aboutsummaryrefslogtreecommitdiff
path: root/kernel/closure.ml
diff options
context:
space:
mode:
authorbarras2001-03-01 10:09:34 +0000
committerbarras2001-03-01 10:09:34 +0000
commitbb7d7482724489521dde94a5b70af7864acfa802 (patch)
tree821dfa6baa108de2b2af016e842164f01a39101f /kernel/closure.ml
parent05b756a9a5079e91c5015239bb801918d4903c08 (diff)
nouvelle implantation de la reduction
suppression de IsXtra du noyau git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@1416 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'kernel/closure.ml')
-rw-r--r--kernel/closure.ml1488
1 files changed, 528 insertions, 960 deletions
diff --git a/kernel/closure.ml b/kernel/closure.ml
index d6e4589ca4..7762b18bbb 100644
--- a/kernel/closure.ml
+++ b/kernel/closure.ml
@@ -9,6 +9,8 @@ open Environ
open Instantiate
open Univ
open Evd
+open Esubst
+
let stats = ref false
let share = ref true
@@ -29,6 +31,15 @@ let stop() =
'sTR" zeta="; 'iNT !zeta; 'sTR" evar="; 'iNT !evar;
'sTR" iota="; 'iNT !iota; 'sTR" prune="; 'iNT !prune; 'sTR"]" >]
+let with_stats c =
+ if !stats then begin
+ reset();
+ let r = Lazy.force c in
+ stop();
+ r
+ end else
+ Lazy.force c
+
type evaluable_global_reference =
| EvalVarRef of identifier
| EvalConstRef of section_path
@@ -152,7 +163,7 @@ let red_set red = function
let c = List.mem sp l in
incr_cnt ((b & not c) or (c & not b)) delta
| VAR id -> (* En attendant d'avoir des sp pour les Var *)
- let (b,_,l) = red.r_const in
+ let (b,_,l) = red.r_const in
let c = List.mem id l in
incr_cnt ((b & not c) or (c & not b)) delta
| ZETA -> incr_cnt red.r_zeta zeta
@@ -213,59 +224,6 @@ let red_under (md,r) rk =
| WITHBACK -> true
| _ -> red_set r rk
-(* (bounded) explicit substitutions of type 'a *)
-type 'a subs =
- | ESID of int (* ESID(n) = %n END bounded identity *)
- | CONS of 'a * 'a subs (* CONS(t,S) = (S.t) parallel substitution *)
- | SHIFT of int * 'a subs (* SHIFT(n,S) = (^n o S) terms in S are relocated *)
- (* with n vars *)
- | LIFT of int * 'a subs (* LIFT(n,S) = (%n S) stands for ((^n o S).n...1) *)
-
-(* operations of subs: collapses constructors when possible.
- * Needn't be recursive if we always use these functions
- *)
-
-let subs_cons(x,s) = CONS(x,s)
-
-let subs_liftn n = function
- | ESID p -> ESID (p+n) (* bounded identity lifted extends by p *)
- | LIFT (p,lenv) -> LIFT (p+n, lenv)
- | lenv -> LIFT (n,lenv)
-
-let subs_lift a = subs_liftn 1 a
-
-let subs_shft = function
- | (0, s) -> s
- | (n, SHIFT (k,s1)) -> SHIFT (k+n, s1)
- | (n, s) -> SHIFT (n,s)
-
-(* Expands de Bruijn k in the explicit substitution subs
- * lams accumulates de shifts to perform when retrieving the i-th value
- * the rules used are the following:
- *
- * [id]k --> k
- * [S.t]1 --> t
- * [S.t]k --> [S](k-1) if k > 1
- * [^n o S] k --> [^n]([S]k)
- * [(%n S)] k --> k if k <= n
- * [(%n S)] k --> [^n]([S](k-n))
- *
- * the result is (Inr (k+lams,p)) when the variable is just relocated
- * where p is None if the variable points insider subs and Some(k) if the
- * variable points k bindings beyond subs.
- *)
-let rec exp_rel lams k subs =
- match (k,subs) with
- | (1, CONS (def,_)) -> Inl(lams,def)
- | (_, CONS (_,l)) -> exp_rel lams (pred k) l
- | (_, LIFT (n,_)) when k<=n -> Inr(lams+k,None)
- | (_, LIFT (n,l)) -> exp_rel (n+lams) (k-n) l
- | (_, SHIFT (n,s)) -> exp_rel (n+lams) k s
- | (_, ESID n) when k<=n -> Inr(lams+k,None)
- | (_, ESID n) -> Inr(lams+k,Some (k-n))
-
-let expand_rel k subs = exp_rel 0 k subs
-
(* Flags of reduction and cache of constants: 'a is a type that may be
* mapped to constr. 'a infos implements a cache for constants and
* abstractions, storing a representation (of type 'a) of the body of
@@ -302,6 +260,8 @@ type ('a, 'b) infos = {
i_vars : (identifier * constr) list;
i_tab : ('a table_key, 'a) Hashtbl.t }
+let info_flags info = info.i_flags
+
let ref_value_cache info ref =
try
Some (Hashtbl.find info.i_tab ref)
@@ -344,383 +304,9 @@ let defined_rels flags env =
env (0,[])
(* else (0,[])*)
-let infos_under infos = { infos with i_flags = flags_under infos.i_flags }
-
-
-(**** Call by value reduction ****)
-
-(* The type of terms with closure. The meaning of the constructors and
- * the invariants of this datatype are the following:
- * VAL(k,c) represents the constr c with a delayed shift of k. c must be
- * in normal form and neutral (i.e. not a lambda, a construct or a
- * (co)fix, because they may produce redexes by applying them,
- * or putting them in a case)
- * LAM(x,a,b,S) is the term [S]([x:a]b). the substitution is propagated
- * only when the abstraction is applied, and then we use the rule
- * ([S]([x:a]b) c) --> [S.c]b
- * This corresponds to the usual strategy of weak reduction
- * FIXP(op,bd,S,args) is the fixpoint (Fix or Cofix) of bodies bd under
- * the substitution S, and then applied to args. Here again,
- * weak reduction.
- * CONSTR(n,(sp,i),vars,args) is the n-th constructor of the i-th
- * inductive type sp.
- *
- * Note that any term has not an equivalent in cbv_value: for example,
- * a product (x:A)B must be in normal form because only VAL may
- * represent it, and the argument of VAL is always in normal
- * form. This remark precludes coding a head reduction with these
- * functions. Anyway, does it make sense to head reduce with a
- * call-by-value strategy ?
- *)
-type cbv_value =
- | VAL of int * constr
- | LAM of name * constr * constr * cbv_value subs
- | FIXP of fixpoint * cbv_value subs * cbv_value list
- | COFIXP of cofixpoint * cbv_value subs * cbv_value list
- | CONSTR of int * inductive_path * cbv_value array * cbv_value list
-
-(* les vars pourraient etre des constr,
- cela permet de retarder les lift: utile ?? *)
-
-(* relocation of a value; used when a value stored in a context is expanded
- * in a larger context. e.g. [%k (S.t)](k+1) --> [^k]t (t is shifted of k)
- *)
-let rec shift_value n = function
- | VAL (k,v) -> VAL ((k+n),v)
- | LAM (x,a,b,s) -> LAM (x,a,b,subs_shft (n,s))
- | FIXP (fix,s,args) ->
- FIXP (fix,subs_shft (n,s), List.map (shift_value n) args)
- | COFIXP (cofix,s,args) ->
- COFIXP (cofix,subs_shft (n,s), List.map (shift_value n) args)
- | CONSTR (i,spi,vars,args) ->
- CONSTR (i, spi, Array.map (shift_value n) vars,
- List.map (shift_value n) args)
-
-
-(* Contracts a fixpoint: given a fixpoint and a substitution,
- * returns the corresponding fixpoint body, and the substitution in which
- * it should be evaluated: its first variables are the fixpoint bodies
- * (S, (fix Fi {F0 := T0 .. Fn-1 := Tn-1}))
- * -> (S. [S]F0 . [S]F1 ... . [S]Fn-1, Ti)
- *)
-let contract_fixp env ((reci,i),(_,_,bds as bodies)) =
- let make_body j = FIXP(((reci,j),bodies), env, []) in
- let n = Array.length bds in
- let rec subst_bodies_from_i i subs =
- if i=n then subs
- else subst_bodies_from_i (i+1) (subs_cons (make_body i, subs))
- in
- subst_bodies_from_i 0 env, bds.(i)
-
-let contract_cofixp env (i,(_,_,bds as bodies)) =
- let make_body j = COFIXP((j,bodies), env, []) in
- let n = Array.length bds in
- let rec subst_bodies_from_i i subs =
- if i=n then subs
- else subst_bodies_from_i (i+1) (subs_cons (make_body i, subs))
- in
- subst_bodies_from_i 0 env, bds.(i)
-
-
-(* type of terms with a hole. This hole can appear only under App or Case.
- * TOP means the term is considered without context
- * APP(l,stk) means the term is applied to l, and then we have the context st
- * this corresponds to the application stack of the KAM.
- * The members of l are values: we evaluate arguments before the function.
- * CASE(t,br,pat,S,stk) means the term is in a case (which is himself in stk
- * t is the type of the case and br are the branches, all of them under
- * the subs S, pat is information on the patterns of the Case
- * (Weak reduction: we propagate the sub only when the selected branch
- * is determined)
- *
- * Important remark: the APPs should be collapsed:
- * (APP (l,(APP ...))) forbidden
- *)
-
-type cbv_stack =
- | TOP
- | APP of cbv_value list * cbv_stack
- | CASE of constr * constr array * case_info * cbv_value subs * cbv_stack
-
-(* Adds an application list. Collapse APPs! *)
-let stack_app appl stack =
- match (appl, stack) with
- | ([], _) -> stack
- | (_, APP(args,stk)) -> APP(appl@args,stk)
- | _ -> APP(appl, stack)
-
-(* Tests if we are in a case (modulo some applications) *)
-let under_case_stack = function
- | (CASE _ | APP(_,CASE _)) -> true
- | _ -> false
-
-(* Tells if the reduction rk is allowed by flags under a given stack.
- * The stack is useful when flags is (SIMPL,r) because in that case,
- * we perform bdi-reduction under the Case, or r-reduction otherwise
- *)
-let red_allowed flags stack rk =
- if under_case_stack stack then
- red_under flags rk
- else
- red_top flags rk
-
-let red_allowed_ref flags stack = function
- | FarRelBinding _ -> red_allowed flags stack DELTA
- | VarBinding id -> red_allowed flags stack (VAR id)
- | EvarBinding _ -> red_allowed flags stack EVAR
- | ConstBinding (sp,_) -> red_allowed flags stack (CONST [sp])
-
-(* Transfer application lists from a value to the stack
- * useful because fixpoints may be totally applied in several times
- *)
-let strip_appl head stack =
- match head with
- | FIXP (fix,env,app) -> (FIXP(fix,env,[]), stack_app app stack)
- | COFIXP (cofix,env,app) -> (COFIXP(cofix,env,[]), stack_app app stack)
- | CONSTR (i,spi,vars,app) -> (CONSTR(i,spi,vars,[]), stack_app app stack)
- | _ -> (head, stack)
-
-
-(* Invariant: if the result of norm_head is CONSTR or (CO)FIXP, its last
- * argument is [].
- * Because we must put all the applied terms in the stack.
- *)
-let reduce_const_body redfun v stk =
- if under_case_stack stk then strip_appl (redfun v) stk else strip_appl v stk
-
-
-(* Tests if fixpoint reduction is possible. A reduction function is given as
- argument *)
-let rec check_app_constr redfun = function
- | ([], _) -> false
- | ((CONSTR _)::_, 0) -> true
- | (t::_, 0) -> (* TODO: partager ce calcul *)
- (match redfun t with
- | CONSTR _ -> true
- | _ -> false)
- | (_::l, n) -> check_app_constr redfun (l,(pred n))
-
-let fixp_reducible redfun flgs ((reci,i),_) stk =
- if red_allowed flgs stk IOTA then
- match stk with (* !!! for Acc_rec: reci.(i) = -2 *)
- | APP(appl,_) -> reci.(i) >=0 & check_app_constr redfun (appl, reci.(i))
- | _ -> false
- else
- false
-
-let cofixp_reducible redfun flgs _ stk =
- if red_allowed flgs stk IOTA then
- match stk with
- | (CASE _ | APP(_,CASE _)) -> true
- | _ -> false
- else
- false
-
-let mindsp_nparams env (sp,i) =
- let mib = lookup_mind sp env in
- (Declarations.mind_nth_type_packet mib i).Declarations.mind_nparams
-
-(* The main recursive functions
- *
- * Go under applications and cases (pushed in the stack), expand head
- * constants or substitued de Bruijn, and try to make appear a
- * constructor, a lambda or a fixp in the head. If not, it is a value
- * and is completely computed here. The head redexes are NOT reduced:
- * the function returns the pair of a cbv_value and its stack. *
- * Invariant: if the result of norm_head is CONSTR or (CO)FIXP, it last
- * argument is []. Because we must put all the applied terms in the
- * stack. *)
-
-let rec norm_head info env t stack =
- (* no reduction under binders *)
- match kind_of_term t with
- (* stack grows (remove casts) *)
- | IsApp (head,args) -> (* Applied terms are normalized immediately;
- they could be computed when getting out of the stack *)
- let nargs = Array.map (cbv_stack_term info TOP env) args in
- norm_head info env head (stack_app (Array.to_list nargs) stack)
- | IsMutCase (ci,p,c,v) -> norm_head info env c (CASE(p,v,ci,env,stack))
- | IsCast (ct,_) -> norm_head info env ct stack
-
- (* constants, axioms
- * the first pattern is CRUCIAL, n=0 happens very often:
- * when reducing closed terms, n is always 0 *)
- | IsRel i -> (match expand_rel i env with
- | Inl (0,v) ->
- reduce_const_body (cbv_norm_more info env) v stack
- | Inl (n,v) ->
- reduce_const_body
- (cbv_norm_more info env) (shift_value n v) stack
- | Inr (n,None) ->
- (VAL(0, mkRel n), stack)
- | Inr (n,Some p) ->
- norm_head_ref (n-p) info env stack (FarRelBinding p))
-
- | IsVar id -> norm_head_ref 0 info env stack (VarBinding id)
-
- | IsConst (sp,vars) ->
- let normt = (sp,Array.map (cbv_norm_term info env) vars) in
- norm_head_ref 0 info env stack (ConstBinding normt)
-
- | IsEvar ev -> norm_head_ref 0 info env stack (EvarBinding (ev,env))
-
- | IsLetIn (x, b, t, c) ->
- (* zeta means letin are contracted; delta without zeta means we *)
- (* allow substitution but leave let's in place *)
- let zeta = red_allowed info.i_flags stack ZETA in
- let env' =
- if zeta or red_allowed info.i_flags stack DELTA then
- subs_cons (cbv_stack_term info TOP env b,env)
- else
- subs_lift env in
- if zeta then
- norm_head info env' c stack
- else
- let normt =
- mkLetIn (x, cbv_norm_term info env b,
- cbv_norm_term info env t,
- cbv_norm_term info env' c) in
- (VAL(0,normt), stack) (* Considérer une coupure commutative ? *)
-
- (* non-neutral cases *)
- | IsLambda (x,a,b) -> (LAM(x,a,b,env), stack)
- | IsFix fix -> (FIXP(fix,env,[]), stack)
- | IsCoFix cofix -> (COFIXP(cofix,env,[]), stack)
- | IsMutConstruct ((spi,i),vars) ->
- (CONSTR(i,spi, Array.map (cbv_stack_term info TOP env) vars,[]), stack)
-
- (* neutral cases *)
- | (IsSort _ | IsMeta _ | IsXtra _ ) -> (VAL(0, t), stack)
- | IsMutInd (sp,vars) ->
- (VAL(0, mkMutInd (sp, Array.map (cbv_norm_term info env) vars)), stack)
- | IsProd (x,t,c) ->
- (VAL(0, mkProd (x, cbv_norm_term info env t,
- cbv_norm_term info (subs_lift env) c)),
- stack)
-
-and norm_head_ref k info env stack normt =
- if red_allowed_ref info.i_flags stack normt then
- match ref_value_cache info normt with
- | Some body ->
- reduce_const_body (cbv_norm_more info env) (shift_value k body) stack
- | None -> (VAL(0,make_constr_ref k info normt), stack)
- else (VAL(0,make_constr_ref k info normt), stack)
-
-and make_constr_ref n info = function
- | FarRelBinding p -> mkRel (n+p)
- | VarBinding id -> mkVar id
- | EvarBinding ((ev,args),env) ->
- mkEvar (ev,Array.map (cbv_norm_term info env) args)
- | ConstBinding cst -> mkConst cst
-
-(* cbv_stack_term performs weak reduction on constr t under the subs
- * env, with context stack, i.e. ([env]t stack). First computes weak
- * head normal form of t and checks if a redex appears with the stack.
- * If so, recursive call to reach the real head normal form. If not,
- * we build a value.
- *)
-and cbv_stack_term info stack env t =
- match norm_head info env t stack with
- (* a lambda meets an application -> BETA *)
- | (LAM (x,a,b,env), APP (arg::args, stk))
- when red_allowed info.i_flags stk BETA ->
- let subs = subs_cons (arg,env) in
- cbv_stack_term info (stack_app args stk) subs b
-
- (* a Fix applied enough -> IOTA *)
- | (FIXP(fix,env,_), stk)
- when fixp_reducible (cbv_norm_more info env) info.i_flags fix stk ->
- let (envf,redfix) = contract_fixp env fix in
- cbv_stack_term info stk envf redfix
-
- (* constructor guard satisfied or Cofix in a Case -> IOTA *)
- | (COFIXP(cofix,env,_), stk)
- when cofixp_reducible (cbv_norm_more info env) info.i_flags cofix stk->
- let (envf,redfix) = contract_cofixp env cofix in
- cbv_stack_term info stk envf redfix
-
- (* constructor in a Case -> IOTA
- (use red_under because we know there is a Case) *)
- | (CONSTR(n,sp,_,_), APP(args,CASE(_,br,_,env,stk)))
- when red_under info.i_flags IOTA ->
- let nparams = mindsp_nparams info.i_env sp in
- let real_args = snd (list_chop nparams args) in
- cbv_stack_term info (stack_app real_args stk) env br.(n-1)
-
- (* constructor of arity 0 in a Case -> IOTA ( " " )*)
- | (CONSTR(n,_,_,_), CASE(_,br,_,env,stk))
- when red_under info.i_flags IOTA ->
- cbv_stack_term info stk env br.(n-1)
-
- (* may be reduced later by application *)
- | (head, TOP) -> head
- | (FIXP(fix,env,_), APP(appl,TOP)) -> FIXP(fix,env,appl)
- | (COFIXP(cofix,env,_), APP(appl,TOP)) -> COFIXP(cofix,env,appl)
- | (CONSTR(n,spi,vars,_), APP(appl,TOP)) -> CONSTR(n,spi,vars,appl)
-
- (* definitely a value *)
- | (head,stk) -> VAL(0,apply_stack info (cbv_norm_value info head) stk)
-
-
-(* if we are in SIMPL mode, maybe v isn't reduced enough *)
-and cbv_norm_more info env v =
- match (v, info.i_flags) with
- | (VAL(k,t), ((SIMPL|WITHBACK),_)) ->
- cbv_stack_term (infos_under info) TOP (subs_shft (k,env)) t
- | _ -> v
-
-
-(* When we are sure t will never produce a redex with its stack, we
- * normalize (even under binders) the applied terms and we build the
- * final term
- *)
-and apply_stack info t = function
- | TOP -> t
- | APP (args,st) ->
- apply_stack info (applistc t (List.map (cbv_norm_value info) args)) st
- | CASE (ty,br,ci,env,st) ->
- apply_stack info
- (mkMutCase (ci, cbv_norm_term info env ty, t,
- Array.map (cbv_norm_term info env) br))
- st
-
-
-(* performs the reduction on a constr, and returns a constr *)
-and cbv_norm_term info env t =
- (* reduction under binders *)
- cbv_norm_value info (cbv_stack_term info TOP env t)
-
-(* reduction of a cbv_value to a constr *)
-and cbv_norm_value info = function (* reduction under binders *)
- | VAL (n,v) -> lift n v
- | LAM (x,a,b,env) ->
- mkLambda (x, cbv_norm_term info env a,
- cbv_norm_term info (subs_lift env) b)
- | FIXP ((lij,(lty,lna,bds)),env,args) ->
- applistc
- (mkFix (lij,
- (Array.map (cbv_norm_term info env) lty, lna,
- Array.map (cbv_norm_term info
- (subs_liftn (Array.length lty) env)) bds)))
- (List.map (cbv_norm_value info) args)
- | COFIXP ((j,(lty,lna,bds)),env,args) ->
- applistc
- (mkCoFix (j,
- (Array.map (cbv_norm_term info env) lty, lna,
- Array.map (cbv_norm_term info
- (subs_liftn (Array.length lty) env)) bds)))
- (List.map (cbv_norm_value info) args)
- | CONSTR (n,spi,vars,args) ->
- applistc
- (mkMutConstruct ((spi,n), Array.map (cbv_norm_value info) vars))
- (List.map (cbv_norm_value info) args)
-
-type 'a cbv_infos = (cbv_value, 'a) infos
-
-(* constant bodies are normalized at the first expansion *)
-let create_cbv_infos flgs env sigma =
+let create mk_cl flgs env sigma =
{ i_flags = flgs;
- i_repr = (fun old_info s c -> cbv_stack_term old_info TOP s c);
+ i_repr = mk_cl;
i_env = env;
i_evc = sigma;
i_rels = defined_rels flgs env;
@@ -728,633 +314,619 @@ let create_cbv_infos flgs env sigma =
i_tab = Hashtbl.create 17 }
-(* with profiling *)
-let cbv_norm infos constr =
- let repr_fun = cbv_stack_term infos TOP in
- if !stats then begin
- reset();
- let r= cbv_norm_term infos (ESID 0) constr in
- stop();
- r
- end else
- cbv_norm_term infos (ESID 0) constr
-
+let infos_under infos = { infos with i_flags = flags_under infos.i_flags }
-(**** End of call by value ****)
(**********************************************************************)
(* The type of (machine) stacks (= lambda-bar-calculus' contexts) *)
-type 'a stack =
- | EmptyStack
- | ConsStack of 'a array * int * 'a stack
+type 'a stack_member =
+ | Zapp of 'a array * int
+ | Zcase of case_info * 'a * 'a array
+ | Zfix of 'a * 'a stack
+ | Zshift of int
+ | Zupdate of 'a
-let empty_stack = EmptyStack
+and 'a stack = 'a stack_member list
-let decomp_stack = function
- | EmptyStack -> None
- | ConsStack (v, n, s) ->
- Some (v.(n), (if n+1 = Array.length v then s else ConsStack (v, n+1, s)))
+let empty_stack = []
-let append_stack v s = if Array.length v = 0 then s else ConsStack (v,0,s)
+let append_stackn v p s = if Array.length v = p then s else Zapp(v,p)::s
+let append_stack v s = append_stackn v 0 s
-let rec app_stack = function
- | f, EmptyStack -> f
- | f, ConsStack (v, n, s) ->
- let args = if n=0 then v else Array.sub v n (Array.length v - n) in
- app_stack (appvect (f, args), s)
+(* Collapse the shifts in the stack *)
+let zshift n s =
+ match (n,s) with
+ (0,_) -> s
+ | (_,Zshift(k)::s) -> Zshift(n+k)::s
+ | _ -> Zshift(n)::s
+
+let rec stack_args_size = function
+ | Zapp(v,n)::s -> Array.length v - n + stack_args_size s
+ | Zshift(_)::s -> stack_args_size s
+ | Zupdate(_)::s -> stack_args_size s
+ | _ -> 0
+
+(* Parameterization: check the a given reduction is allowed in the
+ context of the stack *)
+let can_red info stk r =
+ red_top info.i_flags r ||
+ (fst info.i_flags = SIMPL &&
+ List.exists (function (Zcase _|Zfix _) -> true | _ -> false) stk)
-let rec list_of_stack = function
- | EmptyStack -> []
- | ConsStack (v, n, s) ->
- let args = if n=0 then v else Array.sub v n (Array.length v - n) in
- Array.fold_right (fun a l -> a::l) args (list_of_stack s)
+(* When used as an argument stack (only Zapp can appear) *)
+let decomp_stack = function
+ | Zapp(v,n)::s -> Some (v.(n), append_stackn v (n+1) s)
+ | [] -> None
+ | _ -> assert false
+let decomp_stackn = function
+ | Zapp(v,n)::s ->
+ ((if n = 0 then v else Array.sub v n (Array.length v - n)), s)
+ | _ -> assert false
let array_of_stack s =
let rec stackrec = function
- | EmptyStack -> []
- | ConsStack (v, n, s) ->
- let args = if n=0 then v else Array.sub v n (Array.length v - n) in
+ | [] -> []
+ | stk ->
+ let (args,s) = decomp_stackn stk in
args :: (stackrec s)
in Array.concat (stackrec s)
-
+let rec list_of_stack = function
+ | [] -> []
+ | stk ->
+ let (args,s) = decomp_stackn stk in
+ Array.fold_right (fun a l -> a::l) args (list_of_stack s)
+let rec app_stack = function
+ | f, [] -> f
+ | f, stk ->
+ let (args,s) = decomp_stackn stk in
+ app_stack (appvect (f, args), s)
let rec stack_assign s p c = match s with
- | EmptyStack -> EmptyStack
- | ConsStack (v, n, s) ->
+ | Zapp(v,n)::s ->
let q = Array.length v - n in
if p >= q then
- ConsStack (v, n, stack_assign s (p-q) c)
+ Zapp (v, n) :: stack_assign s (p-q) c
else
let v' = Array.sub v n q in
v'.(p) <- c;
- ConsStack (v', 0, s)
-
+ Zapp (v',0) :: s
+ | _ -> s
let rec stack_tail p s =
if p = 0 then s else
match s with
- | EmptyStack -> failwith "stack_shop"
- | ConsStack (v, n, s) ->
+ | Zapp (v, n) :: s ->
let q = Array.length v - n in
if p >= q then stack_tail (p-q) s
- else ConsStack (v, n+p, s)
-
+ else Zapp (v, n+p) :: s
+ | _ -> failwith "stack_tail"
let rec stack_nth s p = match s with
- | EmptyStack -> raise Not_found
- | ConsStack (v, n, s) ->
+ | Zapp (v, n) :: s ->
let q = Array.length v - n in
if p >= q then stack_nth s (p-q)
else v.(p+n)
+ | _ -> raise Not_found
-let rec stack_args_size = function
- | EmptyStack -> 0
- | ConsStack (v, n, s) -> Array.length v - n + stack_args_size s
+(**********************************************************************)
+(* Lazy reduction: the one used in kernel operations *)
-(* Version avec listes
-type stack = constr list
-
-let decomp_stack = function
- | [] -> None
- | v :: s -> Some (v,s)
-
-let append_stack v s = v@s
-*)
-
-(* Lazy reduction: the one used in kernel operations *)
-
-(* type of shared terms. freeze and frterm are mutually recursive.
+(* type of shared terms. fconstr and frterm are mutually recursive.
* Clone of the Generic.term structure, but completely mutable, and
* annotated with booleans (true when we noticed that the term is
* normal and neutral) FLIFT is a delayed shift; allows sharing
- * between 2 lifted copies of a given term FFROZEN is a delayed
+ * between 2 lifted copies of a given term FCLOS is a delayed
* substitution applied to a constr
*)
+type red_state = Norm | Cstr | Whnf | Red
-type freeze = {
- mutable norm: bool;
- mutable term: frterm }
+type fconstr = {
+ mutable norm: red_state;
+ mutable term: fterm }
-and frterm =
+and fterm =
| FRel of int
| FAtom of constr
- | FCast of freeze * freeze
- | FFlex of frreference
- | FInd of inductive_path * freeze array
- | FConstruct of constructor_path * freeze array
- | FApp of freeze * freeze array
- | FFix of (int array * int) * (freeze array * name list * freeze array)
- * constr array * freeze subs
- | FCoFix of int * (freeze array * name list * freeze array)
- * constr array * freeze subs
- | FCases of case_info * freeze * freeze * freeze array
- | FLambda of name * freeze * freeze * constr * freeze subs
- | FProd of name * freeze * freeze * constr * freeze subs
- | FLetIn of name * freeze * freeze * freeze * constr * freeze subs
- | FLIFT of int * freeze
- | FFROZEN of constr * freeze subs
-
-and frreference =
+ | FCast of fconstr * fconstr
+ | FFlex of freference
+ | FInd of inductive_path * fconstr array
+ | FConstruct of constructor_path * fconstr array
+ | FApp of fconstr * fconstr array
+ | FFix of (int array * int) * (fconstr array * name list * fconstr array)
+ * constr array * fconstr subs
+ | FCoFix of int * (fconstr array * name list * fconstr array)
+ * constr array * fconstr subs
+ | FCases of case_info * fconstr * fconstr * fconstr array
+ | FLambda of name * fconstr * fconstr * constr * fconstr subs
+ | FProd of name * fconstr * fconstr * constr * fconstr subs
+ | FLetIn of name * fconstr * fconstr * fconstr * constr * fconstr subs
+ | FLIFT of int * fconstr
+ | FCLOS of constr * fconstr subs
+
+and freference =
(* only vars as args of FConst ... exploited for caching *)
- | FConst of section_path * freeze array
- | FEvar of (existential * freeze subs)
+ | FConst of section_path * fconstr array
+ | FEvar of (existential * fconstr subs)
| FVar of identifier
| FFarRel of int (* index in the rel_context part of _initial_ environment *)
-let reloc_flex r el = r
-
-let frterm_of v = v.term
-let is_val v = v.norm
-
-(* Copies v2 in v1 and returns v1. The only side effect is here! The
- * invariant of the reduction functions is that the interpretation of
- * v2 as a constr (e.g term_of_freeze below) is a reduct of the
- * interpretation of v1.
- *
- * The implementation without side effect, but losing sharing,
- * simply returns v2. *)
-
-let freeze_assign v1 v2 =
- if !share then begin
- v1.norm <- v2.norm;
- v1.term <- v2.term;
- v1
- end else
- v2
-
-(* lift a freeze and yields a frterm. No loss of sharing: the
- * resulting term takes advantage of any reduction performed in v.
- * i.e.: if (lift_frterm n v) yields w, reductions in w are reported
- * in w.term (yes: w.term, not only in w) The lifts are collapsed,
- * because we often insert lifts of 0. *)
-
-let rec lift_frterm n v =
- match v.term with
- | FLIFT (k,f) -> lift_frterm (k+n) f
- | FAtom _ as ft -> { norm = true; term = ft }
- (* gene: closed terms *)
- | _ -> { norm = v.norm; term = FLIFT (n,v) }
-
-
-(* lift a freeze, keep sharing, but spare records when possible (case
- * n=0 ... ) The difference with lift_frterm is that reductions in v
- * are reported only in w, and not necessarily in w.term (with
- * notations above). *)
-let lift_freeze n v =
- match (n, v.term) with
- | (0, _) | (_, FAtom _ ) -> v (* identity lift or closed term *)
- | _ -> lift_frterm n v
-
-
-let freeze env t = { norm = false; term = FFROZEN (t,env) }
-let freeze_vect env v = Array.map (freeze env) v
-let freeze_list env l = List.map (freeze env) l
-
-let freeze_rec env (tys,lna,bds) =
- let env' = subs_liftn (Array.length bds) env in
- (Array.map (freeze env) tys, lna, Array.map (freeze env') bds)
-
-
-(* pourrait peut-etre remplacer freeze ?! (et alors FFROZEN
- * deviendrait inutile) *)
-(* traverse_term : freeze subs -> constr -> freeze *)
-let rec traverse_term env t =
+let fterm_of v = v.term
+let set_whnf v = if v.norm = Red then v.norm <- Whnf
+let set_cstr v = if v.norm = Red then v.norm <- Cstr
+let set_norm v = v.norm <- Norm
+let is_val v = v.norm = Norm
+
+(* Put an update mark in the stack, only if needed *)
+let zupdate m s =
+ if !share & m.norm = Red then Zupdate(m)::s else s
+
+(* Could issue a warning if no is still Red, pointing out that we loose
+ sharing. *)
+let update v1 (no,t) =
+ if !share then
+ (v1.norm <- no;
+ v1.term <- t;
+ v1)
+ else {norm=no;term=t}
+
+let rec lft_fconstr n ft =
+ match ft.term with
+ FLIFT(k,m) -> lft_fconstr (n+k) m
+ | _ -> {norm=ft.norm; term=FLIFT(n,ft)}
+let lift_fconstr k f =
+ if k=0 then f else lft_fconstr k f
+let lift_fconstr_vect k v =
+ if k=0 then v else Array.map (fun f -> lft_fconstr k f) v
+
+let clos_rel e i =
+ match expand_rel i e with
+ | Inl(n,mt) -> lift_fconstr n mt
+ | Inr(k,None) -> {norm=Norm; term= FRel k}
+ | Inr(k,Some p) ->
+ lift_fconstr (k-p) {norm=Norm;term=FFlex(FFarRel p)}
+
+(* Optimization: do not enclose variables in a closure.
+ Makes variable access much faster *)
+let mk_clos e t =
match kind_of_term t with
- | IsRel i -> (match expand_rel i env with
- | Inl (lams,v) -> (lift_frterm lams v)
- | Inr (k,None) -> { norm = true; term = FRel k }
- | Inr (k,Some p) ->
- lift_frterm (k-p)
- { norm = false; term = FFlex (FFarRel p) })
- | IsVar x -> { norm = false; term = FFlex (FVar x) }
- | IsMeta _ | IsSort _ | IsXtra _ -> { norm = true; term = FAtom t }
+ | IsRel i -> clos_rel e i
+ | IsVar x -> { norm = Norm; term = FFlex (FVar x) }
+ | IsMeta _ | IsSort _ -> { norm = Norm; term = FAtom t }
+ | (IsMutInd _|IsMutConstruct _|IsFix _|IsCoFix _
+ |IsLambda _|IsProd _) ->
+ {norm = Cstr; term = FCLOS(t,e)}
+ | (IsApp _|IsMutCase _|IsCast _|IsConst _|IsEvar _|IsLetIn _) ->
+ {norm = Red; term = FCLOS(t,e)}
+
+let mk_clos_vect env v = Array.map (mk_clos env) v
+
+(* Translate the head constructor of t from constr to fconstr. This
+ function is parameterized by the function to apply on the direct
+ subterms.
+ Could be used insted of mk_clos. *)
+let mk_clos_deep clos_fun env t =
+ match kind_of_term t with
+ | IsRel i -> clos_rel env i
+ | (IsVar _|IsMeta _ | IsSort _) -> mk_clos env t
| IsCast (a,b) ->
- { norm = false;
- term = FCast (traverse_term env a, traverse_term env b)}
+ { norm = Red;
+ term = FCast (clos_fun env a, clos_fun env b)}
| IsApp (f,v) ->
- { norm = false;
- term = FApp (traverse_term env f, Array.map (traverse_term env) v) }
+ { norm = Red;
+ term = FApp (clos_fun env f, Array.map (clos_fun env) v) }
| IsMutInd (sp,v) ->
- { norm = false; term = FInd (sp, Array.map (traverse_term env) v) }
+ { norm = Cstr; term = FInd (sp, Array.map (clos_fun env) v) }
| IsMutConstruct (sp,v) ->
- { norm = false; term = FConstruct (sp,Array.map (traverse_term env) v)}
+ { norm = Cstr; term = FConstruct (sp,Array.map (clos_fun env) v)}
| IsConst (sp,v) ->
- { norm = false;
- term = FFlex (FConst (sp,Array.map (traverse_term env) v)) }
+ { norm = Red;
+ term = FFlex (FConst (sp,Array.map (clos_fun env) v)) }
| IsEvar (_,v as ev) ->
- assert (array_for_all (fun a -> isVar a or isRel a) v);
- { norm = false;
+ { norm = Red;
term = FFlex (FEvar (ev, env)) }
| IsMutCase (ci,p,c,v) ->
- { norm = false;
- term = FCases (ci, traverse_term env p, traverse_term env c,
- Array.map (traverse_term env) v) }
+ { norm = Red;
+ term = FCases (ci, clos_fun env p, clos_fun env c,
+ Array.map (clos_fun env) v) }
| IsFix (op,(tys,lna,bds)) ->
let env' = subs_liftn (Array.length bds) env in
- { norm = false;
- term = FFix (op, (Array.map (traverse_term env) tys, lna,
- Array.map (traverse_term env') bds),
+ { norm = Cstr;
+ term = FFix (op, (Array.map (clos_fun env) tys, lna,
+ Array.map (clos_fun env') bds),
bds, env) }
| IsCoFix (op,(tys,lna,bds)) ->
let env' = subs_liftn (Array.length bds) env in
- { norm = false;
- term = FCoFix (op, (Array.map (traverse_term env) tys, lna,
- Array.map (traverse_term env') bds),
+ { norm = Cstr;
+ term = FCoFix (op, (Array.map (clos_fun env) tys, lna,
+ Array.map (clos_fun env') bds),
bds, env) }
| IsLambda (n,t,c) ->
- { norm = false;
- term = FLambda (n, traverse_term env t,
- traverse_term (subs_lift env) c,
+ { norm = Cstr;
+ term = FLambda (n, clos_fun env t,
+ clos_fun (subs_lift env) c,
c, env) }
| IsProd (n,t,c) ->
- { norm = false;
- term = FProd (n, traverse_term env t,
- traverse_term (subs_lift env) c,
+ { norm = Cstr;
+ term = FProd (n, clos_fun env t,
+ clos_fun (subs_lift env) c,
c, env) }
| IsLetIn (n,b,t,c) ->
- { norm = false;
- term = FLetIn (n, traverse_term env b, traverse_term env t,
- traverse_term (subs_lift env) c,
+ { norm = Red;
+ term = FLetIn (n, clos_fun env b, clos_fun env t,
+ clos_fun (subs_lift env) c,
c, env) }
-(* Back to regular terms: remove all FFROZEN, keep casts (since this
- * fun is not dedicated to the Calculus of Constructions).
- *)
-let rec lift_term_of_freeze lfts v =
+(* The inverse of mk_clos_deep: move back to constr *)
+let rec to_constr constr_fun lfts v =
match v.term with
- | FRel i -> mkRel (reloc_rel i lfts)
- | FFlex (FVar x) -> mkVar x
- | FFlex (FFarRel p) -> mkRel (reloc_rel p lfts)
- | FAtom c -> c
- | FCast (a,b) ->
- mkCast (lift_term_of_freeze lfts a, lift_term_of_freeze lfts b)
- | FFlex (FConst (op, ve)) ->
- mkConst (op, Array.map (lift_term_of_freeze lfts) ve)
- | FFlex (FEvar ((n,args), env)) ->
- let f a = lift_term_of_freeze lfts (traverse_term env a) in
- mkEvar (n, Array.map f args)
- | FInd (op, ve) ->
- mkMutInd (op, Array.map (lift_term_of_freeze lfts) ve)
- | FConstruct (op, ve) ->
- mkMutConstruct (op, Array.map (lift_term_of_freeze lfts) ve)
- | FCases (ci, p, c, ve) ->
- mkMutCase (ci, lift_term_of_freeze lfts p,
- lift_term_of_freeze lfts c,
- Array.map (lift_term_of_freeze lfts) ve)
- | FFix (op,(tys,lna,bds),_,_) ->
- let lfts' = el_liftn (Array.length bds) lfts in
- mkFix (op, (Array.map (lift_term_of_freeze lfts) tys, lna,
- Array.map (lift_term_of_freeze lfts') bds))
- | FCoFix (op,(tys,lna,bds),_,_) ->
- let lfts' = el_liftn (Array.length bds) lfts in
- mkCoFix (op, (Array.map (lift_term_of_freeze lfts) tys, lna,
- Array.map (lift_term_of_freeze lfts') bds))
- | FApp (f,ve) ->
- mkApp (lift_term_of_freeze lfts f,
- Array.map (lift_term_of_freeze lfts) ve)
- | FLambda (n,t,c,_,_) ->
- mkLambda (n, lift_term_of_freeze lfts t,
- lift_term_of_freeze (el_lift lfts) c)
- | FProd (n,t,c,_,_) ->
- mkProd (n, lift_term_of_freeze lfts t,
- lift_term_of_freeze (el_lift lfts) c)
- | FLetIn (n,b,t,c,_,_) ->
- mkLetIn (n, lift_term_of_freeze lfts b,
- lift_term_of_freeze lfts t,
- lift_term_of_freeze (el_lift lfts) c)
- | FLIFT (k,a) -> lift_term_of_freeze (el_shft k lfts) a
- | FFROZEN (t,env) ->
- let unfv = freeze_assign v (traverse_term env t) in
- lift_term_of_freeze lfts unfv
-
-
-(* This function defines the correspondance between constr and freeze *)
-let term_of_freeze v = lift_term_of_freeze ELID v
-let applist_of_freeze appl = Array.to_list (Array.map term_of_freeze appl)
-
-
-(* fstrong applies unfreeze_fun recursively on the (freeze) term and
- * yields a term. Assumes that the unfreeze_fun never returns a
- * FFROZEN term.
- *)
-let rec fstrong unfreeze_fun lfts v =
- match (unfreeze_fun v).term with
- | FRel i -> mkRel (reloc_rel i lfts)
- | FFlex (FFarRel p) -> mkRel (reloc_rel p lfts)
- | FFlex (FVar x) -> mkVar x
- | FAtom c -> c
+ | FRel i -> IsRel (reloc_rel i lfts)
+ | FFlex (FFarRel p) -> IsRel (reloc_rel p lfts)
+ | FFlex (FVar x) -> IsVar x
+ | FAtom c ->
+ (match kind_of_term c with
+ | IsSort s -> IsSort s
+ | IsMeta m -> IsMeta m
+ | _ -> assert false)
| FCast (a,b) ->
- mkCast (fstrong unfreeze_fun lfts a, fstrong unfreeze_fun lfts b)
+ IsCast (constr_fun lfts a, constr_fun lfts b)
| FFlex (FConst (op,ve)) ->
- mkConst (op, Array.map (fstrong unfreeze_fun lfts) ve)
+ IsConst (op, Array.map (constr_fun lfts) ve)
| FFlex (FEvar ((n,args),env)) ->
- let f a = fstrong unfreeze_fun lfts (freeze env a) in
- mkEvar (n, Array.map f args)
+ let f a = constr_fun lfts (mk_clos env a) in
+ IsEvar (n, Array.map f args)
| FInd (op,ve) ->
- mkMutInd (op, Array.map (fstrong unfreeze_fun lfts) ve)
+ IsMutInd (op, Array.map (constr_fun lfts) ve)
| FConstruct (op,ve) ->
- mkMutConstruct (op, Array.map (fstrong unfreeze_fun lfts) ve)
+ IsMutConstruct (op, Array.map (constr_fun lfts) ve)
| FCases (ci,p,c,ve) ->
- mkMutCase (ci, fstrong unfreeze_fun lfts p,
- fstrong unfreeze_fun lfts c,
- Array.map (fstrong unfreeze_fun lfts) ve)
+ IsMutCase (ci, constr_fun lfts p,
+ constr_fun lfts c,
+ Array.map (constr_fun lfts) ve)
| FFix (op,(tys,lna,bds),_,_) ->
let lfts' = el_liftn (Array.length bds) lfts in
- mkFix (op, (Array.map (fstrong unfreeze_fun lfts) tys, lna,
- Array.map (fstrong unfreeze_fun lfts') bds))
+ IsFix (op, (Array.map (constr_fun lfts) tys, lna,
+ Array.map (constr_fun lfts') bds))
| FCoFix (op,(tys,lna,bds),_,_) ->
let lfts' = el_liftn (Array.length bds) lfts in
- mkCoFix (op, (Array.map (fstrong unfreeze_fun lfts) tys, lna,
- Array.map (fstrong unfreeze_fun lfts') bds))
+ IsCoFix (op, (Array.map (constr_fun lfts) tys, lna,
+ Array.map (constr_fun lfts') bds))
| FApp (f,ve) ->
- mkApp (fstrong unfreeze_fun lfts f,
- Array.map (fstrong unfreeze_fun lfts) ve)
+ IsApp (constr_fun lfts f,
+ Array.map (constr_fun lfts) ve)
| FLambda (n,t,c,_,_) ->
- mkLambda (n, fstrong unfreeze_fun lfts t,
- fstrong unfreeze_fun (el_lift lfts) c)
+ IsLambda (n, constr_fun lfts t,
+ constr_fun (el_lift lfts) c)
| FProd (n,t,c,_,_) ->
- mkProd (n, fstrong unfreeze_fun lfts t,
- fstrong unfreeze_fun (el_lift lfts) c)
+ IsProd (n, constr_fun lfts t,
+ constr_fun (el_lift lfts) c)
| FLetIn (n,b,t,c,_,_) ->
- mkLetIn (n, fstrong unfreeze_fun lfts b,
- fstrong unfreeze_fun lfts t,
- fstrong unfreeze_fun (el_lift lfts) c)
- | FLIFT (k,a) -> fstrong unfreeze_fun (el_shft k lfts) a
- | FFROZEN _ -> anomaly "Closure.fstrong"
-
-
-(* Build a freeze, which represents the substitution of arg in t
- * Used to constract a beta-redex:
- * [^depth](FLamda(S,t)) arg -> [(^depth o S).arg]t
- *)
-let rec contract_subst depth t subs arg =
- freeze (subs_cons (arg, subs_shft (depth,subs))) t
-
+ IsLetIn (n, constr_fun lfts b,
+ constr_fun lfts t,
+ constr_fun (el_lift lfts) c)
+ | FLIFT (k,a) -> to_constr constr_fun (el_shft k lfts) a
+ | FCLOS (t,env) ->
+ let fr = mk_clos_deep mk_clos env t in
+ let unfv = update v (fr.norm,fr.term) in
+ to_constr constr_fun lfts unfv
+
+(* This function defines the correspondance between constr and
+ fconstr. When we find a closure whose substitution is the identity,
+ then we directly return the constr to avoid possibly huge
+ reallocation. *)
+let term_of_fconstr =
+ let rec term_of_fconstr_lift lfts v =
+ match v.term with
+ | FCLOS(t,env) when is_subs_id env & is_lift_id lfts -> t
+ | _ -> mk_constr (to_constr term_of_fconstr_lift lfts v) in
+ term_of_fconstr_lift ELID
-(* Calculus of Constructions *)
-type fconstr = freeze
-
-(* Remove head lifts, applications and casts *)
-let rec strip_frterm n v stack =
- match v.term with
- | FLIFT (k,f) -> strip_frterm (k+n) f stack
- | FApp (f,args) ->
- strip_frterm n f
- (append_stack (Array.map (lift_freeze n) args) stack)
- | FCast (f,_) -> (strip_frterm n f stack)
- | _ -> (n, v, stack)
-
-let strip_freeze v = strip_frterm 0 v empty_stack
+(* fstrong applies unfreeze_fun recursively on the (freeze) term and
+ * yields a term. Assumes that the unfreeze_fun never returns a
+ * FCLOS term.
+let rec fstrong unfreeze_fun lfts v =
+ to_constr (fstrong unfreeze_fun) lfts (unfreeze_fun v)
+*)
-(* Same as contract_fixp, but producing a freeze *)
+(* TODO: the norm flags are not handled properly *)
+let rec zip zfun m stk =
+ match stk with
+ | [] -> m
+ | Zapp(_)::_ ->
+ let (args,s) = decomp_stackn stk in
+ zip zfun {norm=m.norm; term=FApp(m, Array.map zfun args)} s
+ | Zcase(ci,p,br)::s ->
+ let t = FCases(ci, zfun p, m, Array.map zfun br) in
+ zip zfun {norm=m.norm; term=t} s
+ | Zfix(fx,par)::s ->
+ zip zfun fx (par @ append_stack [|m|] s)
+ | Zshift(n)::s ->
+ zip zfun (lift_fconstr n m) s
+ | Zupdate(rf)::s ->
+ zip zfun (update rf (m.norm,m.term)) s
+
+let fapp_stack (m,stk) = zip (fun x -> x) m stk
+
+(*********************************************************************)
+
+(* The assertions in the functions below are granted because they are
+ called only when m is a constructor, a cofix
+ (strip_update_shift_app), a fix (get_nth_arg) or an abstraction
+ (strip_update_shift, through get_arg). *)
+
+(* optimised for the case where there are no shifts... *)
+let strip_update_shift head stk =
+ assert (head.norm <> Red);
+ let rec strip_rec h depth = function
+ | Zshift(k)::s -> strip_rec (lift_fconstr k h) (depth+k) s
+ | Zupdate(m)::s ->
+ strip_rec (update m (h.norm,h.term)) depth s
+ | stk -> (depth,stk) in
+ strip_rec head 0 stk
+
+(* optimised for the case where there are no shifts... *)
+let strip_update_shift_app head stk =
+ assert (head.norm <> Red);
+ let rec strip_rec rstk h depth = function
+ | Zshift(k) as e :: s ->
+ strip_rec (e::rstk) (lift_fconstr k h) (depth+k) s
+ | (Zapp(_)::_) as stk ->
+ let (args,s) = decomp_stackn stk in
+ strip_rec (Zapp(args,0)::rstk)
+ {norm=h.norm;term=FApp(h,args)} depth s
+ | Zupdate(m)::s ->
+ strip_rec rstk (update m (h.norm,h.term)) depth s
+ | stk -> (depth,List.rev rstk, stk) in
+ strip_rec [] head 0 stk
+
+
+let rec get_nth_arg head n stk =
+ assert (head.norm <> Red);
+ let rec strip_rec rstk h depth n = function
+ | Zshift(k) as e :: s ->
+ strip_rec (e::rstk) (lift_fconstr k h) (depth+k) n s
+ | Zapp(v, p)::s' ->
+ let q = Array.length v - p in
+ if n >= q
+ then
+ let v' = if p = 0 then v else Array.sub v p q in
+ strip_rec (Zapp(v',0)::rstk)
+ {norm=h.norm;term=FApp(h,v')} depth (n-q) s'
+ else
+ let rstk' =
+ if n = 0 then rstk else Zapp(Array.sub v p n,0)::rstk in
+ (Some (List.rev rstk', v.(p+n)), append_stackn v (p+n+1) s')
+ | Zupdate(m)::s ->
+ strip_rec rstk (update m (h.norm,h.term)) depth n s
+ | s -> (None, List.rev rstk @ s) in
+ strip_rec [] head 0 n stk
+
+(* Beta reduction: look for an applied argument in the stack.
+ Since the encountered update marks are removed, h must be a whnf *)
+let get_arg h stk =
+ let (depth,stk') = strip_update_shift h stk in
+ match stk' with
+ Zapp(v,p)::s -> (Some(depth,v.(p)), append_stackn v (p+1) s)
+ | _ -> (None, zshift depth stk')
+
+
+(* Iota reduction: extract the arguments to be passed to the Case
+ branches *)
+let rec reloc_rargs_rec depth stk =
+ match stk with
+ Zapp(_)::_ ->
+ let (args,s) = decomp_stackn stk in
+ Zapp(lift_fconstr_vect depth args,0) :: reloc_rargs_rec depth s
+ | Zshift(k)::s -> if k=depth then s else reloc_rargs_rec (depth-k) s
+ | _ -> stk
+
+let reloc_rargs depth stk =
+ if depth = 0 then stk else reloc_rargs_rec depth stk
+
+let rec drop_parameters depth n stk =
+ match stk with
+ Zapp(v,p)::s ->
+ let q = Array.length v - p in
+ if n > q then drop_parameters depth (n-q) s
+ else if n = q then reloc_rargs depth s
+ else reloc_rargs depth (Zapp(v,p+n)::s)
+ | Zshift(k)::s -> drop_parameters (depth-k) n s
+ | [] -> assert (n=0); []
+ | _ -> assert false (* we know that n < stack_args_size(stk) *)
+
+
+(* Iota reduction: expansion of a fixpoint.
+ * Given a fixpoint and a substitution, returns the corresponding
+ * fixpoint body, and the substitution in which it should be
+ * evaluated: its first variables are the fixpoint bodies
+ *
+ * FCLOS(fix Fi {F0 := T0 .. Fn-1 := Tn-1}, S)
+ * -> (S. FCLOS(F0,S) . ... . FCLOS(Fn-1,S), Ti)
+ *)
(* does not deal with FLIFT *)
let contract_fix_vect fix =
let (thisbody, make_body, env, nfix) =
match fix with
| FFix ((reci,i),def,bds,env) ->
(bds.(i),
- (fun j -> { norm = false; term = FFix ((reci,j),def,bds,env) }),
+ (fun j -> { norm = Whnf; term = FFix ((reci,j),def,bds,env) }),
env, Array.length bds)
| FCoFix (i,def,bds,env) ->
(bds.(i),
- (fun j -> { norm = false; term = FCoFix (j,def,bds,env) }),
+ (fun j -> { norm = Whnf; term = FCoFix (j,def,bds,env) }),
env, Array.length bds)
| _ -> anomaly "Closure.contract_fix_vect: not a (co)fixpoint"
in
let rec subst_bodies_from_i i env =
if i = nfix then
- freeze env thisbody
+ mk_clos env thisbody
else
subst_bodies_from_i (i+1) (subs_cons (make_body i, env))
in
subst_bodies_from_i 0 env
-(* CoFix reductions are context dependent. Therefore, they cannot be shared. *)
-let copy_case ci p ft bl =
- (* Is the copy of bl necessary ?? I'd guess no HH *)
- { norm = false; term = FCases (ci,p,ft,Array.copy bl) }
-
-
-(* Check if the case argument enables iota-reduction *)
-type case_status =
- | CONSTRUCTOR of int * fconstr stack
- | COFIX of int * int * (fconstr array * name list * fconstr array) *
- fconstr stack * constr array * freeze subs
- | IRREDUCTIBLE
-
-
-let constr_or_cofix env v =
- let (lft_hd, head, appl) = strip_freeze v in
- match head.term with
- | FConstruct ((indsp,i),_) ->
- let args = stack_tail (mindsp_nparams env indsp) appl in
- CONSTRUCTOR (i, args)
- | FCoFix (bnum, def, bds, env) -> COFIX (lft_hd,bnum,def,appl, bds, env)
- | _ -> IRREDUCTIBLE
-
-let fix_reducible env unf_fun n stack =
- if n < stack_args_size stack & n >= 0 (* e.g for Acc_rec: n = -2 *) then
- let v = unf_fun (stack_nth stack n) in
- match constr_or_cofix env v with
- | CONSTRUCTOR _ -> true
- | _ -> false
- else
- false
-
-
-(* unfreeze computes the weak head normal form of v (according to the
- * flags in info) and updates the mutable term.
- *)
-let rec unfreeze info v =
- freeze_assign v (whnf_frterm info v)
-
-(* weak head normal form
- * Sharing info: the physical location of the ouput of this function
- * doesn't matter (only the values of its fields do).
- *)
-and whnf_frterm info ft =
- if ft.norm then begin
- incr prune; ft
- end else
- match ft.term with
- | FFROZEN (t,env) -> whnf_term info env t
- | FLIFT (k,f) ->
- let uf = unfreeze info f in
- { norm = uf.norm; term = FLIFT(k, uf) }
- | FCast (f,_) -> whnf_frterm info f (* remove outer casts *)
- | FApp (f,appl) -> whnf_apply info f (append_stack appl empty_stack)
- | FFlex (FConst (sp,vars)) ->
- let cst = (sp, Array.map term_of_freeze vars) in
- if red_under info.i_flags (CONST [sp]) then
- (match ref_value_cache info (ConstBinding cst) with
- | Some def ->
- let udef = unfreeze info def in
- lift_frterm 0 udef
- | None ->
- { norm = true (* because only mkVar *); term = ft.term })
- else
- ft
- | FFlex (FEvar ((_,vars),_ as ev)) ->
- if red_under info.i_flags EVAR then
- (match ref_value_cache info (EvarBinding ev) with
- | Some def ->
- let udef = unfreeze info def in
- lift_frterm 0 udef
- | None ->
- { norm = true (* because only mkVar/Rel *);term = ft.term })
- else
- ft
- | FFlex (FVar id) as t->
- if red_under info.i_flags (VAR id) then
- match ref_value_cache info (VarBinding id) with
- | Some def ->
- let udef = unfreeze info def in
- lift_frterm 0 udef
- | None -> { norm = true; term = t }
- else ft
- | FFlex (FFarRel k) as t ->
- if red_under info.i_flags DELTA then
- match ref_value_cache info (FarRelBinding k) with
- | Some def ->
- let udef = unfreeze info def in
- lift_frterm 0 udef
- | None -> { norm = true; term = t }
- else ft
-
- | FCases (ci,p,co,bl) ->
- if red_under info.i_flags IOTA then
- let c = unfreeze (infos_under info) co in
- (match constr_or_cofix info.i_env c with
- | CONSTRUCTOR (n,real_args) when n <= Array.length bl ->
- whnf_apply info bl.(n-1) real_args
- | COFIX (lft_hd,bnum,def,appl,bds,env) ->
- let cofix = contract_fix_vect (FCoFix (bnum,def,bds,env)) in
- let red_cofix =
- whnf_apply info (lift_freeze lft_hd cofix) appl in
- whnf_frterm info (copy_case ci p red_cofix bl)
- | _ ->
- { norm = is_val p & is_val co & array_for_all is_val bl;
- term = ft.term })
- else
- ft
-
- | FLetIn (na,b,fd,fc,d,subs) ->
- let c = unfreeze info b in
- if red_under info.i_flags ZETA then
- whnf_frterm info (contract_subst 0 d subs c)
- else
- { norm = false;
- term = FLetIn (na,c,fd,fc,d,subs) }
-
- | FRel _ | FAtom _ -> { norm = true; term = ft.term }
-
- | FFix _ | FCoFix _ | FInd _ | FConstruct _ | FLambda _ | FProd _ -> ft
-
-(* Weak head reduction: case of the application (head appl) *)
-and whnf_apply info head stack =
- let head = unfreeze info head in
- if stack = empty_stack then
- head
- else
- let (lft_hd,whd,lstack) = strip_frterm 0 head stack in
- match whd.term with
- | FLambda (_,_,_,t,subs) when red_under info.i_flags BETA ->
- (match decomp_stack lstack with
- | Some (c, stack') ->
- let vbody = contract_subst lft_hd t subs c in
- whnf_apply info vbody stack'
- | None -> assert false)
- | FFix ((reci,bnum), _, _, _) as fx
- when red_under info.i_flags IOTA
- & fix_reducible info.i_env
- (unfreeze (infos_under info)) reci.(bnum) lstack ->
- let fix = contract_fix_vect fx in
- whnf_apply info (lift_freeze lft_hd fix) lstack
- | _ ->
- let appl = array_of_stack stack in
- { norm = (is_val head) & (array_for_all is_val appl);
- term = FApp (head, appl) }
-
-(* essayer whnf_frterm info (traverse_term env t) a la place?
- * serait moins lazy: traverse_term ne supprime pas les Cast a la volee, etc.
- *)
-and whnf_term info env t =
+(*********************************************************************)
+(* A machine that inspects the head of a term until it finds an
+ atom or a subterm that may produce a redex (abstraction,
+ constructor, cofix, letin, constant), or a neutral term (product,
+ inductive) *)
+let rec knh m stk =
+ if is_val m then (m,stk) else
+ match m.term with
+ | FLIFT(k,a) -> knh a (zshift k stk)
+ | FCLOS(t,e) -> knht e t (Zupdate(m)::stk)
+ | FApp(a,b) -> knh a (append_stack b (zupdate m stk))
+ | FCases(ci,p,t,br) -> knh t (Zcase(ci,p,br)::zupdate m stk)
+ | FFix((ri,n),_,_,_) ->
+ (set_whnf m;
+ match get_nth_arg m ri.(n) stk with
+ (Some(pars,arg),stk') -> knh arg (Zfix(m,pars)::stk')
+ | (None, stk') -> (m,stk'))
+ | FCast(t,_) -> knh t stk
+(* cases where knh stops *)
+ | (FFlex _|FLetIn _) -> (m, stk)
+ | (FRel _|FAtom _) -> (set_norm m; (m, stk))
+ | (FLambda _|FConstruct _|FCoFix _|FInd _|FProd _) ->
+ (set_whnf m; (m, stk))
+
+(* The same for pure terms *)
+and knht e t stk =
match kind_of_term t with
- | IsRel i ->
- (match expand_rel i env with
- | Inl (lams,v) ->
- let uv = unfreeze info v in
- lift_frterm lams uv
- | Inr (n,None) ->
- { norm = true; term = FRel n }
- | Inr (n,Some k) ->
- whnf_frterm info
- (lift_frterm (n-k) { norm = false; term = FFlex(FFarRel k) }))
-
- | IsVar x -> whnf_frterm info { norm = false; term = FFlex(FVar x) }
-
- | IsSort _ | IsXtra _ | IsMeta _ -> {norm = true; term = FAtom t }
- | IsCast (c,_) -> whnf_term info env c (* remove outer casts *)
-
- | IsApp (f,ve) ->
- whnf_frterm info
- { norm = false; term = FApp (freeze env f, freeze_vect env ve)}
- | IsConst (op,v) ->
- whnf_frterm info
- { norm = false; term = FFlex (FConst (op, freeze_vect env v)) }
- | IsEvar ev ->
- whnf_frterm info { norm = false; term = FFlex (FEvar (ev, env)) }
- | IsMutCase (ci,p,c,ve) ->
- whnf_frterm info
- { norm = false;
- term = FCases (ci, freeze env p, freeze env c, freeze_vect env ve)}
-
- | IsMutInd (op,v) ->
- { norm = (v=[||]); term = FInd (op, freeze_vect env v) }
- | IsMutConstruct (op,v) ->
- { norm = (v=[||]); term = FConstruct (op, freeze_vect env v) }
-
- | IsFix (op,(_,_,bds as def)) ->
- { norm = false; term = FFix (op, freeze_rec env def, bds, env) }
- | IsCoFix (op,(_,_,bds as def)) ->
- { norm = false; term = FCoFix (op, freeze_rec env def, bds, env) }
-
- | IsLambda (n,t,c) ->
- { norm = false;
- term = FLambda (n, freeze env t, freeze (subs_lift env) c,
- c, env) }
- | IsProd (n,t,c) ->
- { norm = false;
- term = FProd (n, freeze env t, freeze (subs_lift env) c,
- c, env) }
-
- | IsLetIn (n,b,t,c) ->
- whnf_frterm info
- { norm = false;
- term = FLetIn (n, freeze env b, freeze env t,
- freeze (subs_lift env) c, c, env) }
+ | IsApp(a,b) ->
+ knht e a (append_stack (mk_clos_vect e b) stk)
+ | IsMutCase(ci,p,t,br) ->
+ knht e t (Zcase(ci, mk_clos e p, mk_clos_vect e br)::stk)
+ | IsFix _ -> knh (mk_clos_deep mk_clos e t) stk
+ | IsCast(a,b) -> knht e a stk
+ | IsRel n -> knh (clos_rel e n) stk
+ | (IsLambda _|IsProd _|IsMutConstruct _|IsCoFix _|IsMutInd _|
+ IsLetIn _|IsConst _|IsVar _|IsEvar _|IsMeta _|IsSort _) ->
+ (mk_clos_deep mk_clos e t, stk)
+
+
+(***********************************************************************)
+
+(* Computes a normal form from the result of knh. *)
+let rec knr info m stk =
+ match m.term with
+ | FLambda(_,_,_,f,e) when can_red info stk BETA ->
+ (match get_arg m stk with
+ (Some(depth,arg),s) -> knit info (subs_shift_cons(depth,e,arg)) f s
+ | (None,s) -> (m,s))
+ | FFlex(FConst(sp,args)) when can_red info stk (CONST [sp]) ->
+ let cst = (sp, Array.map term_of_fconstr args) in
+ (match ref_value_cache info (ConstBinding cst) with
+ Some v -> kni info v stk
+ | None -> (set_norm m; (m,stk)))
+ | FFlex(FEvar ev) when can_red info stk EVAR ->
+(* In the case of evars, if it is not defined, then we do not set the
+ flag to Norm, because it may be instantiated later on *)
+ (match ref_value_cache info (EvarBinding ev) with
+ Some v -> kni info v stk
+ | None -> (m,stk))
+ | FFlex(FVar id) when can_red info stk (VAR id) ->
+ (match ref_value_cache info (VarBinding id) with
+ Some v -> kni info v stk
+ | None -> (set_norm m; (m,stk)))
+ | FFlex(FFarRel k) when can_red info stk DELTA ->
+ (match ref_value_cache info (FarRelBinding k) with
+ Some v -> kni info v stk
+ | None -> (set_norm m; (m,stk)))
+ | FConstruct((sp,c),args) when can_red info stk IOTA ->
+ (match strip_update_shift_app m stk with
+ (depth, args, Zcase((cn,_),_,br)::s) ->
+ let npar = stack_args_size args - cn.(c-1) in
+ assert (npar>=0);
+ let rargs = drop_parameters depth npar args in
+ kni info br.(c-1) (rargs@s)
+ | (_, cargs, Zfix(fx,par)::s) ->
+ let rarg = fapp_stack(m,cargs) in
+ let stk' = par @ append_stack [|rarg|] s in
+ let efx = contract_fix_vect fx.term in
+ kni info efx stk'
+ | (_,args,s) -> (m,args@s))
+ | FCoFix _ when can_red info stk IOTA ->
+ (match strip_update_shift_app m stk with
+ (_, args, (Zcase((cn,_),_,br)::s as stk')) ->
+ let efx = contract_fix_vect m.term in
+ kni info efx (args@s)
+ | (_,args,s) -> (m,args@s))
+ | FLetIn (_,v,_,_,bd,e) when can_red info stk ZETA ->
+ knit info (subs_cons(v,e)) bd stk
+ | _ -> (m,stk)
+
+(* Computes the normal form of a term *)
+and kni info m stk =
+ let (hm,s) = knh m stk in
+ knr info hm s
+and knit info e t stk =
+ let (ht,s) = knht e t stk in
+ knr info ht s
+
+let kh info v stk = fapp_stack(kni info v stk)
+
+(***********************************************************************)
+
+(* Computes the strong normal form of a term.
+ 1- Calls kni
+ 2- tries to rebuild the term. If a closure still has to be computed,
+ calls itself recursively. *)
+let rec kl info m =
+ let (nm,s) = kni info m [] in
+ down_or_up info nm s
+
+(* no redex: go up for atoms and already normalized terms, go down
+ otherwise. *)
+and down_or_up info m stk =
+ let nm =
+ if is_val m then (incr prune; m) else
+ let nt =
+ match m.term with
+ | FLambda(na,ty,bd,f,e) ->
+ FLambda(na, kl info ty, kl info bd, f, e)
+ | FLetIn(na,a,b,c,f,e) ->
+ FLetIn(na, kl info a, kl info b, kl info c, f, e)
+ | FProd(na,dom,rng,f,e) ->
+ FProd(na, kl info dom, kl info rng, f, e)
+ | FInd(ind,args) ->
+ FInd(ind, Array.map (kl info) args)
+ | FConstruct(c,args) ->
+ FConstruct(c, Array.map (kl info) args)
+ | FCoFix(n,(ftys,na,fbds),bds,e) ->
+ FCoFix(n,(Array.map (kl info) ftys, na,
+ Array.map (kl info) fbds),bds,e)
+ | FFlex(FConst(sp,args)) ->
+ FFlex(FConst(sp, Array.map (kl info) args))
+ | FFlex(FEvar((i,args),e)) ->
+ FFlex(FEvar((i,args),e))
+ | t -> t in
+ {norm=Norm;term=nt} in
+(* Precondition: m.norm = Norm *)
+ zip (kl info) nm stk
+
+
+(* Initialization and then normalization *)
+
+(* weak reduction *)
+let whd_val info v =
+ with_stats (lazy (term_of_fconstr (kh info v [])))
-(* parameterized norm *)
+(* strong reduction *)
let norm_val info v =
- if !stats then begin
- reset();
- let r = fstrong (unfreeze info) ELID v in
- stop();
- r
- end else
- fstrong (unfreeze info) ELID v
+ with_stats (lazy (term_of_fconstr (kl info v)))
-let whd_val info v =
- let uv = unfreeze info v in
- term_of_freeze uv
+let inject = mk_clos (ESID 0)
+
+(* cache of constants: the body is computed only when needed. *)
+type 'a clos_infos = (fconstr, 'a) infos
-let inject = freeze (ESID 0)
+let create_clos_infos flgs env sigma =
+ create (fun _ -> mk_clos) flgs env sigma
-let search_frozen_value info = function
+let unfold_reference info = function
| FConst (op,v) ->
let cst = (op, Array.map (norm_val info) v) in
ref_value_cache info (ConstBinding cst)
@@ -1362,26 +934,22 @@ let search_frozen_value info = function
| FVar id -> ref_value_cache info (VarBinding id)
| FFarRel p -> ref_value_cache info (FarRelBinding p)
-(* cache of constants: the body is computed only when needed. *)
-type 'a clos_infos = (fconstr, 'a) infos
-
+(* Head normal form. *)
-let create_clos_infos flgs env sigma =
- { i_flags = flgs;
- i_repr = (fun old_info s c -> freeze s c);
- i_env = env;
- i_evc = sigma;
- i_rels = defined_rels flgs env;
- i_vars = defined_vars flgs env;
- i_tab = Hashtbl.create 17 }
+(* TODO: optimise *)
+let rec strip_applstack k acc m =
+ match m.term with
+ FApp(a,b) ->
+ strip_applstack k (append_stack (lift_fconstr_vect k b) acc) a
+ | FLIFT(n,a) ->
+ strip_applstack (k+n) acc a
+ | FCLOS _ -> assert false
+ | _ -> (k,m,acc)
-let clos_infos_env infos = infos.i_env
-(* Head normal form. *)
let fhnf info v =
- let uv = unfreeze info v in
- strip_freeze uv
+ strip_applstack 0 [] (kh info v [])
-let fhnf_apply infos k head appl =
- let v = whnf_apply infos (lift_freeze k head) appl in
- strip_freeze v
+let fhnf_apply info k head appl =
+ let stk = zshift k appl in
+ strip_applstack 0 [] (kh info head stk)