aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorHugo Herbelin2016-07-17 09:28:56 +0200
committerHugo Herbelin2016-07-17 14:27:18 +0200
commitb976aa1e49579b7b50cfb140cbac8cb6f4c881a7 (patch)
tree668c698299acdde06b9c809ff427b47d507c4d06 /doc
parent152aca663d76f0cfda21ddef880050f21bfe4995 (diff)
More examples of recursive notations, with emphasis in reference manual.
Further work would include: - Identify binders up to alpha-conversion (see #4932 with a list of binders of length at least 2, or #4592 on printing notations such as ex2). A cool example that one could also consider supporting: - Notation "[[ a , .. , b | .. | a , .. , b ]]" := (cons (cons a .. (cons b nil) ..) .. (cons a .. (cons b nil) ..) ..).
Diffstat (limited to 'doc')
-rw-r--r--doc/refman/RefMan-syn.tex19
1 files changed, 18 insertions, 1 deletions
diff --git a/doc/refman/RefMan-syn.tex b/doc/refman/RefMan-syn.tex
index e91480ded3..92107b750b 100644
--- a/doc/refman/RefMan-syn.tex
+++ b/doc/refman/RefMan-syn.tex
@@ -589,6 +589,14 @@ Notation "[| t * ( x , y , .. , z ) ; ( a , b , .. , c ) * u |]" :=
(t at level 39).
\end{coq_example*}
+Recursive patterns can occur several times on the right-hand side.
+Here is an example:
+
+\begin{coq_example*}
+Notation "[> a , .. , b <]" :=
+ (cons a .. (cons b nil) .., cons b .. (cons a nil) ..).
+\end{coq_example*}
+
Notations with recursive patterns can be reserved like standard
notations, they can also be declared within interpretation scopes (see
section \ref{scopes}).
@@ -634,7 +642,16 @@ empty. Here is an example of recursive notation with closed binders:
\begin{coq_example*}
Notation "'mylet' f x .. y := t 'in' u":=
(let f := fun x => .. (fun y => t) .. in u)
- (x closed binder, y closed binder, at level 200, right associativity).
+ (at level 200, x closed binder, y closed binder, right associativity).
+\end{coq_example*}
+
+A recursive pattern for binders can be used in position of a recursive
+pattern for terms. Here is an example:
+
+\begin{coq_example*}
+Notation ``'FUNAPP' x .. y , f'' :=
+ (fun x => .. (fun y => (.. (f x) ..) y ) ..)
+ (at level 200, x binder, y binder, right associativity).
\end{coq_example*}
\subsection{Summary}