aboutsummaryrefslogtreecommitdiff
path: root/kernel/fast_typeops.ml
diff options
context:
space:
mode:
authorGaetan Gilbert2016-12-12 14:49:01 +0100
committerGaetan Gilbert2016-12-12 14:49:01 +0100
commit421d846d80c19226ba0922ff3c3b0006c98c21b6 (patch)
tree3ef075cee201771851dd974e339735a12ec51dc9 /kernel/fast_typeops.ml
parent90b61424761c5ba1ddbecf20c29d78b485584ae7 (diff)
Replace Typeops by Fast_typeops
This is really [mv fast_typeops.ml{,i} typeops.ml{,i}] plus trivial changes in the other files, the real changes are in the parent commit.
Diffstat (limited to 'kernel/fast_typeops.ml')
-rw-r--r--kernel/fast_typeops.ml594
1 files changed, 0 insertions, 594 deletions
diff --git a/kernel/fast_typeops.ml b/kernel/fast_typeops.ml
deleted file mode 100644
index 7d9a2aac09..0000000000
--- a/kernel/fast_typeops.ml
+++ /dev/null
@@ -1,594 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-open CErrors
-open Util
-open Names
-open Univ
-open Term
-open Vars
-open Declarations
-open Environ
-open Reduction
-open Inductive
-open Type_errors
-
-module RelDecl = Context.Rel.Declaration
-module NamedDecl = Context.Named.Declaration
-
-let conv_leq l2r env x y = default_conv CUMUL ~l2r env x y
-
-let conv_leq_vecti env v1 v2 =
- Array.fold_left2_i
- (fun i _ t1 t2 ->
- try conv_leq false env t1 t2
- with NotConvertible -> raise (NotConvertibleVect i))
- ()
- v1
- v2
-
-let check_constraints cst env =
- if Environ.check_constraints cst env then ()
- else error_unsatisfied_constraints env cst
-
-(* This should be a type (a priori without intention to be an assumption) *)
-let check_type env c t =
- match kind_of_term(whd_all env t) with
- | Sort s -> s
- | _ -> error_not_type env (make_judge c t)
-
-(* This should be a type intended to be assumed. The error message is
- not as useful as for [type_judgment]. *)
-let check_assumption env t ty =
- try let _ = check_type env t ty in t
- with TypeError _ ->
- error_assumption env (make_judge t ty)
-
-(************************************************)
-(* Incremental typing rules: builds a typing judgment given the *)
-(* judgments for the subterms. *)
-
-(*s Type of sorts *)
-
-(* Prop and Set *)
-
-let type1 = mkSort type1_sort
-
-(* Type of Type(i). *)
-
-let type_of_type u =
- let uu = Universe.super u in
- mkType uu
-
-(*s Type of a de Bruijn index. *)
-
-let type_of_relative env n =
- try
- env |> lookup_rel n |> RelDecl.get_type |> lift n
- with Not_found ->
- error_unbound_rel env n
-
-(* Type of variables *)
-let type_of_variable env id =
- try named_type id env
- with Not_found ->
- error_unbound_var env id
-
-(* Management of context of variables. *)
-
-(* Checks if a context of variables can be instantiated by the
- variables of the current env.
- Order does not have to be checked assuming that all names are distinct *)
-let check_hyps_inclusion env f c sign =
- Context.Named.fold_outside
- (fun d1 () ->
- let open Context.Named.Declaration in
- let id = NamedDecl.get_id d1 in
- try
- let d2 = lookup_named id env in
- conv env (get_type d2) (get_type d1);
- (match d2,d1 with
- | LocalAssum _, LocalAssum _ -> ()
- | LocalAssum _, LocalDef _ ->
- (* This is wrong, because we don't know if the body is
- needed or not for typechecking: *) ()
- | LocalDef _, LocalAssum _ -> raise NotConvertible
- | LocalDef (_,b2,_), LocalDef (_,b1,_) -> conv env b2 b1);
- with Not_found | NotConvertible | Option.Heterogeneous ->
- error_reference_variables env id (f c))
- sign
- ~init:()
-
-(* Instantiation of terms on real arguments. *)
-
-(* Make a type polymorphic if an arity *)
-
-(* Type of constants *)
-
-
-let type_of_constant_type_knowing_parameters env t paramtyps =
- match t with
- | RegularArity t -> t
- | TemplateArity (sign,ar) ->
- let ctx = List.rev sign in
- let ctx,s = instantiate_universes env ctx ar paramtyps in
- mkArity (List.rev ctx,s)
-
-let type_of_constant_knowing_parameters env (kn,u as cst) args =
- let cb = lookup_constant kn env in
- let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in
- let ty, cu = constant_type env cst in
- let ty = type_of_constant_type_knowing_parameters env ty args in
- let () = check_constraints cu env in
- ty
-
-let type_of_constant_knowing_parameters_in env (kn,u as cst) args =
- let cb = lookup_constant kn env in
- let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in
- let ty = constant_type_in env cst in
- type_of_constant_type_knowing_parameters env ty args
-
-let type_of_constant env cst =
- type_of_constant_knowing_parameters env cst [||]
-
-let type_of_constant_in env cst =
- type_of_constant_knowing_parameters_in env cst [||]
-
-let type_of_constant_type env t =
- type_of_constant_type_knowing_parameters env t [||]
-
-(* Type of a lambda-abstraction. *)
-
-(* [judge_of_abstraction env name var j] implements the rule
-
- env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s
- -----------------------------------------------------------------------
- env |- [name:typ]j.uj_val : (name:typ)j.uj_type
-
- Since all products are defined in the Calculus of Inductive Constructions
- and no upper constraint exists on the sort $s$, we don't need to compute $s$
-*)
-
-let type_of_abstraction env name var ty =
- mkProd (name, var, ty)
-
-(* Type of an application. *)
-
-let make_judgev c t =
- Array.map2 make_judge c t
-
-let type_of_apply env func funt argsv argstv =
- let len = Array.length argsv in
- let rec apply_rec i typ =
- if Int.equal i len then typ
- else
- (match kind_of_term (whd_all env typ) with
- | Prod (_,c1,c2) ->
- let arg = argsv.(i) and argt = argstv.(i) in
- (try
- let () = conv_leq false env argt c1 in
- apply_rec (i+1) (subst1 arg c2)
- with NotConvertible ->
- error_cant_apply_bad_type env
- (i+1,c1,argt)
- (make_judge func funt)
- (make_judgev argsv argstv))
-
- | _ ->
- error_cant_apply_not_functional env
- (make_judge func funt)
- (make_judgev argsv argstv))
- in apply_rec 0 funt
-
-(* Type of product *)
-
-let sort_of_product env domsort rangsort =
- match (domsort, rangsort) with
- (* Product rule (s,Prop,Prop) *)
- | (_, Prop Null) -> rangsort
- (* Product rule (Prop/Set,Set,Set) *)
- | (Prop _, Prop Pos) -> rangsort
- (* Product rule (Type,Set,?) *)
- | (Type u1, Prop Pos) ->
- if is_impredicative_set env then
- (* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
- rangsort
- else
- (* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
- Type (Universe.sup Universe.type0 u1)
- (* Product rule (Prop,Type_i,Type_i) *)
- | (Prop Pos, Type u2) -> Type (Universe.sup Universe.type0 u2)
- (* Product rule (Prop,Type_i,Type_i) *)
- | (Prop Null, Type _) -> rangsort
- (* Product rule (Type_i,Type_i,Type_i) *)
- | (Type u1, Type u2) -> Type (Universe.sup u1 u2)
-
-(* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule
-
- env |- typ1:s1 env, name:typ1 |- typ2 : s2
- -------------------------------------------------------------------------
- s' >= (s1,s2), env |- (name:typ)j.uj_val : s'
-
- where j.uj_type is convertible to a sort s2
-*)
-let type_of_product env name s1 s2 =
- let s = sort_of_product env s1 s2 in
- mkSort s
-
-(* Type of a type cast *)
-
-(* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule
-
- env |- c:typ1 env |- typ2:s env |- typ1 <= typ2
- ---------------------------------------------------------------------
- env |- c:typ2
-*)
-
-let check_cast env c ct k expected_type =
- try
- match k with
- | VMcast ->
- vm_conv CUMUL env ct expected_type
- | DEFAULTcast ->
- default_conv ~l2r:false CUMUL env ct expected_type
- | REVERTcast ->
- default_conv ~l2r:true CUMUL env ct expected_type
- | NATIVEcast ->
- let sigma = Nativelambda.empty_evars in
- Nativeconv.native_conv CUMUL sigma env ct expected_type
- with NotConvertible ->
- error_actual_type env (make_judge c ct) expected_type
-
-(* Inductive types. *)
-
-(* The type is parametric over the uniform parameters whose conclusion
- is in Type; to enforce the internal constraints between the
- parameters and the instances of Type occurring in the type of the
- constructors, we use the level variables _statically_ assigned to
- the conclusions of the parameters as mediators: e.g. if a parameter
- has conclusion Type(alpha), static constraints of the form alpha<=v
- exist between alpha and the Type's occurring in the constructor
- types; when the parameters is finally instantiated by a term of
- conclusion Type(u), then the constraints u<=alpha is computed in
- the App case of execute; from this constraints, the expected
- dynamic constraints of the form u<=v are enforced *)
-
-let type_of_inductive_knowing_parameters env (ind,u as indu) args =
- let (mib,mip) as spec = lookup_mind_specif env ind in
- check_hyps_inclusion env mkIndU indu mib.mind_hyps;
- let t,cst = Inductive.constrained_type_of_inductive_knowing_parameters
- env (spec,u) args
- in
- check_constraints cst env;
- t
-
-let type_of_inductive env (ind,u as indu) =
- let (mib,mip) = lookup_mind_specif env ind in
- check_hyps_inclusion env mkIndU indu mib.mind_hyps;
- let t,cst = Inductive.constrained_type_of_inductive env ((mib,mip),u) in
- check_constraints cst env;
- t
-
-(* Constructors. *)
-
-let type_of_constructor env (c,u as cu) =
- let () =
- let ((kn,_),_) = c in
- let mib = lookup_mind kn env in
- check_hyps_inclusion env mkConstructU cu mib.mind_hyps
- in
- let specif = lookup_mind_specif env (inductive_of_constructor c) in
- let t,cst = constrained_type_of_constructor cu specif in
- let () = check_constraints cst env in
- t
-
-(* Case. *)
-
-let check_branch_types env (ind,u) c ct lft explft =
- try conv_leq_vecti env lft explft
- with
- NotConvertibleVect i ->
- error_ill_formed_branch env c ((ind,i+1),u) lft.(i) explft.(i)
- | Invalid_argument _ ->
- error_number_branches env (make_judge c ct) (Array.length explft)
-
-let type_of_case env ci p pt c ct lf lft =
- let (pind, _ as indspec) =
- try find_rectype env ct
- with Not_found -> error_case_not_inductive env (make_judge c ct) in
- let () = check_case_info env pind ci in
- let (bty,rslty) =
- type_case_branches env indspec (make_judge p pt) c in
- let () = check_branch_types env pind c ct lft bty in
- rslty
-
-let type_of_projection env p c ct =
- let pb = lookup_projection p env in
- let (ind,u), args =
- try find_rectype env ct
- with Not_found -> error_case_not_inductive env (make_judge c ct)
- in
- assert(eq_mind pb.proj_ind (fst ind));
- let ty = Vars.subst_instance_constr u pb.Declarations.proj_type in
- substl (c :: List.rev args) ty
-
-
-(* Fixpoints. *)
-
-(* Checks the type of a general (co)fixpoint, i.e. without checking *)
-(* the specific guard condition. *)
-
-let check_fixpoint env lna lar vdef vdeft =
- let lt = Array.length vdeft in
- assert (Int.equal (Array.length lar) lt);
- try
- conv_leq_vecti env vdeft (Array.map (fun ty -> lift lt ty) lar)
- with NotConvertibleVect i ->
- error_ill_typed_rec_body env i lna (make_judgev vdef vdeft) lar
-
-(************************************************************************)
-(************************************************************************)
-
-(* The typing machine. *)
- (* ATTENTION : faudra faire le typage du contexte des Const,
- Ind et Constructsi un jour cela devient des constructions
- arbitraires et non plus des variables *)
-let rec execute env cstr =
- let open Context.Rel.Declaration in
- match kind_of_term cstr with
- (* Atomic terms *)
- | Sort (Prop c) ->
- type1
-
- | Sort (Type u) ->
- type_of_type u
-
- | Rel n ->
- type_of_relative env n
-
- | Var id ->
- type_of_variable env id
-
- | Const c ->
- type_of_constant env c
-
- | Proj (p, c) ->
- let ct = execute env c in
- type_of_projection env p c ct
-
- (* Lambda calculus operators *)
- | App (f,args) ->
- let argst = execute_array env args in
- let ft =
- match kind_of_term f with
- | Ind ind when Environ.template_polymorphic_pind ind env ->
- (* Template sort-polymorphism of inductive types *)
- let args = Array.map (fun t -> lazy t) argst in
- type_of_inductive_knowing_parameters env ind args
- | Const cst when Environ.template_polymorphic_pconstant cst env ->
- (* Template sort-polymorphism of constants *)
- let args = Array.map (fun t -> lazy t) argst in
- type_of_constant_knowing_parameters env cst args
- | _ ->
- (* Full or no sort-polymorphism *)
- execute env f
- in
-
- type_of_apply env f ft args argst
-
- | Lambda (name,c1,c2) ->
- let _ = execute_is_type env c1 in
- let env1 = push_rel (LocalAssum (name,c1)) env in
- let c2t = execute env1 c2 in
- type_of_abstraction env name c1 c2t
-
- | Prod (name,c1,c2) ->
- let vars = execute_is_type env c1 in
- let env1 = push_rel (LocalAssum (name,c1)) env in
- let vars' = execute_is_type env1 c2 in
- type_of_product env name vars vars'
-
- | LetIn (name,c1,c2,c3) ->
- let c1t = execute env c1 in
- let _c2s = execute_is_type env c2 in
- let () = check_cast env c1 c1t DEFAULTcast c2 in
- let env1 = push_rel (LocalDef (name,c1,c2)) env in
- let c3t = execute env1 c3 in
- subst1 c1 c3t
-
- | Cast (c,k,t) ->
- let ct = execute env c in
- let _ts = (check_type env t (execute env t)) in
- let () = check_cast env c ct k t in
- t
-
- (* Inductive types *)
- | Ind ind ->
- type_of_inductive env ind
-
- | Construct c ->
- type_of_constructor env c
-
- | Case (ci,p,c,lf) ->
- let ct = execute env c in
- let pt = execute env p in
- let lft = execute_array env lf in
- type_of_case env ci p pt c ct lf lft
-
- | Fix ((vn,i as vni),recdef) ->
- let (fix_ty,recdef') = execute_recdef env recdef i in
- let fix = (vni,recdef') in
- check_fix env fix; fix_ty
-
- | CoFix (i,recdef) ->
- let (fix_ty,recdef') = execute_recdef env recdef i in
- let cofix = (i,recdef') in
- check_cofix env cofix; fix_ty
-
- (* Partial proofs: unsupported by the kernel *)
- | Meta _ ->
- anomaly (Pp.str "the kernel does not support metavariables")
-
- | Evar _ ->
- anomaly (Pp.str "the kernel does not support existential variables")
-
-and execute_is_type env constr =
- let t = execute env constr in
- check_type env constr t
-
-and execute_recdef env (names,lar,vdef) i =
- let lart = execute_array env lar in
- let lara = Array.map2 (check_assumption env) lar lart in
- let env1 = push_rec_types (names,lara,vdef) env in
- let vdeft = execute_array env1 vdef in
- let () = check_fixpoint env1 names lara vdef vdeft in
- (lara.(i),(names,lara,vdef))
-
-and execute_array env = Array.map (execute env)
-
-(* Derived functions *)
-let infer env constr =
- let t = execute env constr in
- make_judge constr t
-
-let infer =
- if Flags.profile then
- let infer_key = Profile.declare_profile "Fast_infer" in
- Profile.profile2 infer_key (fun b c -> infer b c)
- else (fun b c -> infer b c)
-
-let assumption_of_judgment env {uj_val=c; uj_type=t} =
- check_assumption env c t
-
-let type_judgment env {uj_val=c; uj_type=t} =
- let s = check_type env c t in
- {utj_val = c; utj_type = s }
-
-let infer_type env constr =
- let t = execute env constr in
- let s = check_type env constr t in
- {utj_val = constr; utj_type = s}
-
-let infer_v env cv =
- let jv = execute_array env cv in
- make_judgev cv jv
-
-(* Typing of several terms. *)
-
-let infer_local_decl env id = function
- | Entries.LocalDefEntry c ->
- let t = execute env c in
- RelDecl.LocalDef (Name id, c, t)
- | Entries.LocalAssumEntry c ->
- let t = execute env c in
- RelDecl.LocalAssum (Name id, check_assumption env c t)
-
-let infer_local_decls env decls =
- let rec inferec env = function
- | (id, d) :: l ->
- let (env, l) = inferec env l in
- let d = infer_local_decl env id d in
- (push_rel d env, Context.Rel.add d l)
- | [] -> (env, Context.Rel.empty)
- in
- inferec env decls
-
-let judge_of_prop = make_judge mkProp type1
-let judge_of_set = make_judge mkSet type1
-let judge_of_type u = make_judge (mkType u) (type_of_type u)
-
-let judge_of_prop_contents = function
- | Null -> judge_of_prop
- | Pos -> judge_of_set
-
-let judge_of_relative env k = make_judge (mkRel k) (type_of_relative env k)
-
-let judge_of_variable env x = make_judge (mkVar x) (type_of_variable env x)
-
-let judge_of_constant env cst = make_judge (mkConstU cst) (type_of_constant env cst)
-let judge_of_constant_knowing_parameters env cst args =
- make_judge (mkConstU cst) (type_of_constant_knowing_parameters env cst args)
-
-let judge_of_projection env p cj =
- make_judge (mkProj (p,cj.uj_val)) (type_of_projection env p cj.uj_val cj.uj_type)
-
-let dest_judgev v =
- Array.map j_val v, Array.map j_type v
-
-let judge_of_apply env funj argjv =
- let args, argtys = dest_judgev argjv in
- make_judge (mkApp (funj.uj_val, args)) (type_of_apply env funj.uj_val funj.uj_type args argtys)
-
-let judge_of_abstraction env x varj bodyj =
- make_judge (mkLambda (x, varj.utj_val, bodyj.uj_val))
- (type_of_abstraction env x varj.utj_val bodyj.uj_type)
-
-let judge_of_product env x varj outj =
- make_judge (mkProd (x, varj.utj_val, outj.utj_val))
- (mkSort (sort_of_product env varj.utj_type outj.utj_type))
-
-let judge_of_letin env name defj typj j =
- make_judge (mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val))
- (subst1 defj.uj_val j.uj_type)
-
-let judge_of_cast env cj k tj =
- let () = check_cast env cj.uj_val cj.uj_type k tj.utj_val in
- let c = match k with | REVERTcast -> cj.uj_val | _ -> mkCast (cj.uj_val, k, tj.utj_val) in
- make_judge c tj.utj_val
-
-let judge_of_inductive env indu =
- make_judge (mkIndU indu) (type_of_inductive env indu)
-
-let judge_of_constructor env cu =
- make_judge (mkConstructU cu) (type_of_constructor env cu)
-
-let judge_of_case env ci pj cj lfj =
- let lf, lft = dest_judgev lfj in
- make_judge (mkCase (ci, (*nf_betaiota*) pj.uj_val, cj.uj_val, lft))
- (type_of_case env ci pj.uj_val pj.uj_type cj.uj_val cj.uj_type lf lft)
-
-let type_of_projection_constant env (p,u) =
- let cst = Projection.constant p in
- let cb = lookup_constant cst env in
- match cb.const_proj with
- | Some pb ->
- if cb.const_polymorphic then
- Vars.subst_instance_constr u pb.proj_type
- else pb.proj_type
- | None -> raise (Invalid_argument "type_of_projection: not a projection")
-
-(* Instantiation of terms on real arguments. *)
-
-(* Make a type polymorphic if an arity *)
-
-let extract_level env p =
- let _,c = dest_prod_assum env p in
- match kind_of_term c with Sort (Type u) -> Univ.Universe.level u | _ -> None
-
-let extract_context_levels env l =
- let fold l = function
- | RelDecl.LocalAssum (_,p) -> extract_level env p :: l
- | RelDecl.LocalDef _ -> l
- in
- List.fold_left fold [] l
-
-let make_polymorphic_if_constant_for_ind env {uj_val = c; uj_type = t} =
- let params, ccl = dest_prod_assum env t in
- match kind_of_term ccl with
- | Sort (Type u) ->
- let ind, l = decompose_app (whd_all env c) in
- if isInd ind && List.is_empty l then
- let mis = lookup_mind_specif env (fst (destInd ind)) in
- let nparams = Inductive.inductive_params mis in
- let paramsl = CList.lastn nparams params in
- let param_ccls = extract_context_levels env paramsl in
- let s = { template_param_levels = param_ccls; template_level = u} in
- TemplateArity (params,s)
- else RegularArity t
- | _ ->
- RegularArity t