli +++ b/kernel/cClosure.mli @@ -114,7 +114,7 @@ type fterm = | FCoFix of cofixpoint * fconstr subs | FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *) | FLambda of int * (Name.t * constr) list * constr * fconstr subs - | FProd of Name.t * fconstr * fconstr + | FProd of Name.t * constr * constr * fconstr subs | FLetIn of Name.t * fconstr * fconstr * constr * fconstr subs | FEvar of existential * fconstr subs | FLIFT of int * fconstr diff --git a/kernel/reduction.ml b/kernel/reduction.ml index fbb481424f..f9423a848d 100644 --- a/kernel/reduction.ml +++ b/kernel/reduction.ml @@ -438,14 +438,14 @@ and eqappr cv_pb l2r infos (lft1,st1) (lft2,st2) cuniv = let cuniv = ccnv CONV l2r infos el1 el2 ty1 ty2 cuniv in ccnv CONV l2r infos (el_lift el1) (el_lift el2) bd1 bd2 cuniv - | (FProd (_,c1,c2), FProd (_,c'1,c'2)) -> + | (FProd (_, c1, c2, e), FProd (_, c'1, c'2, e')) -> if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (FProd)."); (* Luo's system *) let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in - let cuniv = ccnv CONV l2r infos el1 el2 c1 c'1 cuniv in - ccnv cv_pb l2r infos (el_lift el1) (el_lift el2) c2 c'2 cuniv + let cuniv = ccnv CONV l2r infos el1 el2 (mk_clos e c1) (mk_clos e' c'1) cuniv in + ccnv cv_pb l2r infos (el_lift el1) (el_lift el2) (mk_clos (subs_lift e) c2) (mk_clos (subs_lift e') c'2) cuniv (* Eta-expansion on the fly *) | (FLambda _, _) -> |
