diff options
| author | coqbot-app[bot] | 2020-12-09 18:01:37 +0000 |
|---|---|---|
| committer | GitHub | 2020-12-09 18:01:37 +0000 |
| commit | 4fbc04b0fe0b89edfe35438d01d3b664fc21e6f8 (patch) | |
| tree | 7ae1df67aecdccd63d86f251306e2707a07f8bc9 /kernel | |
| parent | 9e0ca704fa8273a8337ff9e118d2d08620af8962 (diff) | |
| parent | e0a943d40c6749e602421ac89059e0d6caf57518 (diff) | |
Merge PR #13537: More efficient implementation for substitutions.
Reviewed-by: SkySkimmer
Ack-by: gares
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/cClosure.ml | 21 | ||||
| -rw-r--r-- | kernel/esubst.ml | 309 | ||||
| -rw-r--r-- | kernel/esubst.mli | 49 | ||||
| -rw-r--r-- | kernel/nativelambda.ml | 2 | ||||
| -rw-r--r-- | kernel/typeops.ml | 2 | ||||
| -rw-r--r-- | kernel/vmlambda.ml | 2 |
6 files changed, 234 insertions, 151 deletions
diff --git a/kernel/cClosure.ml b/kernel/cClosure.ml index c9326615dc..d2256720c4 100644 --- a/kernel/cClosure.ml +++ b/kernel/cClosure.ml @@ -759,6 +759,10 @@ let get_nth_arg head n stk = | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as s -> (None, List.rev rstk @ s) in strip_rec [] head n stk +let rec subs_consn v i n s = + if Int.equal i n then s + else subs_consn v (i + 1) n (subs_cons v.(i) s) + (* Beta reduction: look for an applied argument in the stack. Since the encountered update marks are removed, h must be a whnf *) let rec get_args n tys f e = function @@ -770,14 +774,13 @@ let rec get_args n tys f e = function get_args n tys f (subs_shft (k,e)) s | Zapp l :: s -> let na = Array.length l in - if n == na then (Inl (subs_cons(l,e)),s) + if n == na then (Inl (subs_consn l 0 na e), s) else if n < na then (* more arguments *) - let args = Array.sub l 0 n in let eargs = Array.sub l n (na-n) in - (Inl (subs_cons(args,e)), Zapp eargs :: s) + (Inl (subs_consn l 0 n e), Zapp eargs :: s) else (* more lambdas *) let etys = List.skipn na tys in - get_args (n-na) etys f (subs_cons(l,e)) s + get_args (n-na) etys f (subs_consn l 0 na e) s | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as stk -> (Inr {mark=mark Cstr Unknown;term=FLambda(n,tys,f,e)}, stk) @@ -931,7 +934,11 @@ let contract_fix_vect fix = env, Array.length bds) | _ -> assert false in - (subs_cons(Array.init nfix make_body, env), thisbody) + let rec mk_subs env i = + if Int.equal i nfix then env + else mk_subs (subs_cons (make_body i) env) (i + 1) + in + (mk_subs env 0, thisbody) let unfold_projection info p = if red_projection info.i_flags p @@ -1367,7 +1374,7 @@ let rec knr info tab m stk = knit info tab fxe fxbd (args@stk') | (_,args, ((Zapp _ | Zfix _ | Zshift _ | Zupdate _ | Zprimitive _) :: _ | [] as s)) -> (m,args@s)) | FLetIn (_,v,_,bd,e) when red_set info.i_flags fZETA -> - knit info tab (subs_cons([|v|],e)) bd stk + knit info tab (subs_cons v e) bd stk | FEvar(ev,env) -> (match info.i_cache.i_sigma ev with Some c -> knit info tab env c stk @@ -1417,7 +1424,7 @@ and case_inversion info tab ci (univs,args) v = let env = info_env info in let ind = ci.ci_ind in let params, indices = Array.chop ci.ci_npar args in - let psubst = subs_cons (params, subs_id 0) in + let psubst = subs_consn params 0 ci.ci_npar (subs_id 0) in let mib = Environ.lookup_mind (fst ind) env in let mip = mib.mind_packets.(snd ind) in (* indtyping enforces 1 ctor with no letins in the context *) diff --git a/kernel/esubst.ml b/kernel/esubst.ml index 3e8502b988..afd8e3ef67 100644 --- a/kernel/esubst.ml +++ b/kernel/esubst.ml @@ -60,127 +60,188 @@ let rec is_lift_id = function (* Substitutions *) (*********************) -(* (bounded) explicit substitutions of type 'a *) -type 'a subs = - | ESID of int (* ESID(n) = %n END bounded identity *) - | CONS of 'a array * 'a subs - (* CONS([|t1..tn|],S) = - (S.t1...tn) parallel substitution - beware of the order *) - | SHIFT of int * 'a subs (* SHIFT(n,S) = (^n o S) terms in S are relocated *) - (* with n vars *) - | LIFT of int * 'a subs (* LIFT(n,S) = (%n S) stands for ((^n o S).n...1) *) - -(* operations of subs: collapses constructors when possible. - * Needn't be recursive if we always use these functions - *) - -let subs_id i = ESID i - -let subs_cons(x,s) = if Int.equal (Array.length x) 0 then s else CONS(x,s) - -let subs_liftn n = function - | ESID p -> ESID (p+n) (* bounded identity lifted extends by p *) - | LIFT (p,lenv) -> LIFT (p+n, lenv) - | lenv -> LIFT (n,lenv) - -let subs_lift a = subs_liftn 1 a -let subs_liftn n a = if Int.equal n 0 then a else subs_liftn n a - -let subs_shft = function - | (0, s) -> s - | (n, SHIFT (k,s1)) -> SHIFT (k+n, s1) - | (n, s) -> SHIFT (n,s) -let subs_shft s = if Int.equal (fst s) 0 then snd s else subs_shft s - -let subs_shift_cons = function - (0, s, t) -> CONS(t,s) -| (k, SHIFT(n,s1), t) -> CONS(t,SHIFT(k+n, s1)) -| (k, s, t) -> CONS(t,SHIFT(k, s));; - -(* Tests whether a substitution is equal to the identity *) -let rec is_subs_id = function - ESID _ -> true - | LIFT(_,s) -> is_subs_id s - | SHIFT(0,s) -> is_subs_id s - | CONS(x,s) -> Int.equal (Array.length x) 0 && is_subs_id s - | _ -> false - -(* Expands de Bruijn k in the explicit substitution subs - * lams accumulates de shifts to perform when retrieving the i-th value - * the rules used are the following: - * - * [id]k --> k - * [S.t]1 --> t - * [S.t]k --> [S](k-1) if k > 1 - * [^n o S] k --> [^n]([S]k) - * [(%n S)] k --> k if k <= n - * [(%n S)] k --> [^n]([S](k-n)) - * - * the result is (Inr (k+lams,p)) when the variable is just relocated - * where p is None if the variable points inside subs and Some(k) if the - * variable points k bindings beyond subs. - *) -let rec exp_rel lams k subs = - match subs with - | CONS (def,_) when k <= Array.length def - -> Inl(lams,def.(Array.length def - k)) - | CONS (v,l) -> exp_rel lams (k - Array.length v) l - | LIFT (n,_) when k<=n -> Inr(lams+k,None) - | LIFT (n,l) -> exp_rel (n+lams) (k-n) l - | SHIFT (n,s) -> exp_rel (n+lams) k s - | ESID n when k<=n -> Inr(lams+k,None) - | ESID n -> Inr(lams+k,Some (k-n)) - -let expand_rel k subs = exp_rel 0 k subs - -let rec subs_map f = function -| ESID _ as s -> s -| CONS (x, s) -> CONS (Array.map f x, subs_map f s) -| SHIFT (n, s) -> SHIFT (n, subs_map f s) -| LIFT (n, s) -> LIFT (n, subs_map f s) - -let rec lift_subst mk_cl s1 s2 = match s1 with -| ELID -> subs_map (fun c -> mk_cl ELID c) s2 -| ELSHFT(s, k) -> subs_shft(k, lift_subst mk_cl s s2) -| ELLFT (k, s) -> - match s2 with - | CONS(x,s') -> - CONS(CArray.Fun1.map mk_cl s1 x, lift_subst mk_cl s1 s') - | ESID n -> lift_subst mk_cl s (ESID (n + k)) - | SHIFT(k',s') -> - if k<k' - then subs_shft(k, lift_subst mk_cl s (subs_shft(k'-k, s'))) - else subs_shft(k', lift_subst mk_cl (el_liftn (k-k') s) s') - | LIFT(k',s') -> - if k<k' - then subs_liftn k (lift_subst mk_cl s (subs_liftn (k'-k) s')) - else subs_liftn k' (lift_subst mk_cl (el_liftn (k-k') s) s') - -let rec comp mk_cl s1 s2 = - match (s1, s2) with - | _, ESID _ -> s1 - | ESID _, _ -> s2 - | SHIFT(k,s), _ -> subs_shft(k, comp mk_cl s s2) - | _, CONS(x,s') -> - CONS(Array.Fun1.map (fun s t -> mk_cl(s,t)) s1 x, comp mk_cl s1 s') - | CONS(x,s), SHIFT(k,s') -> - let lg = Array.length x in - if k == lg then comp mk_cl s s' - else if k > lg then comp mk_cl s (SHIFT(k-lg, s')) - else comp mk_cl (CONS(Array.sub x 0 (lg-k), s)) s' - | CONS(x,s), LIFT(k,s') -> - let lg = Array.length x in - if k == lg then CONS(x, comp mk_cl s s') - else if k > lg then CONS(x, comp mk_cl s (LIFT(k-lg, s'))) - else - CONS(Array.sub x (lg-k) k, - comp mk_cl (CONS(Array.sub x 0 (lg-k),s)) s') - | LIFT(k,s), SHIFT(k',s') -> - if k<k' - then subs_shft(k, comp mk_cl s (subs_shft(k'-k, s'))) - else subs_shft(k', comp mk_cl (subs_liftn (k-k') s) s') - | LIFT(k,s), LIFT(k',s') -> - if k<k' - then subs_liftn k (comp mk_cl s (subs_liftn (k'-k) s')) - else subs_liftn k' (comp mk_cl (subs_liftn (k-k') s) s') +(* Variant of skewed lists enriched w.r.t. a monoid. See the Range module. + + In addition to the indexed data, every node contains a monoid element, in our + case, integers. It corresponds to the number of partial shifts to apply when + reaching this subtree. The total shift is obtained by summing all the partial + shifts encountered in the tree traversal. For efficiency, we also cache the + sum of partial shifts of the whole subtree as the last argument of the [Node] + constructor. + + A more intuitive but inefficient representation of this data structure would + be a list of terms interspeded with shifts, as in + + type 'a subst = NIL | CONS of 'a or_var * 'a subst | SHIFT of 'a subst + + On this inefficient representation, the typing rules would be: + + · ⊢ NIL : · + Γ ⊢ σ : Δ and Γ ⊢ t : A{σ} implies Γ ⊢ CONS (t, σ) : Δ, A + Γ ⊢ σ : Δ implies Γ, A ⊢ SHIFT σ : Δ + + The efficient representation is isomorphic to this naive variant, except that + shifts are grouped together, and we use skewed lists instead of lists. + +*) + +type shf = int +let cmp n m = n + m +let idn = 0 + +type 'a or_var = Arg of 'a | Var of int + +type 'a tree = +| Leaf of shf * 'a or_var +| Node of shf * 'a or_var * 'a tree * 'a tree * shf +(* + Invariants: + - All trees are complete. + - Define get_shift inductively as [get_shift (Leaf (w, _)) := w] and + [get_shift (Node (w, _, t1, t2, _)) := w + t1 + t2] then for every tree + of the form Node (_, _, t1, t2, sub), we must have + sub = get_shift t1 + get_shift t2. + + In the naive semantics: + + Leaf (w, x) := SHIFT^w (CONS (x, NIL)) + Node (w, x, t1, t2, _) := SHIFT^w (CONS (x, t1 @ t2)) + +*) + +type 'a subs = Nil of shf * int | Cons of int * 'a tree * 'a subs +(* + In the naive semantics mentioned above, we have the following. + + Nil (w, n) stands for SHIFT^w (ID n) where ID n is a compact form of identity + substitution, defined inductively as + + ID 0 := NIL + ID (S n) := CONS (Var 1, SHIFT (ID n)) + + Cons (h, t, s) stands for (t @ s) and h is the total number of values in the + tree t. In particular, it is always of the form 2^n - 1 for some n. +*) + +(* Returns the number of shifts contained in the whole tree. *) +let eval = function +| Leaf (w, _) -> w +| Node (w1, _, _, _, w2) -> cmp w1 w2 + +let leaf x = Leaf (idn, x) +let node x t1 t2 = Node (idn, x, t1, t2, cmp (eval t1) (eval t2)) + +let rec tree_get h w t i = match t with +| Leaf (w', x) -> + let w = cmp w w' in + if i = 0 then w, Inl x else assert false +| Node (w', x, t1, t2, _) -> + let w = cmp w w' in + if i = 0 then w, Inl x + else + let h = h / 2 in + if i <= h then tree_get h w t1 (i - 1) + else tree_get h (cmp w (eval t1)) t2 (i - h - 1) + +let rec get w l i = match l with +| Nil (w', n) -> + let w = cmp w w' in + if i < n then w, Inl (Var (i + 1)) + else n + w, Inr (i - n) (* FIXME: double check *) +| Cons (h, t, rem) -> + if i < h then tree_get h w t i else get (cmp (eval t) w) rem (i - h) + +let get l i = get idn l i + +let tree_write w = function +| Leaf (w', x) -> Leaf (cmp w w', x) +| Node (w', x, t1, t2, wt) -> Node (cmp w w', x, t1, t2, wt) + +let write w l = match l with +| Nil (w', n) -> Nil (cmp w w', n) +| Cons (h, t, rem) -> Cons (h, tree_write w t, rem) + +let cons x l = match l with +| Cons (h1, t1, Cons (h2, t2, rem)) -> + if Int.equal h1 h2 then Cons (1 + h1 + h2, node x t1 t2, rem) + else Cons (1, leaf x, l) +| _ -> Cons (1, leaf x, l) + +let expand_rel n s = + let k, v = get s (n - 1) in + match v with + | Inl (Arg v) -> Inl (k, v) + | Inl (Var i) -> Inr (k + i, None) + | Inr i -> Inr (k + i + 1, Some (i + 1)) + +let is_subs_id = function +| Nil (w, _) -> Int.equal w 0 +| Cons (_, _, _) -> false + +let subs_cons v s = cons (Arg v) s + +let rec push_vars i s = + if Int.equal i 0 then s + else push_vars (pred i) (cons (Var i) s) + +let subs_liftn n s = + if Int.equal n 0 then s + else match s with + | Nil (0, m) -> Nil (0, m + n) (* Preserve identity substitutions *) + | Nil _ | Cons _ -> + let s = write n s in + push_vars n s + +let subs_lift s = match s with +| Nil (0, m) -> Nil (0, m + 1) (* Preserve identity substitutions *) +| Nil _ | Cons _ -> + cons (Var 1) (write 1 s) + +let subs_id n = Nil (0, n) + +let subs_shft (n, s) = write n s + +(* pop is the n-ary tailrec variant of a function whose typing rules would be + given as follows. Assume Γ ⊢ e : Δ, A, then + - Γ := Ξ, A, Ω for some Ξ and Ω with |Ω| := fst (pop e) + - Ξ ⊢ snd (pop e) : Δ +*) +let rec pop n i e = + if Int.equal n 0 then i, e + else match e with + | ELID -> i, e + | ELLFT (k, e) -> + if k <= n then pop (n - k) i e + else i, ELLFT (k - n, e) + | ELSHFT (e, k) -> pop n (i + k) e + +let apply mk e = function +| Var i -> Var (reloc_rel i e) +| Arg v -> Arg (mk e v) + +let rec tree_map mk e = function +| Leaf (w, x) -> + let (n, e) = pop w 0 e in + Leaf (w + n, apply mk e x), e +| Node (w, x, t1, t2, _) -> + let (n, e) = pop w 0 e in + let x = apply mk e x in + let t1, e = tree_map mk e t1 in + let t2, e = tree_map mk e t2 in + Node (w + n, x, t1, t2, cmp (eval t1) (eval t2)), e + +let rec lift_id e n = match e with +| ELID -> Nil (0, n) +| ELSHFT (e, k) -> write k (lift_id e n) +| ELLFT (k, e) -> + if k <= n then subs_liftn k (lift_id e (n - k)) + else assert false + +let rec lift_subst mk e s = match s with +| Nil (w, m) -> + let (n, e) = pop w 0 e in + write (w + n) (lift_id e m) +| Cons (h, t, rem) -> + let t, e = tree_map mk e t in + let rem = lift_subst mk e rem in + Cons (h, t, rem) diff --git a/kernel/esubst.mli b/kernel/esubst.mli index 4239e42adc..8ff29ab07a 100644 --- a/kernel/esubst.mli +++ b/kernel/esubst.mli @@ -11,28 +11,38 @@ (** Explicit substitutions *) (** {6 Explicit substitutions } *) -(** Explicit substitutions of type ['a]. - - ESID(n) = %n END bounded identity - - CONS([|t1..tn|],S) = (S.t1...tn) parallel substitution - (beware of the order: indice 1 is substituted by tn) - - SHIFT(n,S) = (^n o S) terms in S are relocated with n vars - - LIFT(n,S) = (%n S) stands for ((^n o S).n...1) - (corresponds to S crossing n binders) *) -type 'a subs = private - | ESID of int - | CONS of 'a array * 'a subs - | SHIFT of int * 'a subs - | LIFT of int * 'a subs +(** Explicit substitutions for some type of terms ['a]. + + Assuming terms enjoy a notion of typability Γ ⊢ t : A, where Γ is a + telescope and A a type, substitutions can be typed as Γ ⊢ σ : Δ, where + as a first approximation σ is a list of terms u₁; ...; uₙ s.t. + Δ := (x₁ : A₁), ..., (xₙ : Aₙ) and Γ ⊢ uᵢ : Aᵢ{u₁...uᵢ₋₁} for all 1 ≤ i ≤ n. + + Substitutions can be applied to terms as follows, and furthermore + if Γ ⊢ σ : Δ and Δ ⊢ t : A, then Γ ⊢ t{σ} : A{σ}. + + We make the typing rules explicit below, but we omit the explicit De Bruijn + fidgetting and leave relocations implicit in terms and types. + +*) +type 'a subs (** Derived constructors granting basic invariants *) + +(** Assuming |Γ| = n, Γ ⊢ subs_id n : Γ *) val subs_id : int -> 'a subs -val subs_cons: 'a array * 'a subs -> 'a subs + +(** Assuming Γ ⊢ σ : Δ and Γ ⊢ t : A{σ}, then Γ ⊢ subs_cons t σ : Δ, A *) +val subs_cons: 'a -> 'a subs -> 'a subs + +(** Assuming Γ ⊢ σ : Δ and |Ξ| = n, then Γ, Ξ ⊢ subs_shft (n, σ) : Δ *) val subs_shft: int * 'a subs -> 'a subs + +(** Unary variant of {!subst_liftn}. *) val subs_lift: 'a subs -> 'a subs -val subs_liftn: int -> 'a subs -> 'a subs -(** [subs_shift_cons(k,s,[|t1..tn|])] builds (^k s).t1..tn *) -val subs_shift_cons: int * 'a subs * 'a array -> 'a subs +(** Assuming Γ ⊢ σ : Δ and |Ξ| = n, then Γ, Ξ ⊢ subs_liftn n σ : Δ, Ξ *) +val subs_liftn: int -> 'a subs -> 'a subs (** [expand_rel k subs] expands de Bruijn [k] in the explicit substitution [subs]. The result is either (Inl(lams,v)) when the variable is @@ -51,7 +61,6 @@ val is_subs_id: 'a subs -> bool mk_clos is used when a closure has to be created, i.e. when s1 is applied on an element of s2. *) -val comp : ('a subs * 'a -> 'a) -> 'a subs -> 'a subs -> 'a subs (** {6 Compact representation } *) (** Compact representation of explicit relocations @@ -60,6 +69,10 @@ val comp : ('a subs * 'a -> 'a) -> 'a subs -> 'a subs -> 'a subs Invariant ensured by the private flag: no lift contains two consecutive [ELSHFT] nor two consecutive [ELLFT]. + + Relocations are a particular kind of substitutions that only contain + variables. In particular, [el_*] enjoys the same typing rules as the + equivalent substitution function [subs_*]. *) type lift = private | ELID @@ -77,5 +90,7 @@ val is_lift_id : lift -> bool substitution equivalent to applying el then s. Argument mk_clos is used when a closure has to be created, i.e. when el is applied on an element of s. + + That is, if Γ ⊢ e : Δ and Δ ⊢ σ : Ξ, then Γ ⊢ lift_subst mk e σ : Ξ. *) val lift_subst : (lift -> 'a -> 'b) -> lift -> 'a subs -> 'b subs diff --git a/kernel/nativelambda.ml b/kernel/nativelambda.ml index 18f16f427d..b27c53ef0f 100644 --- a/kernel/nativelambda.ml +++ b/kernel/nativelambda.ml @@ -102,7 +102,7 @@ let decompose_Llam_Llet lam = let subst_id = subs_id 0 let lift = subs_lift let liftn = subs_liftn -let cons v subst = subs_cons([|v|], subst) +let cons v subst = subs_cons v subst let shift subst = subs_shft (1, subst) (* Linked code location utilities *) diff --git a/kernel/typeops.ml b/kernel/typeops.ml index 85e24f87b7..802a32b0e7 100644 --- a/kernel/typeops.ml +++ b/kernel/typeops.ml @@ -198,7 +198,7 @@ let type_of_apply env func funt argsv argstv = let argt = argstv.(i) in let c1 = term_of_fconstr c1 in begin match conv_leq false env argt c1 with - | () -> apply_rec (i+1) (mk_clos (Esubst.subs_cons ([| inject arg |], e)) c2) + | () -> apply_rec (i+1) (mk_clos (Esubst.subs_cons (inject arg) e) c2) | exception NotConvertible -> error_cant_apply_bad_type env (i+1,c1,argt) diff --git a/kernel/vmlambda.ml b/kernel/vmlambda.ml index 9cca204e8c..390fa58883 100644 --- a/kernel/vmlambda.ml +++ b/kernel/vmlambda.ml @@ -179,7 +179,7 @@ let decompose_Llam lam = let subst_id = subs_id 0 let lift = subs_lift let liftn = subs_liftn -let cons v subst = subs_cons([|v|], subst) +let cons v subst = subs_cons v subst let shift subst = subs_shft (1, subst) (* A generic map function *) |
